1
|
Selvadoss A, Baby HM, Zhang H, Bajpayee AG. Harnessing exosomes for advanced osteoarthritis therapy. NANOSCALE 2024; 16:19174-19191. [PMID: 39323205 DOI: 10.1039/d4nr02792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Exosomes are nanosized, lipid membrane vesicles secreted by cells, facilitating intercellular communication by transferring cargo from parent to recipient cells. This capability enables biological crosstalk across multiple tissues and cells. Extensive research has been conducted on their role in the pathogenesis of degenerative musculoskeletal diseases such as osteoarthritis (OA), a chronic and painful joint disease that particularly affects cartilage. Currently, no effective treatment exists for OA. Given that exosomes naturally modulate synovial joint inflammation and facilitate cartilage matrix synthesis, they are promising candidates as next generation nanocarriers for OA therapy. Recent advancements have focused on engineering exosomes through endogenous and exogenous approaches to enhance their joint retention, cartilage and chondrocyte targeting properties, and therapeutic content enrichment, further increasing their potential for OA drug delivery. Notably, charge-reversed exosomes that utilize electrostatic binding interactions with cartilage anionic aggrecan glycosaminoglycans have demonstrated the ability to penetrate the full thickness of early-stage arthritic cartilage tissue following intra-articular administration, maximizing their therapeutic potential. These exosomes offer a non-viral, naturally derived, cell-free carrier for OA drug and gene delivery applications. Efforts to standardize exosome harvest, engineering, and property characterization methods, along with scaling up production, will facilitate more efficient and rapid clinical translation. This article reviews the current state-of-the-art, explores opportunities for exosomes as OA therapeutics, and identifies potential challenges in their clinical translation.
Collapse
Affiliation(s)
- Andrew Selvadoss
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Helna M Baby
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Ambika G Bajpayee
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Morici L, Allémann E, Rodríguez-Nogales C, Jordan O. Cartilage-targeted drug nanocarriers for osteoarthritis therapy. Int J Pharm 2024; 666:124843. [PMID: 39424088 DOI: 10.1016/j.ijpharm.2024.124843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Osteoarthritis (OA) is a joint disease common worldwide. Currently, no disease-modifying osteoarthritis drugs (DMOADs) have successfully passed clinical trials, often due to a lack of cartilage penetration. Thus, targeting the extracellular matrix (ECM) is a major priority. The design of cartilage-targeting drug delivery systems (DDSs) for intra-articular administration requires consideration of the physicochemical properties of articular cartilage, such as its porosity and negative fixed charge. Various positively charged biomaterials such as polyaminoacids, proteins, polymers, and lipids can be used as DDSs to enhance cartilage penetration. Cationic nanocarriers interact electrostatically with anionic glycosaminoglycans of the ECM, ensuring passive cartilage-targeting penetration and prolonged retention. Active targeting strategies involve DDSs surface decoration using antibodies or peptides with a strong affinity for collagen II and chondrocytes in the cartilage. This review presents all the relevant bio-physicochemical properties of healthy and OA cartilages, as well as state-of-the-art intra-articular cartilage-targeted DDSs, intending to better understand the recent advances in the application of cartilage-targeting delivery systems for OA therapy.
Collapse
Affiliation(s)
- Luca Morici
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Carlos Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1206 Geneva, Switzerland.
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1206 Geneva, Switzerland.
| |
Collapse
|
3
|
Andrés CMC, Pérez de la Lastra JM, Munguira EB, Andrés Juan C, Pérez-Lebeña E. Dual-Action Therapeutics: DNA Alkylation and Antimicrobial Peptides for Cancer Therapy. Cancers (Basel) 2024; 16:3123. [PMID: 39335095 PMCID: PMC11429518 DOI: 10.3390/cancers16183123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains one of the most difficult diseases to treat, requiring continuous research into innovative therapeutic strategies. Conventional treatments such as chemotherapy and radiotherapy are effective to a certain extent but often have significant side effects and carry the risk of resistance. In recent years, the concept of dual-acting therapeutics has attracted considerable attention, particularly the combination of DNA alkylating agents and antimicrobial peptides. DNA alkylation, a well-known mechanism in cancer therapy, involves the attachment of alkyl groups to DNA, leading to DNA damage and subsequent cell death. Antimicrobial peptides, on the other hand, have been shown to be effective anticancer agents due to their ability to selectively disrupt cancer cell membranes and modulate immune responses. This review aims to explore the synergistic potential of these two therapeutic modalities. It examines their mechanisms of action, current research findings, and the promise they offer to improve the efficacy and specificity of cancer treatments. By combining the cytotoxic power of DNA alkylation with the unique properties of antimicrobial peptides, dual-action therapeutics may offer a new and more effective approach to fighting cancer.
Collapse
Affiliation(s)
- Celia María Curieses Andrés
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Elena Bustamante Munguira
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | | |
Collapse
|
4
|
Zhang C, Pathrikar TV, Baby HM, Li J, Zhang H, Selvadoss A, Ovchinnikova A, Ionescu A, Chubinskaya S, Miller RE, Bajpayee AG. Charge-Reversed Exosomes for Targeted Gene Delivery to Cartilage for Osteoarthritis Treatment. SMALL METHODS 2024; 8:e2301443. [PMID: 38607953 PMCID: PMC11470115 DOI: 10.1002/smtd.202301443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Gene therapy has the potential to facilitate targeted expression of therapeutic proteins to promote cartilage regeneration in osteoarthritis (OA). The dense, avascular, aggrecan-glycosaminoglycan (GAG) rich negatively charged cartilage, however, hinders their transport to reach chondrocytes in effective doses. While viral vector mediated gene delivery has shown promise, concerns over immunogenicity and tumorigenic side-effects persist. To address these issues, this study develops surface-modified cartilage-targeting exosomes as non-viral carriers for gene therapy. Charge-reversed cationic exosomes are engineered for mRNA delivery by anchoring cartilage targeting optimally charged arginine-rich cationic motifs into the anionic exosome bilayer by using buffer pH as a charge-reversal switch. Cationic exosomes penetrated through the full-thickness of early-stage arthritic human cartilage owing to weak-reversible ionic binding with GAGs and efficiently delivered the encapsulated eGFP mRNA to chondrocytes residing in tissue deep layers, while unmodified anionic exosomes do not. When intra-articularly injected into destabilized medial meniscus mice knees with early-stage OA, mRNA loaded charge-reversed exosomes overcame joint clearance and rapidly penetrated into cartilage, creating an intra-tissue depot and efficiently expressing eGFP; native exosomes remained unsuccessful. Cationic exosomes thus hold strong translational potential as a platform technology for cartilage-targeted non-viral delivery of any relevant mRNA targets for OA treatment.
Collapse
Affiliation(s)
- Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Tanvi V. Pathrikar
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Helna M. Baby
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Jun Li
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Andrew Selvadoss
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | | | - Andreia Ionescu
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical College, Chicago, IL 60612, USA
| | - Rachel E. Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Hassan LF, Sen R, O'Shea TM. Trehalose-based coacervates for local bioactive protein delivery to the central nervous system. Biomaterials 2024; 309:122594. [PMID: 38701641 DOI: 10.1016/j.biomaterials.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Therapeutic outcomes of local biomolecule delivery to the central nervous system (CNS) using bulk biomaterials are limited by inadequate drug loading, neuropil disruption, and severe foreign body responses. Effective CNS delivery requires addressing these issues and developing well-tolerated, highly-loaded carriers that are dispersible within local neural parenchyma. Here, we synthesized biodegradable trehalose-based polyelectrolyte oligomers using facile A2:B3:AR thiol-ene Michael addition reactions that form complex coacervates upon mixing of oppositely charged oligomers. Coacervates permit high concentration loading and controlled release of bioactive growth factors, enzymes, and antibodies, with modular formulation parameters that confer tunable release kinetics. Coacervates are cytocompatible with cultured neural cells in vitro and can be formulated to either direct intracellular protein delivery or sequester media containing proteins and remain extracellular. Coacervates serve as effective vehicles for precisely delivering biomolecules, including bioactive neurotrophins, to the mouse striatum following intraparenchymal injection. These results support the use of trehalose-based coacervates as part of therapeutic protein delivery strategies for CNS disorders.
Collapse
Affiliation(s)
- Laboni F Hassan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Riya Sen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA.
| |
Collapse
|
6
|
Millán Cotto HA, Pathrikar TV, Hakim B, Baby HM, Zhang H, Zhao P, Ansaripour R, Amini R, Carrier RL, Bajpayee AG. Cationic-motif-modified exosomes for mRNA delivery to retinal photoreceptors. J Mater Chem B 2024; 12:7384-7400. [PMID: 38946491 PMCID: PMC11323772 DOI: 10.1039/d4tb00849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Topical treatment of vitreoretinal diseases remains a challenge due to slow corneal uptake and systemic clearance. Exosomes are emerging nanocarriers for drug delivery due to biocompatibility and cellular targeting properties. To apply them for retinal targeting via the topical route, exosomes must traverse various ocular barriers including the cornea, lens, vitreous humor (VH), and the retina itself. Here we engineered high-purity milk-derived exosomes by anchoring arginine-rich cationic motifs via PEG2000 lipid insertion on their surface. Modification enabled exosomes to use weak-reversible electrostatic interactions with anionic glycosaminoglycan (GAG) and water content of the tissue to enhance their transport rate and retention. Addition of cationic motifs neutralized the anionic surface charge of exosomes (-24 to -2 mV) without impacting size or morphology. Cationic-motif-modified exosomes exhibited two-fold faster steady state diffusivity through bovine corneas compared to unmodified exosomes. Fluorescence recovery after photobleaching confirmed that cationic-motif-modified exosomes can diffuse through VH without steric hindrance. In healthy VH, cationic-motif-modified exosomes demonstrated stronger binding resulting in three-fold lower average diffusivity that enhanced by six-fold in 50% GAG-depleted VH recapitulating advanced liquefaction. Cationic-motif-modified exosomes penetrated through the full-thickness of porcine retinal explants resulting in ten-fold higher uptake in photoreceptors and three-fold greater transfection with encapsulated eGFP mRNA compared to unmodified exosomes. Cationic-motif-modified exosomes are safe to use as they did not adversely affect the mechanical swelling properties of the cornea or lens nor impact retinal cell viability. Cationic-motif-modified exosomes, therefore, offer themselves as a cell-free nanocarrier platform for gene delivery to retinal photoreceptors potentially via the topical route.
