1
|
Man X, Li W, Zhu M, Li S, Xu G, Zhang Z, Liang H, Yang F. Anticancer Tetranuclear Cu(I) Complex Catalyzes a Click Reaction to Synthesize a Chemotherapeutic Agent in situ to Achieve Targeted Dual-Agent Combination Therapy for Cancer. Angew Chem Int Ed Engl 2024; 63:e202411846. [PMID: 39295439 DOI: 10.1002/anie.202411846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
To develop next-generation metal-based drugs and dual-drug combination therapy for cancer, we proposed to develop a copper (Cu) complex that exerts anticancer function by integrating chemotherapy, immunotherapy and catalyzes a click reaction for the in situ synthesis of a chemotherapeutic agent, thereby achieving targeted dual-agent combination therapy. We designed and synthesized a tetranuclear Cu(I) complex (Cu4) with remarkable cytotoxicity and notable catalytic ability for the in situ synthesis of a chemotherapeutic agent via Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition (CuAAC). We also constructed an apoferritin (AFt)-Cu4 nanoparticles (NPs) delivery system. Aft-Cu4 NPs not only showed an enhanced performance of tumor growth inhibition, but also improved the targeting ability and reduced the systemic toxicity of Cu4 in vivo. Importantly, the anticancer effect was enhanced by combining the Aft-Cu4 NPs with the resveratrol analogue obtained from the CuAAC reaction in situ. Finally, we revealed the anticancer mechanism of the Cu4/Aft-Cu4 NPs, which involves both cuproptosis and cuproptosis-induced systemic immune response.
Collapse
Affiliation(s)
- Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, 541004, China
- School of Pharmaceutical Sciences, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
2
|
Tang H, Cheng X, Liang L, Chen BZ, Liu C, Wang Y. A stimulus responsive microneedle-based drug delivery system for cancer therapy. Biomater Sci 2024; 12:6274-6283. [PMID: 39501760 DOI: 10.1039/d4bm00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The intricate nature of the tumor microenvironment (TME) results in the inefficient delivery of anticancer drugs within tumor tissues, significantly compromising the therapeutic effect of cancer treatment. To address this issue, transdermal drug delivery microneedles (MNs) with high mechanical strength have emerged. Such MNs penetrate the skin barrier, enabling efficient drug delivery to tumor tissues. This approach enhances drug bioavailability, while also mitigating concerns such as liver and kidney toxicity associated with intravenous and oral drug administration. Notably, stimulus responsive MNs designed for drug delivery have the capacity to respond to various biological signals and pathological changes. This adaptability enables them to exert therapeutic effects within the TME, exploiting biochemical variations and tailoring treatment strategies to suit tumor characteristics. The present review surveys recent advancements in responsive MN systems. This comprehensive analysis serves as a valuable reference for the prospective application of smart MN drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Hongyu Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueqing Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
3
|
Shang K, Montesdeoca N, Zhang H, Efanova E, Liang G, Ochs J, Karges J, Song H, Zhang L. Cobalt(III) prodrug-based nanomedicine for inducing immunogenic cell death and enhancing chemo-immunotherapy. J Control Release 2024; 373:493-506. [PMID: 39033985 DOI: 10.1016/j.jconrel.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Despite impressive advances in immune checkpoint blockade therapy, its efficacy as a standalone treatment remains limited. The influence of chemotherapeutic agents on tumor immunotherapy has progressively come to light in recent years, positioning them as promising contenders in the realm of combination therapy options for tumor immunotherapy. Herein, we present the rational design, synthesis, and biological evaluation of the first example of a Co(III) prodrug (Co2) capable of eliciting a localized cytotoxic effect while simultaneously inducing a systemic immune response via type II immunogenic cell death (ICD). To enhance its pharmacological properties, a glutathione-sensitive polymer was synthesized, and Co2 was encapsulated into polymeric nanoparticles (NP-Co2) to improve efficacy. Furthermore, NP-Co2 activates the GRP78/p-PERK/p-eIF2α/CHOP pathway, thereby inducing ICD in cancer cells. This facilitates the transformation of "cold tumors" into "hot tumors" and augments the effectiveness of the PD-1 monoclonal antibody (αPD-1). In essence, this nanomedicine, utilizing Co(III) prodrugs to induce ICD, provides a promising strategy to enhance chemotherapy and αPD-1 antibody-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Elizaveta Efanova
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jasmine Ochs
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China.