Collapse
Affiliation(s)
| | | | - Bill Hakim
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Helna M Baby
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Peng Zhao
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Ronak Ansaripour
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Rouzbeh Amini
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
7
|
Jaradat E, Meziane A, Lamprou DA. Paclitaxel-loaded elastic liposomes synthesised by microfluidics technique for enhance transdermal delivery. Drug Deliv Transl Res 2024:10.1007/s13346-024-01672-0. [PMID: 39020246 DOI: 10.1007/s13346-024-01672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
The inherent flexibility of elastic liposomes (EL) allows them to penetrate the small skin pores and reach the dermal region, making them an optimum candidate for topical drug delivery. Loading chemotherapy in ELs could improve chemotherapy's topical delivery and localise its effect on skin carcinogenic tissues. Chemotherapy-loaded EL can overcome the limitations of conventional administration of chemotherapies and control the distribution to specific areas of the skin. In the current studies, Paclitaxel was utilised to develop Paclitaxel-loaded EL. As an alternative to the conventional manufacturing methods of EL, this study is one of the novel investigations utilising microfluidic systems to examine the potential to enhance and optimise the quality of Els by the microfluidics method. The primary aim was to achieve EL with a size of < 200 nm, high homogeneity, high encapsulation efficiency, and good stability. A phospholipid (DOPC) combined with neutral and anionic edge activators (Tween 80 and sodium taurocholate hydrate) at various lipid-to-edge activator ratios, was used for the manufacturing of the ELs. A preliminary study was performed to study the size, polydispersity (PDI), and stability to determine the optimum microfluidic parameters and lipid-to-edge activator for paclitaxel encapsulation. Furthermore, physiochemical characterisation was performed on the optimised Paclitaxel-loaded EL using a variety of methods, including Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy, Atomic force microscopy, elasticity, encapsulation efficiency, and In vitro release. The results reveal the microfluidics' significant impact in enhancing the EL characteristics of EL, especially small and controllable size, Low PDI, and high encapsulation efficiency. Moreover, the edge activator type and concentration highly affect the EL characteristics. The Tween 80 formulations with optimised concentration provide the most suitable size and higher encapsulation efficiency. The release profile of the formulations showed more immediate release from the EL with higher edge activator concentration and a higher % of the released dug from the Tween 80 formulations.
Collapse
Affiliation(s)
- Eman Jaradat
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
8
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
9
|
Bonilla-Vidal L, Espina M, García ML, Baldomà L, Badia J, González JA, Delgado LM, Gliszczyńska A, Souto EB, Sánchez-López E. Novel nanostructured lipid carriers loading Apigenin for anterior segment ocular pathologies. Int J Pharm 2024; 658:124222. [PMID: 38735632 DOI: 10.1016/j.ijpharm.2024.124222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Dry eye disease (DED) is a chronic multifactorial disorder of the ocular surface caused by tear film dysfunction and constitutes one of the most common ocular conditions worldwide. However, its treatment remains unsatisfactory. While artificial tears are commonly used to moisturize the ocular surface, they do not address the underlying causes of DED. Apigenin (APG) is a natural product with anti-inflammatory properties, but its low solubility and bioavailability limit its efficacy. Therefore, a novel formulation of APG loaded into biodegradable and biocompatible nanoparticles (APG-NLC) was developed to overcome the restricted APG stability, improve its therapeutic efficacy, and prolong its retention time on the ocular surface by extending its release. APG-NLC optimization, characterization, biopharmaceutical properties and therapeutic efficacy were evaluated. The optimized APG-NLC exhibited an average particle size below 200 nm, a positive surface charge, and an encapsulation efficiency over 99 %. APG-NLC exhibited sustained release of APG, and stability studies demonstrated that the formulation retained its integrity for over 25 months. In vitro and in vivo ocular tolerance studies indicated that APG-NLC did not cause any irritation, rendering them suitable for ocular topical administration. Furthermore, APG-NLC showed non-toxicity in an epithelial corneal cell line and exhibited fast cell internalization. Therapeutic benefits were demonstrated using an in vivo model of DED, where APG-NLC effectively reversed DED by reducing ocular surface cellular damage and increasing tear volume. Anti-inflammatory assays in vivo also showcased its potential to treat and prevent ocular inflammation, particularly relevant in DED patients. Hence, APG-NLC represent a promising system for the treatment and prevention of DED and its associated inflammation.
Collapse
Affiliation(s)
- L Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - M Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - M L García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - L Baldomà
- Department of Biochemistry and Physiology, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Institute of Research of Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - J Badia
- Department of Biochemistry and Physiology, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Institute of Research of Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - J A González
- Department of Endodontics, Faculty of Dentistry, International University of Catalonia (UIC), 08195 Barcelona, Spain
| | - L M Delgado
- Bioengineering Institute of Technology, International University of Catalonia (UIC), 08028 Barcelona, Spain
| | - A Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - E B Souto
- REQUIMTE/UCIBIO, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - E Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain; Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain.
| |
Collapse
|
10
|
Ma Z, Wang Y, He H, Liu T, Jiang Q, Hou X. Advancing ophthalmic delivery of flurbiprofen via synergistic chiral resolution and ion-pairing strategies. Asian J Pharm Sci 2024; 19:100928. [PMID: 38867804 PMCID: PMC11165342 DOI: 10.1016/j.ajps.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 06/14/2024] Open
Abstract
Flurbiprofen (FB), a nonsteroidal anti-inflammatory drug, is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects. However, the racemic nature of its commercially available formulation (Ocufen®) limits the full potential of its therapeutic activity, as the (S)-enantiomer is responsible for the desired anti-inflammatory effects. Additionally, the limited corneal permeability of FB significantly restricts its bioavailability. In this study, we successfully separated the chiral isomers of FB to obtain the highly active (S)-FB. Subsequently, utilizing ion-pairing technology, we coupled (S)-FB with various counter-ions, such as sodium, diethylamine, trimethamine (TMA), and l-arginine, to enhance its ocular bioavailability. A comprehensive evaluation encompassed balanced solubility, octanol-water partition coefficient, corneal permeability, ocular pharmacokinetics, tissue distribution, and in vivo ocular anti-inflammatory activity of each chiral isomer salt. Among the various formulations, S-FBTMA exhibited superior water solubility (about 1-12 mg/ml), lipid solubility (1< lg Pow < 3) and corneal permeability. In comparison to Ocufen®, S-FBTMA demonstrated significantly higher in vivo anti-inflammatory activity and lower ocular irritability (such as conjunctival congestion and tingling). The findings from this research highlight the potential of chiral separation and ion-pair enhanced permeation techniques in providing pharmaceutical enterprises focused on drug development with a valuable avenue for improving therapeutic outcomes.
Collapse
Affiliation(s)
- Zhining Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuequan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiyang He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tong Liu
- Liaoning Provincial Institute of Drug Inspection and Testing, Shenyang 110036, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
11
|
Pham DA, Wang CS, Séguy L, Zhang H, Benbabaali S, Faivre J, Sim S, Xie G, Olszewski M, Rabanel JM, Moldovan F, Matyjaszewski K, Banquy X. Bioinspired Bottlebrush Polymers Effectively Alleviate Frictional Damage Both In Vitro and In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401689. [PMID: 38552182 DOI: 10.1002/adma.202401689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Bottlebrush polymers (BB) have emerged as compelling candidates for biosystems to face tribological challenges, including friction and wear. This study provides a comprehensive assessment of an engineered triblock BB polymer's affinity, cell toxicity, lubrication, and wear protection in both in vitro and in vivo settings, focusing on applications for conditions like osteoarthritis and dry eye syndrome. Results show that the designed polymer rapidly adheres to various surfaces (e.g., cartilage, eye, and contact lens), forming a robust, biocompatible layer for surface lubrication and protection. The tribological performance and biocompatibility are further enhanced in the presence of hyaluronic acid (HA) both in vitro and in vivo. The exceptional lubrication performance and favorable interaction with HA position the synthesized triblock polymer as a promising candidate for innovative treatments addressing deficiencies in bio-lubricant systems.
Collapse
Affiliation(s)
- Duy Anh Pham
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Chang-Sheng Wang
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Line Séguy
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
- Research Center of CHU Sainte-Justine, University of Montreal, Montréal, QC, H3T 1C5, Canada
| | - Hu Zhang
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Sabrina Benbabaali
- Faculté des Sciences et Ingénierie, Sorbonne University, Paris, 75005, France
| | - Jimmy Faivre
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Sotcheadt Sim
- Biomomentum Inc, 1980 rue Michelin, Laval, Québec, H7L 5C2, Canada
| | - Guojun Xie
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jean-Michel Rabanel
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Florina Moldovan
- Research Center of CHU Sainte-Justine, University of Montreal, Montréal, QC, H3T 1C5, Canada
| | | | - Xavier Banquy
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
- Institute of Biomedical Engineering, Faculty of Medicine, University of Montreal, Montréal, QC, H3C 3J7, Canada
- Department of Chemistry, Faculty of Arts and Science, University of Montreal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
12
|
Wong PC, Chen KH, Wang WR, Chen CY, Wang YT, Lee YB, Wu JL. Injectable ChitHCl-DDA tissue adhesive with high adhesive strength and biocompatibility for torn meniscus repair and regeneration. Int J Biol Macromol 2024; 270:132409. [PMID: 38768918 DOI: 10.1016/j.ijbiomac.2024.132409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Suture pull-through is a clinical problem in meniscus repair surgery due to the sharp leading edge of sutures. Several tissue adhesives have been developed as an alternative to traditional suturing; however, there is still no suitable tissue adhesive specific for meniscus repair treatment due to unsatisfactory biosafety, biodegradable, sterilizable, and tissue-bonding characteristics. In this study, we used a tissue adhesive composed of chitosan hydrochloride reacted with oxidative periodate-oxidized dextran (ChitHCl-DDA) combined with a chitosan-based hydrogel and oxidative dextran to attach to the meniscus. We conducted viscoelastic tests, viscosity tests, lap shear stress tests, Fourier transform infrared (FTIR) spectroscopy, swelling ratio tests, and degradation behavior tests to characterize these materials. An MTT assay, alcian blue staining, migration assay, cell behavior observations, and protein expression tests were used to understand cell viability and responses. Moreover, ex vivo and in vivo tests were used to analyze tissue regeneration and biocompatibility of the ChitHCl-DDA tissue adhesive. Our results revealed that the ChitHCl-DDA tissue adhesive provided excellent tissue adhesive strength, cell viability, and cell responses. This tissue adhesive has great potential for torn meniscus tissue repair and regeneration.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Ru Wang
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chieh-Ying Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tzu Wang
- Department of Mechanical and Electro-Mechanical Engineering, TamKang University, New Taipei City, Taiwan
| | - Yu-Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jia-Lin Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Lee CY, Chang YC, Yang KC, Lin YF, Wu ATH, Tseng CL. Development and functional evaluation of a hyaluronic acid coated nano-formulation with kaempferol as a novel intra-articular agent for Knee Osteoarthritis treatment. Biomed Pharmacother 2024; 175:116717. [PMID: 38749179 DOI: 10.1016/j.biopha.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
Knee osteoarthritis (OA) involves articular cartilage degradation driven mainly by inflammation. Kaempferol (KM), known for its anti-inflammatory property, holds potential for OA treatment. This study investigated the potential of hyaluronic acid (HA)-coated gelatin nanoparticles loaded with KM (HA-KM GNP) for treating knee OA. KM was encapsulated into gelatin nanoparticles (KM GNP) and then coated with HA to form HA-KM GNPs. Physical properties were characterized, and biocompatibility and cellular uptake were assessed in rat chondrocytes. Anti-inflammatory and chondrogenic properties were evaluated using IL-1β-stimulated rat chondrocytes, compared with HA-coated nanoparticles without KM (HA GNP) and KM alone. Preclinical efficacy was tested in an anterior cruciate ligament transection (ACLT)-induced knee OA rat model treated with intra-articular injection of HA-KM GNP. Results show spherical HA-KM GNPs (88.62 ± 3.90 nm) with positive surface charge. Encapsulation efficiency was 98.34 % with a sustained release rate of 18 % over 48 h. Non-toxic KM concentration was 2.5 μg/mL. In IL-1β-stimulated OA rat chondrocytes, HA-KM GNP significantly down-regulated RNA expression of IL-1β, TNF-α, COX-2, MMP-9, and MMP-13, while up-regulating SOX9 compared to HA GNP, and KM. In vivo imaging demonstrated significantly higher fluorescence intensity within rat knee joints for 3 hours post HA-KM GNP injection compared with KM GNP (185.2% ± 34.1% vs. 45.0% ± 16.7%). HA-KM GNP demonstrated significant effectiveness in reducing subchondral sclerosis, attenuating inflammation, inhibiting matrix degradation, restoring cartilage thickness, and reducing the severity of OA in the ACLT rat model. In conclusion, HA-KM GNP holds promise for knee OA therapy.
Collapse
Affiliation(s)
- Ching-Yu Lee
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan; Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Orthopedic Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Yu-Chu Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yung-Fang Lin
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan.
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
14
|
Chandole PK, Pawar TJ, Olivares-Romero JL, Tivari SR, Garcia Lara B, Patel H, Ahmad I, Delgado-Alvarado E, Kokate SV, Jadeja Y. Exploration of novel cationic amino acid-enriched short peptides: design, SPPS, biological evaluation and in silico study. RSC Adv 2024; 14:17710-17723. [PMID: 38832247 PMCID: PMC11145139 DOI: 10.1039/d3ra08313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Antimicrobial resistance (AMR) represents a critical challenge worldwide, necessitating the pursuit of novel approaches to counteract bacterial and fungal pathogens. In this context, we explored the potential of cationic amino acid-enriched short peptides, synthesized via solid-phase methods, as innovative antimicrobial candidates. Our comprehensive evaluation assessed the antibacterial and antifungal efficacy of these peptides against a panel of significant pathogens, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Candida albicans, and Aspergillus niger. Utilizing molecular docking techniques, we delved into the molecular interactions underpinning the peptides' action against these microorganisms. The results revealed a spectrum of inhibitory activities, with certain peptide sequences displaying pronounced effectiveness across various pathogens. These findings underscore the peptides' potential as promising antimicrobial agents, with molecular docking offering valuable insights into their mechanisms of action. This study enriches antimicrobial peptide (AMP) research by identifying promising candidates for further refinement and development toward therapeutic application, highlighting their significance in addressing the urgent issue of AMR.
Collapse
Affiliation(s)
| | - Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. Carretera Antigua a Coatepec 351 Xalapa 91073 Veracruz Mexico
| | - José Luis Olivares-Romero
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. Carretera Antigua a Coatepec 351 Xalapa 91073 Veracruz Mexico
| | - Sunil R Tivari
- Department of Chemistry, Marwadi University Rajkot-360003 Gujarat India
| | - Bianney Garcia Lara
- Departamento de Química, Universidad de Guanajuato Noria Alta S/N Guanajuato-36050 Guanajuato Mexico
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur District Dhule-425405 Maharashtra India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur District Dhule-425405 Maharashtra India
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde Boca del Río 94294 Mexico
| | - Siddhant V Kokate
- Department of Chemistry, S. S. C. College Junnar Pune-410502 Maharashtra India
| | | |
Collapse
|
15
|
Prasher P, Sharma M, Agarwal V, Singh SK, Gupta G, Dureja H, Dua K. Cationic cycloamylose based nucleic acid nanocarriers. Chem Biol Interact 2024; 395:111000. [PMID: 38614318 DOI: 10.1016/j.cbi.2024.111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Nucleic acid delivery by viral and non-viral methods has been a cornerstone for the contemporary gene therapy aimed at correcting the defective genes, replacing of the missing genes, or downregulating the expression of anomalous genes is highly desirable for the management of various diseases. Ostensibly, it becomes paramount for the delivery vectors to intersect the biological barriers for accessing their destined site within the cellular environment. However, the lipophilic nature of biological membranes and their potential to limit the entry of large sized, charged, hydrophilic molecules thus presenting a sizeable challenge for the cellular integration of negatively charged nucleic acids. Furthermore, the susceptibility of nucleic acids towards the degrading enzymes (nucleases) in the lysosomes present in cytoplasm is another matter of concern for their cellular and nuclear delivery. Hence, there is a pressing need for the identification and development of cationic delivery systems which encapsulate the cargo nucleic acids where the charge facilitates their cellular entry by evading the membrane barriers, and the encapsulation shields them from the enzymatic attack in cytoplasm. Cycloamylose bearing a closed loop conformation presents a robust candidature in this regard owing to its remarkable encapsulating tendency towards nucleic acids including siRNA, CpG DNA, and siRNA. The presence of numerous hydroxyl groups on the cycloamylose periphery provides sites for its chemical modification for the introduction of cationic groups, including spermine, (3-Chloro-2 hydroxypropyl) trimethylammonium chloride (Q188), and diethyl aminoethane (DEAE). The resulting cationic cycloamylose possesses a remarkable transfection efficiency and provides stability to cargo oligonucleotides against endonucleases, in addition to modulating the undesirable side effects such as unwanted immune stimulation. Cycloamylose is known to interact with the cell membranes where they release certain membrane components such as phospholipids and cholesterol thereby resulting in membrane destabilization and permeabilization. Furthermore, cycloamylose derivatives also serve as formulation excipients for improving the efficiency of other gene delivery systems. This review delves into the various vector and non-vector-based gene delivery systems, their advantages, and limitations, eventually leading to the identification of cycloamylose as an ideal candidate for nucleic acid delivery. The synthesis of cationic cycloamylose is briefly discussed in each section followed by its application for specific delivery/transfection of a particular nucleic acid.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India.
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, 124001, India
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
16
|
Sun R, Zhang J, Chen X, Deng Y, Gou J, Yin T, He H, Tang X, Ni X, Yang L, Zhang Y. An adaptive drug-releasing contact lens for personalized treatment of ocular infections and injuries. J Control Release 2024; 369:114-127. [PMID: 38521167 DOI: 10.1016/j.jconrel.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
This research introduces an innovative solution to address the challenges of bacterial keratitis and alkali burns. Current treatments for bacterial keratitis and alkali burns rely on the frequent use of antibiotics and anti-inflammatory eye drops. However, these approaches suffer from poor bioavailability and fluctuating concentrations, leading to limited efficacy and potential drug resistance. Our approach presents an adaptive drug-releasing contact lens responsive to reactive oxygen species (ROS) at ocular inflammation sites, synchronously releasing Levofloxacin and Diclofenac. During storage, minimal drug release occurred, but over 7 days of wear, the lens maintained a continuous, customizable drug release rate based on disease severity. This contact lens had strong antibacterial activity and biofilm prevention, effectively treating bacterial keratitis. When combined with autologous serum, this hydrophilic, flexible lens aids corneal epithelial regeneration, reducing irritation and promoting healing. In summary, this ROS-responsive drug-releasing contact lens combines antibacterial and anti-inflammatory effects, offering a promising solution for bacterial keratitis and alkali burns.
Collapse
Affiliation(s)
- Rong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xi Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yaxin Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xianpu Ni
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Li Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
17
|
Gonzales G, Hoque J, Gilpin A, Maity B, Zauscher S, Varghese S. Branched poly-l-lysine for cartilage penetrating carriers. Bioeng Transl Med 2024; 9:e10612. [PMID: 38818117 PMCID: PMC11135149 DOI: 10.1002/btm2.10612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 06/01/2024] Open
Abstract
Joint diseases, such as osteoarthritis, often require delivery of drugs to chondrocytes residing within the cartilage. However, intra-articular delivery of drugs to cartilage remains a challenge due to their rapid clearance within the joint. This problem is further exacerbated by the dense and negatively charged cartilage extracellular matrix (ECM). Cationic nanocarriers that form reversible electrostatic interactions with the anionic ECM can be an effective approach to overcome the electrostatic barrier presented by cartilage tissue. For an effective therapeutic outcome, the nanocarriers need to penetrate, accumulate, and be retained within the cartilage tissue. Nanocarriers that adhere quickly to cartilage tissue after intra-articular administration, transport through cartilage, and remain within its full thickness are crucial to the therapeutic outcome. To this end, we used ring-opening polymerization to synthesize branched poly(l-lysine) (BPL) cationic nanocarriers with varying numbers of poly(lysine) branches, surface charge, and functional groups, while maintaining similar hydrodynamic diameters. Our results show that the multivalent BPL molecules, including those that are highly branched (i.e., generation two), can readily adhere and transport through the full thickness of cartilage, healthy and degenerated, with prolonged intra-cartilage retention. Intra-articular injection of the BPL molecules in mouse knee joint explants and rat knee joints showed their localization and retention. In summary, this study describes an approach to design nanocarriers with varying charge and abundant functional groups while maintaining similar hydrodynamic diameters to aid the delivery of macromolecules to negatively charged tissues.
Collapse
Affiliation(s)
- Gavin Gonzales
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Jiaul Hoque
- Department of Orthopedic SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Anna Gilpin
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Biswanath Maity
- Department of Orthopedic SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUSA
| | - Shyni Varghese
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopedic SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
18
|
Zhou H, Zhang Z, Mu Y, Yao H, Zhang Y, Wang DA. Harnessing Nanomedicine for Cartilage Repair: Design Considerations and Recent Advances in Biomaterials. ACS NANO 2024; 18:10667-10687. [PMID: 38592060 DOI: 10.1021/acsnano.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cartilage injuries are escalating worldwide, particularly in aging society. Given its limited self-healing ability, the repair and regeneration of damaged articular cartilage remain formidable challenges. To address this issue, nanomaterials are leveraged to achieve desirable repair outcomes by enhancing mechanical properties, optimizing drug loading and bioavailability, enabling site-specific and targeted delivery, and orchestrating cell activities at the nanoscale. This review presents a comprehensive survey of recent research in nanomedicine for cartilage repair, with a primary focus on biomaterial design considerations and recent advances. The review commences with an introductory overview of the intricate cartilage microenvironment and further delves into key biomaterial design parameters crucial for treating cartilage damage, including microstructure, surface charge, and active targeting. The focal point of this review lies in recent advances in nano drug delivery systems and nanotechnology-enabled 3D matrices for cartilage repair. We discuss the compositions and properties of these nanomaterials and elucidate how these materials impact the regeneration of damaged cartilage. This review underscores the pivotal role of nanotechnology in improving the efficacy of biomaterials utilized for the treatment of cartilage damage.
Collapse
Affiliation(s)
- Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Center for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
19
|
Gafar MA, Omolo CA, Elhassan E, Ibrahim UH, Govender T. Applications of peptides in nanosystems for diagnosing and managing bacterial sepsis. J Biomed Sci 2024; 31:40. [PMID: 38637839 PMCID: PMC11027418 DOI: 10.1186/s12929-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Sepsis represents a critical medical condition stemming from an imbalanced host immune response to infections, which is linked to a significant burden of disease. Despite substantial efforts in laboratory and clinical research, sepsis remains a prominent contributor to mortality worldwide. Nanotechnology presents innovative opportunities for the advancement of sepsis diagnosis and treatment. Due to their unique properties, including diversity, ease of synthesis, biocompatibility, high specificity, and excellent pharmacological efficacy, peptides hold great potential as part of nanotechnology approaches against sepsis. Herein, we present a comprehensive and up-to-date review of the applications of peptides in nanosystems for combating sepsis, with the potential to expedite diagnosis and enhance management outcomes. Firstly, sepsis pathophysiology, antisepsis drug targets, current modalities in management and diagnosis with their limitations, and the potential of peptides to advance the diagnosis and management of sepsis have been adequately addressed. The applications have been organized into diagnostic or managing applications, with the last one being further sub-organized into nano-delivered bioactive peptides with antimicrobial or anti-inflammatory activity, peptides as targeting moieties on the surface of nanosystems against sepsis, and peptides as nanocarriers for antisepsis agents. The studies have been grouped thematically and discussed, emphasizing the constructed nanosystem, physicochemical properties, and peptide-imparted enhancement in diagnostic and therapeutic efficacy. The strengths, limitations, and research gaps in each section have been elaborated. Finally, current challenges and potential future paths to enhance the use of peptides in nanosystems for combating sepsis have been deliberately spotlighted. This review reaffirms peptides' potential as promising biomaterials within nanotechnology strategies aimed at improving sepsis diagnosis and management.
Collapse
Affiliation(s)
- Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, P.O. Box 1996, Khartoum, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
20
|
Lin W, Fonseca Cabrera GO, Aluicio-Sarduy E, Barnhart TE, Mixdorf JC, Li Z, Wu Z, Engle JW. Radiolabeling Diaminosarcophagine with Cyclotron-Produced Cobalt-55 and [ 55Co]Co-NT-Sarcage as a Proof of Concept in a Murine Xenograft Model. Bioconjug Chem 2024; 35:412-418. [PMID: 38411531 PMCID: PMC10954389 DOI: 10.1021/acs.bioconjchem.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Cobalt-sarcophagine complexes exhibit high kinetic inertness under various stringent conditions, but there is limited literature on radiolabeling and in vivo positron emission tomography (PET) imaging using no carrier added 55Co. To fill this gap, this study first investigates the radiolabeling of DiAmSar (DSar) with 55Co, followed by stability evaluation in human serum and EDTA, pharmacokinetics in mice, and a direct comparison with [55Co]CoCl2 to assess differences in pharmacokinetics. Furthermore, the radiolabeling process was successfully used to generate the NTSR1-targeted PET agent [55Co]Co-NT-Sarcage (a DSar-functionalized SR142948 derivative) and administered to HT29 tumor xenografted mice. The [55Co]Co-DSar complex can be formed at 37 °C with purity and stability suitable for preclinical in vivo radiopharmaceutical applications, and [55Co]Co-NT-Sarcage demonstrated prominent tumor uptake with a low background signal. In a direct comparison with [64Cu]Cu-NT-Sarcage, [55Co]Co-NT-Sarcage achieved a higher tumor-to-liver ratio but with overall similar biodistribution profile. These results demonstrate that Sar would be a promising chelator for constructing Co-based radiopharmaceuticals including 55Co for PET and 58mCo for therapeutic applications.
Collapse
Affiliation(s)
- Wilson Lin
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - German Oscar Fonseca Cabrera
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Jason C. Mixdorf
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Zhanhong Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
- Department of Radiology, University of Wisconsin, 600 Highland Ave., Madison, WI, 53792, United States
| |
Collapse
|
21
|
Nhan J, Strebel N, Virah Sawmy K, Yin J, St-Pierre JP. Characterization of Calcium- and Strontium-Polyphosphate Particles Toward Drug Delivery into Articular Cartilage. Macromol Biosci 2024; 24:e2300345. [PMID: 37777870 DOI: 10.1002/mabi.202300345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Drug delivery into articular cartilage poses many challenges due in part to its lack of vasculature. While intra-articular injections are effective for the local administration of drugs, small molecules are rapidly cleared from the synovial fluid. As such, there is a need to develop effective drug delivery strategies to improve the residence times of bioactive molecules in the joint and elicit a sustained therapeutic effect. In this study, calcium- and strontium-polyphosphate particles are synthesized and characterized as potential drug carriers into articular cartilage. Physicochemical characterization reveals that the particles exhibit a spherical morphology, have a negative zeta potential, and are nanoscale in size. Biological characterization in chondrocytes confirms cellular uptake of the particles and demonstrates both size and concentration-dependent cytotoxicity at high concentrations. Furthermore, treatment of chondrocytes with these particles results in a reduction in cell proliferation and metabolic activity, confirming biological effects. Finally, incubation with cartilage tissue explants suggests successful uptake, despite the particles exhibiting a negative surface charge. Therefore, from the results of this study, these polyphosphate-based particles have potential as a drug carrier into articular cartilage and warrant further development.
Collapse
Affiliation(s)
- Jordan Nhan
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Nicolas Strebel
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Khushnouma Virah Sawmy
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Jordan Yin
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Jean-Philippe St-Pierre
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
22
|
Wang T, Zhao H, Zhang Y, Liu Y, Liu J, Chen G, Duan K, Li Z, Hui HPJ, Yan J. A novel extracellular vesicles production system harnessing matrix homeostasis and macrophage reprogramming mitigates osteoarthritis. J Nanobiotechnology 2024; 22:79. [PMID: 38419097 PMCID: PMC10903078 DOI: 10.1186/s12951-024-02324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that significantly impairs quality of life. There is a pressing need for innovative OA therapies. While small extracellular vesicles (sEVs) show promising therapeutic effects against OA, their limited yield restricts clinical translation. Here, we devised a novel production system for sEVs that enhances both their yield and therapeutic properties. By stimulating mesenchymal stem cells (MSCs) using electromagnetic field (EMF) combined with ultrasmall superparamagnetic iron oxide (USPIO) particles, we procured an augmented yield of EMF-USPIO-sEVs. These vesicles not only activate anabolic pathways but also inhibit catabolic activities, and crucially, they promote M2 macrophage polarization, aiding cartilage regeneration. In an OA mouse model triggered by anterior cruciate ligament transection surgery, EMF-USPIO-sEVs reduced OA severity, and augmented matrix synthesis. Moreover, they decelerated OA progression through the microRNA-99b/MFG-E8/NF-κB signaling axis. Consequently, EMF-USPIO-sEVs present a potential therapeutic option for OA, acting by modulating matrix homeostasis and macrophage polarization.
Collapse
Affiliation(s)
- Tianqi Wang
- Departments of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yanshi Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jialin Liu
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, 64600, China
| | - Ge Chen
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ke Duan
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, 646000, China
| | - Zhong Li
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hoi Po James Hui
- Departments of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Tissue Engineering Program, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Jiyuan Yan
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
23
|
Hsiao YN, Ilhami FB, Cheng CC. CO 2-Responsive Water-Soluble Conjugated Polymers as a Multifunctional Fluorescent Probe for Bioimaging Applications. Biomacromolecules 2024; 25:997-1008. [PMID: 38153011 DOI: 10.1021/acs.biomac.3c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We describe important progress in the synthesis and development of gas-responsive water-soluble conjugated polymers (WSCPs) with potential as multifunctional fluorescent materials for biomedical imaging and probes. A water-soluble WSCP (I-PT) composed of a hydrophobic fluorescent polythiophene backbone and a hydrophilic imidazole side chain was successfully prepared through a facile and efficient two-step synthetic route. Owing to the repulsive force between the hydrophilic and hydrophobic segments and the highly sensitive carbon dioxide (CO2)- and nitrogen (N2)-responsive imidazole groups in its structure, I-PT can spontaneously self-assemble into spherical-like nanoparticles in an aqueous environment, and thus exhibits unique light absorption and fluorescence properties as well as rapid responsiveness to CO2 and N2. In addition, its structure, optical absorption/fluorescence behavior, and surface potential can be quickly turned on and off through alternating cycles of CO2 and N2 bubbling and exhibit controllable cyclic switching stability, thereby allowing effective manipulation of its hierarchical structure and chemical-physical characteristics. More importantly, a series of in vitro cell experiments confirmed that, compared to the significant cytotoxicity of pristine and N2-treated I-PT nanoparticles, CO2-treated I-PT nanoparticles exhibit extremely low cytotoxicity in normal and cancer cells and undergo greatly accelerated cellular uptake, resulting in a significant increase in the intensity and stability of their fluorescence signal in the intracellular environment. Overall, this newly discovered CO2/N2-responsive system provides new insights to effectively enhance the biocompatibility, cellular internalization, and intracellular fluorescence characteristics of WSCPs and holds great potential for biomedical imaging/sensing applications.
Collapse
Affiliation(s)
- Yu-Nong Hsiao
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Fasih Bintang Ilhami
- Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya 60231, Indonesia
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
24
|
Zhang C, Zhang H, Millán Cotto HA, Boyer TL, Warren MR, Wang CM, Luchan J, Dhal PK, Carrier RL, Bajpayee AG. Milk exosomes anchored with hydrophilic and zwitterionic motifs enhance mucus permeability for applications in oral gene delivery. Biomater Sci 2024; 12:634-649. [PMID: 38047368 PMCID: PMC10842862 DOI: 10.1039/d3bm01089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Exosomes have emerged as a promising tool for the delivery of drugs and genetic materials, owing to their biocompatibility and non-immunogenic nature. However, challenges persist in achieving successful oral delivery due to their susceptibility to degradation in the harsh gastrointestinal (GI) environment and impeded transport across the mucus-epithelium barrier. To overcome these challenges, we have developed high-purity bovine milk exosomes (mExo) as a scalable and efficient oral drug delivery system, which can be customized by incorporating hydrophilic and zwitterionic motifs on their surface. In our study, we observed significantly improved transport rates by 2.5-4.5-fold in native porcine intestinal mucus after the introduction of hydrophilic and zwitterionic surface modifications, as demonstrated by transwell setup and fluorescence recovery after photobleaching (FRAP) analysis. Remarkably, mExo functionalized by a block peptide (BP), consisting of cationic and anionic amino acids arranged in blocks at the two ends, demonstrated superior tolerability in the acidic gastric environment (with a protein recovery rate of 84.8 ± 7.7%) and exhibited a 2.5-fold increase in uptake by intestinal epithelial cells. Furthermore, both mExo and mExo-BP demonstrated successful intracellular delivery of functional siRNA, resulting in up to 65% suppression of the target green fluorescence protein (GFP) gene expression at a low dose of siRNA (5 pmol) without causing significant toxicity. These findings highlight the immense potential of modifying mExo with hydrophilic and zwitterionic motifs for effective oral delivery of siRNA therapies.
Collapse
Affiliation(s)
- Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | | | - Timothy L Boyer
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Matthew R Warren
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Chia-Ming Wang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Joshua Luchan
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | | | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Martinsen E, Jinnurine T, Subramani S, Rogne M. Advances in RNA therapeutics for modulation of 'undruggable' targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:249-294. [PMID: 38458740 DOI: 10.1016/bs.pmbts.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Over the past decades, drug discovery utilizing small pharmacological compounds, fragment-based therapeutics, and antibody therapy have significantly advanced treatment options for many human diseases. However, a major bottleneck has been that>70% of human proteins/genomic regions are 'undruggable' by the above-mentioned approaches. Many of these proteins constitute essential drug targets against complex multifactorial diseases like cancer, immunological disorders, and neurological diseases. Therefore, alternative approaches are required to target these proteins or genomic regions in human cells. RNA therapeutics is a promising approach for many of the traditionally 'undruggable' targets by utilizing methods such as antisense oligonucleotides, RNA interference, CRISPR/Cas-based genome editing, aptamers, and the development of mRNA therapeutics. In the following chapter, we will put emphasis on recent advancements utilizing these approaches against challenging drug targets, such as intranuclear proteins, intrinsically disordered proteins, untranslated genomic regions, and targets expressed in inaccessible tissues.
Collapse
Affiliation(s)
| | | | - Saranya Subramani
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Marie Rogne
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
26
|
Alghamdi R, Pertusati F, Prokopovich P. Poly-beta-amino-ester licofelone conjugates development for osteoarthritis treatment. RSC Adv 2024; 14:15-28. [PMID: 38173598 PMCID: PMC10758810 DOI: 10.1039/d3ra04967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Disease-modifying osteoarthritis drugs (DMOADs) are a new therapeutic class for osteoarthritis (OA) prevention or inhibition of the disease development. Unfortunately, none of the DMOADs have been clinically approved due to their poor therapeutic performances in clinical trials. The joint environment has played a role in this process by limiting the amount of drug effectively delivered as well as the time that the drug stays within the joint space. The current study aimed to improve the delivery of the DMOADs into cartilage tissue by increasing uptake and retention time of the DMOADs within the tissue. Licofelone was used a model DMOAD due to its significant therapeutic effect against OA progression as shown in the recent phase III clinical trial. For this purpose licofelone was covalently conjugated to the two different A16 and A87 poly-beta-amino-ester (PBAEs) polymers taking advantage of their hydrolysable, cytocompatible, and cationic nature. We have shown cartilage uptake of the licofelone-PBAE conjugates increased 18 times and retention in tissues was prolonged by 37 times compared to the equivalent dose of the free licofelone. Additionally, these licofelone conjugates showed no detrimental effect on the chondrocyte viability. In conclusion, the cationic A87 and A16 PBAE polymers increased the amount of licofelone within the cartilage, which could potentially enhance the therapeutic effect and pharmacokinetic performance of this drug and other DMOADs clinically.
Collapse
Affiliation(s)
- Raed Alghamdi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue Cardiff Wales CF10 3NB UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue Cardiff Wales CF10 3NB UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue Cardiff Wales CF10 3NB UK
| |
Collapse
|
27
|
Veider F, Sanchez Armengol E, Bernkop-Schnürch A. Charge-Reversible Nanoparticles: Advanced Delivery Systems for Therapy and Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304713. [PMID: 37675812 DOI: 10.1002/smll.202304713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/24/2023] [Indexed: 09/08/2023]
Abstract
The past two decades have witnessed a rapid progress in the development of surface charge-reversible nanoparticles (NPs) for drug delivery and diagnosis. These NPs are able to elegantly address the polycation dilemma. Converting their surface charge from negative/neutral to positive at the target site, they can substantially improve delivery of drugs and diagnostic agents. By specific stimuli like a shift in pH and redox potential, enzymes, or exogenous stimuli such as light or heat, charge reversal of NP surface can be achieved at the target site. The activated positive surface charge enhances the adhesion of NPs to target cells and facilitates cellular uptake, endosomal escape, and mitochondrial targeting. Because of these properties, the efficacy of incorporated drugs as well as the sensitivity of diagnostic agents can be essentially enhanced. Furthermore, charge-reversible NPs are shown to overcome the biofilm formed by pathogenic bacteria and to shuttle antibiotics directly to the cell membrane of these microorganisms. In this review, the up-to-date design of charge-reversible NPs and their emerging applications in drug delivery and diagnosis are highlighted.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| |
Collapse
|
28
|
Su Z, Tan P, Zhang J, Wang P, Zhu S, Jiang N. Understanding the Mechanics of the Temporomandibular Joint Osteochondral Interface from Micro- and Nanoscopic Perspectives. NANO LETTERS 2023; 23:11702-11709. [PMID: 38060440 DOI: 10.1021/acs.nanolett.3c03564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The condylar cartilage of the temporomandibular joint (TMJ) is connected to the subchondral bone by an osteochondral interface that transmits loads without causing fatigue damage. However, the microstructure, composition, and mechanical properties of this interface remain elusive. In this study, we found that structurally, a spatial gradient assembly of hydroxyapatite (HAP) particles exists in the osteochondral interface, with increasing volume of apatite crystals with depth and a tendency to form denser and stacked structures. Combined with nanoindentation, this complex assembly of nanoscale structures and components enhanced energy dissipation at the osteochondral interface, achieving a smooth stress transition between soft and hard tissues. This study comprehensively demonstrates the elemental composition and complex nanogradient spatial assembly of the osteochondral interface at the ultramicroscopic scale, providing a basis for exploring the construction of complex mechanical models of the interfacial region.
Collapse
Affiliation(s)
- Zhan Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
29
|
Gu H, Chen P, Liu X, Lian Y, Xi J, Li J, Song J, Li X. Trimethylated chitosan-coated flexible liposomes with resveratrol for topical drug delivery to reduce blue-light-induced retinal damage. Int J Biol Macromol 2023; 252:126480. [PMID: 37634770 DOI: 10.1016/j.ijbiomac.2023.126480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
LED-related blue-light-induced damage can cause eye diseases. However, drug delivery in patients with ocular diseases is faced with various challenges. In this study, we developed flexible liposomes based on trimethylated chitosan (TMC-Lipo) to deliver resveratrol for the treatment of retinal diseases. Flexible liposomes can easily cross various biological barriers. Chitosan and its derivatives have adhesive properties and are widely used in mucoadhesive drug delivery systems. Therefore, we wrapped flexible liposomes with trimethylated chitosan via electrostatic adsorption. The charge of the flexible liposomes became positive after encapsulation in TMC, and they remained stable in artificial tears. We assessed the safety of TMC-Lipo in cellular and zebrafish experiments and found that it can be safely used. In addition, treatment with TMC-Lipo significantly reduced H2O2-induced damage to ARPE-19 cells, restored mitochondrial membrane potential, and protected the cells. TMC-Lipo more easily reached the posterior ocular segment of the mice than liposome nanoparticles and attenuated blue-light-induced retinal cytopathy. Our study demonstrates that effective eye drop formulations can be developed based on trimethylated chitosan, which provides a promising approach for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Lian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong
| | - Jingyao Song
- Department of Ophthalmology, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
30
|
Zhao Y, Jiang H, Yu J, Wang L, Du J. Engineered Histidine-Rich Peptides Enhance Endosomal Escape for Antibody-Targeted Intracellular Delivery of Functional Proteins. Angew Chem Int Ed Engl 2023; 62:e202304692. [PMID: 37283024 DOI: 10.1002/anie.202304692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
Currently, the clinical application of protein/peptide therapeutics is mainly limited to the modulation of diseases in extracellular spaces. Intracellular targets are hardly accessed, owing largely to the endosomal entrapment of internalized proteins/peptides. Here, we report a strategy to design and construct peptides that enable endosome-to-cytosol delivery based on an extension of the "histidine switch" principle. By substituting the Arg/Lys residues in cationic cell-penetrating peptides (CPPs) with histidine, we obtained peptides with pH-dependent membrane-perturbation activity. These peptides do not randomly penetrate cells like CPPs, but imitate the endosomal escape of CPPs following cellular uptake. Working with one such 16-residue peptide (hsLMWP) with high endosomal escape capacity, we engineered modular fusion proteins and achieved antibody-targeted delivery of diverse protein cargoes-including the pro-apoptotic protein BID (BH3-interacting domain death agonist) and Cre recombinase-into the cytosol of multiple cancer cell types. After extensive in vitro testing, an in vivo analysis with xenograft mice ultimately demonstrated that a trastuzumab-hsLMWP-BID fusion conferred strong anti-tumor efficacy without apparent side effects. Notably, our fusion protein features a modular design, allowing flexible applications for any antibody/cargo combination of choice. Therefore, the potential applications extend throughout life science and biomedicine, including gene editing, cancer treatment, and immunotherapy.
Collapse
Affiliation(s)
- Yan Zhao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University-National Institute Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haolin Jiang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University-Tsinghua University-National Institute Biological Sciences (PTN) Joint Graduate Program, Peking University, Beijing, 100871, China
| | - Jiazhen Yu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Luyao Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Mehta S, Boyer TL, Akhtar S, He T, Zhang C, Vedadghavami A, Bajpayee AG. Sustained intra-cartilage delivery of interleukin-1 receptor antagonist using cationic peptide and protein-based carriers. Osteoarthritis Cartilage 2023; 31:780-792. [PMID: 36739939 PMCID: PMC10392024 DOI: 10.1016/j.joca.2023.01.573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Blocking the interleukin-1 (IL-1) catabolic cascade following joint trauma can be achieved using its receptor antagonist, IL-1Ra. However, its clinical translation for osteoarthritis therapy has been unsuccessful due to its rapid joint clearance and lack of targeting and penetration into deep cartilage layers at therapeutic concentrations. Here, we target the high negative charge of cartilage aggrecan-glycosaminoglycans (GAGs) by attaching cationic carriers to IL-1Ra. IL-1Ra was conjugated to the cartilage targeting glycoprotein, Avidin, and a short length optimally charged cationic peptide carrier (CPC+14). It is hypothesized that electro-diffusive transport and binding properties of IL-1Ra-Avidin and IL-1Ra-CPC+14 will create intra-cartilage depots of IL-1Ra, resulting in long-term suppression of IL-1 catabolism with only a single administration. DESIGN IL-1Ra was conjugated to Avidin or CPC+14 using site specific maleimide linkers, and confirmed using gel electrophoresis, high-performance liquid chromatography (HPLC), and mass spectrometry. Intra-cartilage transport and retention of conjugates was compared with native IL-1Ra. Attenuation of IL-1 catabolic signaling with one-time dose of IL-1Ra-CPC+14 and IL-1Ra-Avidin was assessed over 16 days using IL-1α challenged bovine cartilage and compared with unmodified IL-1Ra. RESULTS Positively charged IL-1Ra penetrated through the full-thickness of cartilage, creating a drug depot. A single dose of unmodified IL-1Ra was not sufficient to attenuate IL-1-induced cartilage deterioration over 16 days. However, when delivered using Avidin, and to a greater extent CPC+14, IL-1Ra significantly suppressed cytokine induced GAG loss and nitrite release while improving cell metabolism and viability. CONCLUSION Charge-based cartilage targeting drug delivery systems hold promise as they can enable long-term therapeutic benefit with only a single dose.
Collapse
Affiliation(s)
- S Mehta
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - T L Boyer
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - S Akhtar
- Department of Biochemistry, Northeastern University, Boston, MA, USA.
| | - T He
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - C Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - A Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - A G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Mechanical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
32
|
Zhang C, Vedadghavami A, He T, Charles JF, Bajpayee AG. Cationic Carrier Mediated Delivery of Anionic Contrast Agents in Low Doses Enable Enhanced Computed Tomography Imaging of Cartilage for Early Osteoarthritis Diagnosis. ACS NANO 2023; 17:6649-6663. [PMID: 36989423 PMCID: PMC10629240 DOI: 10.1021/acsnano.2c12376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 06/03/2023]
Abstract
Cartilage tissue exhibits early degenerative changes with onset of osteoarthritis (OA). Early diagnosis is critical as there is only a narrow time window during which therapeutic intervention can reverse disease progression. Computed tomography (CT) has been considered for cartilage imaging as a tool for early OA diagnosis by introducing radio-opaque contrast agents like ioxaglate (IOX) into the joint. IOX, however, is anionic and thus repelled by negatively charged cartilage glycosaminoglycans (GAGs) that hinders its intra-tissue penetration and partitioning, resulting in poor CT attenuation. This is further complicated by its short intra-tissue residence time owing to rapid clearance from joints, which necessitates high doses causing toxicity concerns. Here we engineer optimally charged cationic contrast agents based on cartilage negative fixed charge density by conjugating cartilage targeting a cationic peptide carrier (CPC) and multi-arm avidin nanoconstruct (mAv) to IOX, such that they can penetrate through the full thickness of cartilage within 6 h using electrostatic interactions and elicit similar CT signal with about 40× lower dose compared to anionic IOX. Their partitioning and distribution correlate strongly with spatial GAG distribution within healthy and early- to late-stage arthritic bovine cartilage tissues at 50-100× lower doses than other cationic contrast agents used in the current literature. The use of contrast agents at low concentrations also allowed for delineation of cartilage from subchondral bone as well as other soft tissues in rat tibial joints. These contrast agents are safe to use at current doses, making CT a viable imaging modality for early detection of OA and staging of its severity.
Collapse
Affiliation(s)
- Chenzhen Zhang
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Armin Vedadghavami
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Tengfei He
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Julia F. Charles
- Department
of Orthopaedic Surgery, Brigham and Women’s
Hospital, 60 Fenwood Road, Boston, Massachusetts 02115, United States
| | - Ambika G. Bajpayee
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
33
|
Liu X, Wang X, Luo Y, Wang M, Chen Z, Han X, Zhou S, Wang J, Kong J, Yu H, Wang X, Tang X, Guo Q. A 3D Tumor-Mimicking In Vitro Drug Release Model of Locoregional Chemoembolization Using Deep Learning-Based Quantitative Analyses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206195. [PMID: 36793129 PMCID: PMC10104640 DOI: 10.1002/advs.202206195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Primary liver cancer, with the predominant form as hepatocellular carcinoma (HCC), remains a worldwide health problem due to its aggressive and lethal nature. Transarterial chemoembolization, the first-line treatment option of unresectable HCC that employs drug-loaded embolic agents to occlude tumor-feeding arteries and concomitantly delivers chemotherapeutic drugs into the tumor, is still under fierce debate in terms of the treatment parameters. The models that can produce in-depth knowledge of the overall intratumoral drug release behavior are lacking. This study engineers a 3D tumor-mimicking drug release model, which successfully overcomes the substantial limitations of conventional in vitro models through utilizing decellularized liver organ as a drug-testing platform that uniquely incorporates three key features, i.e., complex vasculature systems, drug-diffusible electronegative extracellular matrix, and controlled drug depletion. This drug release model combining with deep learning-based computational analyses for the first time permits quantitative evaluation of all important parameters associated with locoregional drug release, including endovascular embolization distribution, intravascular drug retention, and extravascular drug diffusion, and establishes long-term in vitro-in vivo correlations with in-human results up to 80 d. This model offers a versatile platform incorporating both tumor-specific drug diffusion and elimination settings for quantitative evaluation of spatiotemporal drug release kinetics within solid tumors.
Collapse
Affiliation(s)
- Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Department of PharmacyShenzhen Children's HospitalShenzhenGuangdong518026P. R. China
| | - Xueying Wang
- Department of Electronic and Electrical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Meijuan Wang
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Xiaoyu Han
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Sijia Zhou
- Department of MolecularCellular and Developmental Biology (MCD)Centre de Biologie Integrative (CBI)University of ToulouseCNRSUPSToulouse31062France
| | - Jiahao Wang
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
| | - Jian Kong
- Department of Interventional RadiologyFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medical College of Jinan UniversityShenzhen People's HospitalShenzhenGuangdong518020P. R. China
| | - Hanry Yu
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
- Department of PhysiologyInstitute of Digital Medicineand Mechanobiology InstituteNational University of SingaporeSingapore117593Singapore
| | - Xiaobo Wang
- Department of MolecularCellular and Developmental Biology (MCD)Centre de Biologie Integrative (CBI)University of ToulouseCNRSUPSToulouse31062France
| | - Xiaoying Tang
- Department of Electronic and Electrical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Jiaxing Research InstituteSouthern University of Science and TechnologyJiaxingZhejiang314000P. R. China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| |
Collapse
|
34
|
Song EC, Park C, Shin Y, Kim WK, Kim SB, Cho S. Neurog1-Derived Peptides RMNE1 and DualPep-Shine Penetrate the Skin and Inhibit Melanin Synthesis by Regulating MITF Transcription. Int J Mol Sci 2023; 24:ijms24076158. [PMID: 37047130 PMCID: PMC10094136 DOI: 10.3390/ijms24076158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Anti-pigmentation peptides have been developed as alternative skin-lightening agents to replace conventional chemicals that have adverse effects on the skin. However, the maximum size of these peptides is often limited by their low skin and cell penetration. To address this issue, we used our intra-dermal delivery technology (IDDT) platform to identify peptides with hypo-pigmenting and high cell-penetrating activity. Using our cell-penetrating peptides (CPPs) from the IDDT platform, we identified RMNE1 and its derivative RMNE3, "DualPep-Shine", which showed levels of α-Melanocyte stimulating hormone (α-MSH)-induced melanin inhibition comparable to the conventional tyrosinase inhibitor, Kojic acid. In addition, DualPep-Shine was delivered into the nucleus and regulated the gene expression levels of melanogenic enzymes by inhibiting the promoter activity of microphthalmia-associated transcription factor-M (MITF-M). Using a 3D human skin model, we found that DualPep-Shine penetrated the lower region of the epidermis and reduced the melanin content in a dose-dependent manner. Furthermore, DualPep-Shine showed high safety with little immunogenicity, indicating its potential as a novel cosmeceutical ingredient and anti-pigmentation therapeutic agent.
Collapse
Affiliation(s)
- Ee Chan Song
- Remedi Co., Ltd., Research Center, Incheon 21990, Republic of Korea
| | - Chanho Park
- Remedi Co., Ltd., Research Center, Incheon 21990, Republic of Korea
| | - Yungyeong Shin
- Remedi Co., Ltd., Research Center, Incheon 21990, Republic of Korea
| | - Wan Ki Kim
- Remedi Co., Ltd., Research Center, Incheon 21990, Republic of Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Seongmin Cho
- Remedi Co., Ltd., Research Center, Incheon 21990, Republic of Korea
| |
Collapse
|
35
|
Charge-conversional click polyprodrug nanomedicine for targeted and synergistic cancer therapy. J Control Release 2023; 356:567-579. [PMID: 36924894 DOI: 10.1016/j.jconrel.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Polyprodrug nanomedicines hold great potential for combating tumors. However, the functionalization of polyprodrug nanomedicines to improve therapeutic efficacy is restricted by conventional polymerization methods. Herein, we fabricated a charge-conversional click polyprodrug nanomedicine system by metal-free azide-alkyne cycloaddition click polymerization (AACCP) for targeted and synergistic cancer therapy. Specifically, Pt(IV) prodrug-backboned diazide monomer, DMC prodrug-pendent diazide monomer, dialkyne-terminated PEG monomer and azide-modified folate were click polymerized to obtain the target polyprodrug (P1). P1 could self-assemble into nano-micelles (1-NM), where PEG was the hydrophilic shell with folate on the surface, Pt(IV) and DMC prodrugs as the hydrophobic core. Taking advantage of PEGylation and folate-mediated tumor cell targeting, 1-NM achieved prolonged blood circulation time and high tumor accumulation efficiency. Tumor acidic microenvironment-responsive cleavage and cascade activation of pendant DMC prodrug induced surface charge conversion of 1-NM from negative to positive, which promoted tumor penetration and cellular internalization of the remaining 1-NM. After internalization into tumor cells, the reduction-responsive activation of Pt(IV) prodrug to Pt(II) further showed synergetic effect with DMC for enhanced apoptosis. This first designed charge-conversional click polyprodrug nanomedicine exhibited targeted and synergistic efficacy to suppress tumor proliferation in living mice bearing human ovarian tumor model.
Collapse
|
36
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
37
|
He T, Zhang C, Colombani T, Bencherif SA, Porter RM, Bajpayee AG. Intra-articular kinetics of a cartilage targeting cationic PEGylated protein for applications in drug delivery. Osteoarthritis Cartilage 2023; 31:187-198. [PMID: 36241136 PMCID: PMC9892226 DOI: 10.1016/j.joca.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Cartilage targeting cationic glycoprotein Avidin was PEGylated to synthesize a multi-arm Avidin (mAv) nano-construct with high drug loading content. Here we investigate mAv biodistribution and kinetics over a 7-day period following intra-articular (IA) administration in rat knee joints. METHODS Labeled mAv was injected into healthy rat knees, and joint tissues (articular cartilage, menisci, ligaments, tendons, fat pad) were harvested following sacrifice at 6 h, 1, 4 and 7 days. Its IA biodistribution and retention were measured using fluorescence microscopy. Tissue localization was compared in young vs old rats by immunohistochemistry. mAv chondrotoxicity and immune response were evaluated to determine safe carrier dose limits. RESULTS mAv penetrated through the full thickness of rat cartilage and other joint tissues within 6 h, remaining detectable within most joint tissues over 7 days. Intra-tissue uptake correlated strongly with tissue GAG concentration, confirming the dominant role of electrostatic interactions between positively charged mAv and the negatively charged aggrecan proteoglycans. mAv was uptaken by chondrocytes and also penetrated the osteocyte lacuno-canalicular system of peri-articular bone in both young and old rats. mAv did not cause cytotoxicity at concentrations up to 300 μM but elicited a dose dependent immunogenic response. CONCLUSIONS mAv's ability to target a variety of joint tissues, chondrocytes, and peri-articular osteocytes without sequestration in synovial fluid makes it a versatile carrier for delivering a wide range of drugs for treating a broad class of musculoskeletal diseases. Drugs can be conjugated using simple aqueous based avidin-biotin reaction, supporting its clinical prospects.
Collapse
Affiliation(s)
- T He
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - C Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - T Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - S A Bencherif
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - R M Porter
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - A G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA; Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
38
|
Silva B, Gonçalves LM, São Braz B, Delgado E. Topical ocular delivery of nanoparticles with epoetin beta in Wistar Hannover rats. Sci Rep 2023; 13:1559. [PMID: 36707615 PMCID: PMC9883504 DOI: 10.1038/s41598-023-28845-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Topical instillation of drugs targeting the posterior ocular segment is an expanding area of research. Chitosan and hyaluronic acid have remarkable mucoadhesive properties and potentially enhance pre-corneal retention time after topical instillation. Bearing this in mind, we explored the possibility of delivering epoetin beta (EPOβ) to the posterior segment of the eye in a chitosan-hyaluronic acid (CS/HA-EPOβ) nanoparticulate system using the topical route of administration. Complete ophthalmological examinations, electroretinography and microhematocrit evaluations were performed in Wistar Hannover (WH) rats, before and after topical administration of nanoparticles. The right eye received CS/HA-EPOβ and the left eye received only empty nanocarriers (control). Animals were split into 6 groups and at designated timepoints, all animals from each group (n = 3) were euthanized and both eyes enucleated. Retinal morphology and EPOβ ocular distribution were assessed, respectively, through hematoxylin and eosin (HE) and immunofluorescence staining. After topical administration, no adverse ocular signs were noted and no significant changes either in microhematocrits nor in electroretinographies were detected. During the study, intraocular pressure (IOP) was always kept within physiological range bilaterally. No histological changes were detected in any of the ocular globes. Immunofluorescence enabled the identification of EPOβ in the retina 12 h after the administration, its presence still being detectable at day 21. In conclusion, CS/HA nanoparticles could efficiently deliver EPOβ to the retina of WH rats after topical instillation, being considered biologically safe. Topical administration of this nanoformulation could be a valuable tool for retinal neuroprotection, decreasing risks associated with more invasive routes of administration, being cost effective and also increasing long-term patients' compliance.
Collapse
Affiliation(s)
- Beatriz Silva
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Lídia M Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Berta São Braz
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal. .,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal.
| | - Esmeralda Delgado
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| |
Collapse
|
39
|
Ngan VTT, Chiou PY, Ilhami FB, Bayle EA, Shieh YT, Chuang WT, Chen JK, Lai JY, Cheng CC. A CO 2-Responsive Imidazole-Functionalized Fluorescent Material Mediates Cancer Chemotherapy. Pharmaceutics 2023; 15:pharmaceutics15020354. [PMID: 36839677 PMCID: PMC9959563 DOI: 10.3390/pharmaceutics15020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
We present a breakthrough in the synthesis and development of functional gas-responsive materials as highly potent anticancer agents suitable for applications in cancer treatment. Herein, we successfully synthesised a stimuli-responsive multifunctional material (I-R6G) consisting of a carbon dioxide (CO2)-sensitive imidazole moiety and spirolactam-containing conjugated rhodamine 6G (R6G) molecule. The resulting I-R6G is highly hydrophobic and non- or weakly fluorescent. Simple CO2 bubbling treatment induces hydrophobic I-R6G to completely dissolve in water and subsequently form self-assembled nanoparticles, which exhibit unique optical absorption and fluorescence behaviours in water and extremely low haemolytic ability against sheep red blood cells. Reversibility testing indicated that I-R6G undergoes reversible CO2/nitrogen (N2)-dependent stimulation in water, as its structural and physical properties can be reversibly and stably switched by alternating cycles of CO2 and N2 bubbling. Importantly, in vitro cellular assays clearly demonstrated that the CO2-protonated imidazole moiety promotes rapid internalisation of CO2-treated I-R6G into cancer cells, which subsequently induces massive levels of necrotic cell death. In contrast, CO2-treated I-R6G was not internalised and did not affect the viability of normal cells. Therefore, this newly created system may provide an innovative and efficient route to remarkably improve the selectivity, safety and efficacy of cancer treatment.
Collapse
Affiliation(s)
- Vo Thuy Thien Ngan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Po-Yen Chiou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Enyew Alemayehu Bayle
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yeong-Tarng Shieh
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- R & D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32023, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Correspondence:
| |
Collapse
|
40
|
Shen L, Cao S, Wang Y, Zhou P, Wang S, Zhao Y, Meng L, Zhang Q, Li Y, Xu X, Yuan Q, Li J. Self-Adaptive Antibacterial Scaffold with Programmed Delivery of Osteogenic Peptide and Lysozyme for Infected Bone Defect Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:626-637. [PMID: 36541416 DOI: 10.1021/acsami.2c19026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bone defects caused by disease or trauma are often accompanied by infection, which severely disrupts the normal function of bone tissue at the defect site. Biomaterials that can simultaneously reduce inflammation and promote osteogenesis are effective tools for addressing this problem. In this study, we set up a programmed delivery platform based on a chitosan scaffold to enhance its osteogenic activity and prevent implant-related infections. In brief, the osteogenic peptide sequence (YGFGG) was modified onto the surface of cowpea chlorotic mottle virus (CCMV) to form CCMV-YGFGG nanoparticles. CCMV-YGFGG exhibited good biocompatibility and osteogenic ability in vitro. Then, CCMV-YGFGG and lysozyme were loaded on the chitosan scaffold, which exhibited a good antibacterial effect and promoted bone regeneration for infected bone defect treatment. As a delivery platform, the scaffold showed staged release of lysozyme and CCMV-YGFGG, which facilitates the regeneration of infected bone defects. Our study provides a novel and promising strategy for the treatment of infected bone defects.
Collapse
Affiliation(s)
- Luxuan Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yuemin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Shuaibing Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yao Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lingzhuang Meng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Quan Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yanyan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
41
|
Nguyen DD, Luo LJ, Yang CJ, Lai JY. Highly Retina-Permeating and Long-Acting Resveratrol/Metformin Nanotherapeutics for Enhanced Treatment of Macular Degeneration. ACS NANO 2023; 17:168-183. [PMID: 36524981 DOI: 10.1021/acsnano.2c05824] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of therapeutics for effective treatments of retinal diseases is significantly constrained by various biological barriers. We herein report a nanomedicine strategy to develop nanotherapeutics featured with not only high retinal permeability but also sustained bioactive delivery. Specifically, the nanotherapeutics are rationally designed via aminolysis of resveratrol-encapsulated polycaprolactone nanoparticles (R@PCL NPs), followed by the formation of amide linkages with carboxyl-terminated transacting activator of transcription cell penetrating peptide (T) and metformin (M). The R@PCL-T/M NP nanotherapeutics are demonstrated in vitro to possess persistent drug release profiles, good ocular biocompatibility, and potent bioactive activities for targeting prevailing risk factors associated with retinal diseases. In vivo studies indicate that single-dose intravitreal administration of the R@PCL-T/M NPs can effectively improve retinal permeability (∼15-fold increase), prevent loss of endogenous antioxidants, and suppress the growth of abnormal vessels in the retina with macular degeneration for 56 days. This high treatment efficacy can be ascribed to the enhanced retinal permeability of the nanotherapeutics in conjunction with the sustained pharmacological activity of the dual drugs (R and M) in the retinal pigment epithelial region. These findings show a great promise for the development of pharmacological nanoformulations capable of targeting the retina and thereby treating complex posterior segment diseases with improved efficacies.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Jyuan Luo
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
42
|
Haq-Siddiqi NA, Britton D, Kim Montclare J. Protein-engineered biomaterials for cartilage therapeutics and repair. Adv Drug Deliv Rev 2023; 192:114647. [PMID: 36509172 DOI: 10.1016/j.addr.2022.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cartilage degeneration and injury are major causes of pain and disability that effect millions, and yet treatment options for conditions like osteoarthritis (OA) continue to be mainly palliative or involve complete replacement of injured joints. Several biomaterial strategies have been explored to address cartilage repair either by the delivery of therapeutics or as support for tissue repair, however the complex structure of cartilage tissue, its mechanical needs, and lack of regenerative capacity have hindered this goal. Recent advances in synthetic biology have opened new possibilities for engineered proteins to address these unique needs. Engineered protein and peptide-based materials benefit from inherent biocompatibility and nearly unlimited tunability as they utilize the body's natural building blocks to fabricate a variety of supramolecular structures. The pathophysiology and needs of OA cartilage are presented here, along with an overview of the current state of the art and next steps for protein-engineered repair strategies for cartilage.
Collapse
Affiliation(s)
- Nada A Haq-Siddiqi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States.
| |
Collapse
|
43
|
Wei C, Shi W, Zhao C, Yang S, Zheng J, Zhong J, Zhao T, Kong S, Gong X, Liu M. Superwetting Injectable Hydrogel with Ultrastrong and Fast Tissue Adhesion for Minimally Invasive Hemostasis. Adv Healthc Mater 2023; 12:e2201799. [PMID: 36333905 DOI: 10.1002/adhm.202201799] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Injectable hydrogels have recently emerged as alternatives to sutures for various clinical indications. However, existing injectable hydrogels are unsuitable for hemostasis in minimally invasive surgery because of their weak interfacial adhesion and complex/prolonged processing. Herein, a superwetting injectable hydrogel composed of oppositely charged polysaccharides is developed. The spontaneous spreading of the injectable hydrogel on the surfaces achieves complete wetting and forms tight interfacial contact by absorbing the interfacial water. The superwetting ability and subsequent covalent crosslinking perform fast and ultrastrong wet adhesion (140 kPa) on the tissue surface. Ex vivo porcine and in vivo rat models show that the hydrogel successfully leads to the aggregation of erythrocytes for targeted hemostasis (in less than 12 s) without requiring external adjuncts, and no postsurgical adhesions to the peripheral tissues. This further demonstrates that hydrogel can act as an effective hemostasis agent in laparoscopic surgery in a rabbit model. Overall, the strong wet adhesion, antibacterial properties, and easy operability make this injectable hydrogel a promising candidate for hemostasis applications, as it can successfully combine clinical efficacy and transformation opportunities for minimally invasive surgery.
Collapse
Affiliation(s)
- Congying Wei
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Weili Shi
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Chuangqi Zhao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Shuai Yang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - JinPan Zhong
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Tianyi Zhao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Simin Kong
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xi Gong
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Mingjie Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
44
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
45
|
Warren MR, Bajpayee AG. Modeling Electrostatic Charge Shielding Induced by Cationic Drug Carriers in Articular Cartilage Using Donnan Osmotic Theory. Bioelectricity 2022; 4:248-258. [PMID: 36644714 PMCID: PMC9811830 DOI: 10.1089/bioe.2021.0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Positively charged drug carriers are rapidly emerging as a viable solution for long-standing challenges in delivery to dense, avascular, negatively charged tissues. These cationic carriers have demonstrated especially strong promise in targeting drugs to articular cartilage for osteoarthritis (OA) treatment. It is critical to evaluate the dose-dependent effects of their high intratissue uptake levels on charge-shielding of anionic matrix constituents, and the resulting changes in tissue osmotic swelling and mechanical integrity. Materials and Methods We use the ideal Donnan osmotic theory to derive a model for predicting intracartilage swelling pressures as a function of net charge (z) and equilibrium uptake of short-length, arginine-rich, multivalent, cationic peptide carriers (cationic peptide carriers [CPCs], z varied from +8 to +20) in cartilage samples with varying arthritic severities and fixed charge density (FCD). We use this model to determine the dose-dependent influence of CPCs on both physiological osmotic swelling pressures and compressive electrostatic moduli of cartilage in healthy and arthritic states. Results Under physiological conditions, the Donnan model predicted carrier-induced reductions in free swelling pressure between 8 and 29 kPa, and diminished compressive modulus by 20-68 kPa, both dependent on the net charge and uptake of CPCs. The magnitudes of deswelling and stiffness reduction increased monotonically with carrier uptake and net charge. Furthermore, predicted levels of deswelling by CPC charge shielding were amplified in tissues with reduced FCD (which model OA). Finally, the Donnan model predicted markedly higher reductions in tissue compressive modulus in hypotonic bathing salinity compared with physiological and hypertonic conditions. Conclusion This analysis demonstrates the importance of considering charge shielding as a likely adverse effect associated with uptake of cationic drug carriers into negatively charged tissues, especially in the case of damaged tissue. The simple modeling approach and principles described herein can inform the design of cationic drug delivery carriers and their clinical treatment regimens.
Collapse
Affiliation(s)
- Matthew R. Warren
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Xu XL, Xue Y, Ding JY, Zhu ZH, Wu XC, Song YJ, Cao YL, Tang LG, Ding DF, Xu JG. Nanodevices for deep cartilage penetration. Acta Biomater 2022; 154:23-48. [PMID: 36243371 DOI: 10.1016/j.actbio.2022.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease and is the main cause of chronic pain and functional disability in adults. Articular cartilage is a hydrated soft tissue that is composed of normally quiescent chondrocytes at a low density, a dense network of collagen fibrils with a pore size of 60-200 nm, and aggrecan proteoglycans with high-density negative charge. Although certain drugs, nucleic acids, and proteins have the potential to slow the progression of OA and restore the joints, these treatments have not been clinically applied owing to the lack of an effective delivery system capable of breaking through the cartilage barrier. Recently, the development of nanotechnology for delivery systems renders new ideas and treatment methods viable in overcoming the limited penetration. In this review, we focus on current research on such applications of nanotechnology, including exosomes, protein-based cationic nanocarriers, cationic liposomes/solid lipid nanoparticles, amino acid-based nanocarriers, polyamide derivatives-based nanocarriers, manganese dioxide, and carbon nanotubes. Exosomes are the smallest known nanoscale extracellular vesicles, and they can quickly deliver nucleic acids or proteins to the required depth. Through electrostatic interactions, nanocarriers with appropriate balance in cationic property and particle size have a strong ability to penetrate cartilage. Although substantial preclinical evidence has been obtained, further optimization is necessary for clinical transformation. STATEMENT OF SIGNIFICANCE: The dense cartilage matrix with high-negative charge was associated with reduced therapeutic effect in osteoarthritis patients with deep pathological changes. However, a systematic review in nanodevices for deep cartilage penetration is still lacking. Current approaches to assure penetration of nanosystems into the depth of cartilage were reviewed, including nanoscale extracellular vesicles from different cell lines and nanocarriers with appropriate balance in cationic property and size particle. Moreover, nanodevices entering clinical trials and further optimization were also discussed, providing important guiding significance to future research.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai 201613, China
| | - Jia-Ying Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Heng Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xi-Chen Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong-Jia Song
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue-Long Cao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Long-Guang Tang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Dao-Fang Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
47
|
Huang J, Liu Q, Xia J, Chen X, Xiong J, Yang L, Liang Y. Modification of mesenchymal stem cells for cartilage-targeted therapy. J Transl Med 2022; 20:515. [PMID: 36348497 PMCID: PMC9644530 DOI: 10.1186/s12967-022-03726-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the destruction of the articular cartilage, sclerosis of the subchondral bone, and joint dysfunction. Its pathogenesis is attributed to direct damage and mechanical destruction of joint tissues. Mesenchymal stem cells (MSCs), suggested as a potential strategy for the treatment of OA, have shown therapeutic effects on OA. However, the specific fate of MSCs after intraarticular injection, including cell attachment, proliferation, differentiation, and death, is still unclear, and there is no guarantee that stem cells can be retained in the cartilage tissue to enact repair. Direct homing of MSCs is an important determinant of the efficacy of MSC-based cartilage repair. Recent studies have revealed that the unique homing capacity of MSCs and targeted modification can improve their ability to promote tissue regeneration. Here, we comprehensively review the homing effect of stem cells in joints and highlight progress toward the targeted modification of MSCs. In the future, developments of this targeting system that accelerate tissue regeneration will benefit targeted tissue repair.
Collapse
|
48
|
Zhang T, Jiao X, Peng X, Wang H, Zou Y, Xiao Y, Liu R, Li Z. Non-invasive drug delivery systems mediated by nanocarriers and molecular dynamics simulation for posterior eye disease therapeutics: Virtual screening, construction and comparison. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Vedadghavami A, He T, Zhang C, Amiji SM, Hakim B, Bajpayee AG. Charge-based drug delivery to cartilage: Hydrophobic and not electrostatic interactions are the dominant cause of competitive binding of cationic carriers in synovial fluid. Acta Biomater 2022; 151:278-289. [PMID: 35963518 PMCID: PMC10441566 DOI: 10.1016/j.actbio.2022.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 01/04/2023]
Abstract
Charge-based drug delivery has proven to be effective for targeting negatively charged cartilage for the treatment of osteoarthritis. Cartilage is surrounded by synovial fluid (SF), which is comprised of negatively charged hyaluronic acid and hydrophobic proteins that can competitively bind cationic carriers and prevent their transport into cartilage. Here we investigate the relative contributions of charge and hydrophobic effects on the binding of cationic carriers within healthy and arthritic SF by comparing the transport of arginine-rich cartilage targeting cationic peptide carriers with hydrophilic (CPC +14N) or hydrophobic property (CPC +14A). CPC +14N had significantly greater intra-cartilage uptake in presence of SF compared to CPC +14A in-vitro and in vivo. In presence of individual anionic SF constituents, both CPCs maintained similar high intra-cartilage uptake while in presence of hydrophobic constituents, CPC +14N had greater uptake confirming that hydrophobic and not charge interactions are the dominant cause of competitive binding within SF. Results also demonstrate that short-range effects can synergistically stabilize intra-cartilage charge-based binding - a property that can be utilized for enhancing drug-carrier residence time in arthritic cartilage with diminished negative fixed charge density. The work provides a framework for the rational design of cationic carriers for developing targeted therapies for another complex negatively charged environments. STATEMENT OF SIGNIFICANCE: This work demonstrates that hydrophobic and not charge interactions are the dominant cause of the binding of cationic carriers in synovial fluid. Therefore, cationic carriers can be effectively used for cartilage targeting if they are made hydrophilic. This can facilitate clinical translation of various osteoarthritis drugs for cartilage repair that have failed due to a lack of effective cartilage targeting methods. It also demonstrates that short-range hydrogen bonds can synergistically stabilize electrostatic binding in cartilage offering a method for enhancing the targeting and residence time of cationic carriers within arthritic cartilage with reduced charge density. Finally, the cartilage-synovial fluid unit provides an excellent model of a complex negatively charged environment and allows us to generalize these findings and develop targeted therapies for other charged tissue-systems.
Collapse
Affiliation(s)
- Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Tengfei He
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Salima M Amiji
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Bill Hakim
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; Department of Mechanical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Lin J, Chen L, Yang J, Li X, Wang J, Zhu Y, Xu X, Cui W. Injectable Double Positively Charged Hydrogel Microspheres for Targeting-Penetration-Phagocytosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202156. [PMID: 36056898 DOI: 10.1002/smll.202202156] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The localization and accumulation of drugs in the body determine their therapeutic effects; however, the specific microstructure of damaged tissues hinders drug delivery. Currently, there is a shortage of effective drug carriers to breach these barriers and achieve efficient tissue and cellular delivery of drugs. In this study, an injectable double positively charged functional hydrogel microsphere with "targeting cartilage extracellular matrix", "cartilage penetration", and "cellular phagocytosis" is designed for matching the structural characteristics of joints, addressing the difficulties of drug delivery in joints. The microspheres could be adsorbed on the negatively charged cartilage surface because of their positively charged poly-lysine surface. Furthermore, the internally loaded positively charged polyamidoamine contained kartogenin, which helped further the penetration of the cartilage under the guidance of electrical charge. The microspheres could release kartogenin for more than 21 days. In in vivo experiments, the microspheres effectively improve the efficiency of drug delivery, inhibit the degradation of cartilage matrix and subchondral bone, and delay the development of osteoarthritis. As a double positively charged drug delivery system, the versatile microsphere has great potential for treating osteoarthritis and other diseases.
Collapse
Affiliation(s)
- Jiawei Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jielai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xingchen Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuan Zhu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiangyang Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|