| |
Collapse
|
4
|
Lu S, Li Y, Yu Y. Glutathione-Scavenging Celastrol-Cu Nanoparticles Induce Self-Amplified Cuproptosis for Augmented Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404971. [PMID: 38935977 DOI: 10.1002/adma.202404971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Cuproptosis is a novel copper-dependent programmed cell death. The efficacy of cuproptosis is highly dependent on intracellular copper accumulation and counteracted by a high level of glutathione (GSH) in tumor cells. Here, this work develops a self-amplified cuproptosis nanoparticles (Cel-Cu NP) using celastrol (Cel), a natural product isolated from medical plant. In Cel-Cu NP, Cel serves as a versatile copper ionophore, exhibiting an ideal coordination capacity toward copper ions without compromising the cuproptosis induction. Notably, Cel can simultaneously scavenge GSH content to amplify cuproptosis. Moreover, this self-amplified cuproptosis further activates immunogenic cell death (ICD) to elicit robust immune response. Combining with immune checkpoint blockade, Cel-Cu NP effectively eradicates metastatic tumors in a mouse lung metastasis model. This study provides an efficient nanomedicine by inducing self-amplified cuproptosis for robust immunotherapy.
Collapse
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Liu X, Shen M, Bing T, Zhang X, Li Y, Cai Q, Yang X, Yu Y. A Bioactive Injectable Hydrogel Regulates Tumor Metastasis and Wound Healing for Melanoma via NIR-Light Triggered Hyperthermia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402208. [PMID: 38704692 PMCID: PMC11234446 DOI: 10.1002/advs.202402208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Surgical resection remains the mainstream treatment for malignant melanoma. However, challenges in wound healing and residual tumor metastasis pose significant hurdles, resulting in high recurrence rates in patients. Herein, a bioactive injectable hydrogel (BG-Mngel) formed by crosslinking sodium alginate (SA) with manganese-doped bioactive glass (BG-Mn) is developed as a versatile platform for anti-tumor immunotherapy and postoperative wound healing for melanoma. The incorporation of Mn2+ within bioactive glass (BG) can activate the cGAS-STING immune pathway to elicit robust immune response for cancer immunotherapy. Furthermore, doping Mn2+ in BG endows system with excellent photothermal properties, hence facilitating STING activation and reversing the tumor immune-suppressive microenvironment. BG exhibits favorable angiogenic capacity and tissue regenerative potential, and Mn2+ promotes cell migration in vitro. When combining BG-Mngel with anti-PD-1 antibody (α-PD-1) for the treatment of malignant melanoma, it shows enhanced anti-tumor immune response and long-term immune memory response. Remarkably, BG-Mngel can upregulate the expression of genes related to blood vessel formation and promote skin tissue regeneration when treating full-thickness wounds. Overall, BG-MnGel serves as an effective adjuvant therapy to regulate tumor metastasis and wound healing for malignant melanoma.
Collapse
Affiliation(s)
- Xueyi Liu
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Meifang Shen
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Tiejun Bing
- Immunology and Oncology CenterICE BioscienceBeijing100176China
| | - Xinyun Zhang
- Immunology and Oncology CenterICE BioscienceBeijing100176China
| | - Yifan Li
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Qing Cai
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Xiaoping Yang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yingjie Yu
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
6
|
Shiba H, Hirose T, Sakai A, Nakase I, Matsumoto A, Kojima C. Structural Optimization of Carboxy-Terminal Phenylalanine-Modified Dendrimers for T-Cell Association and Model Drug Loading. Pharmaceutics 2024; 16:715. [PMID: 38931839 PMCID: PMC11206903 DOI: 10.3390/pharmaceutics16060715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Dendrimers are potent nanocarriers in drug delivery systems because their structure can be precisely controlled. We previously reported that polyamidoamine (PAMAM) dendrimers that were modified with 1,2-cyclohexanedicarboxylic acid (CHex) and phenylalanine (Phe), PAMAM-CHex-Phe, exhibited an effective association with various immune cells, including T-cells. In this study, we synthesized various carboxy-terminal Phe-modified dendrimers with different linkers using phthalic acid and linear dicarboxylic acids to determine the association of these dendrimers with Jurkat cells, a T-cell model. PAMAM-n-hexyl-Phe demonstrated the highest association with Jurkat T-cells. In addition, dendri-graft polylysine (DGL) with CHex and Phe, DGL-CHex-Phe, was synthesized, and its association with Jurkat cells was investigated. The association of DGL-CHex-Phe with T-cells was higher than that of PAMAM-CHex-Phe. However, it was insoluble in water and thus it is unsuitable as a drug carrier. Model drugs, such as protoporphyrin IX and paclitaxel, were loaded onto these dendrimers, and the most model drug molecules could be loaded into PAMAM-CHex-Phe. PTX-loaded PAMAM-CHex-Phe exhibited cytotoxicity against Jurkat cells at a similar level to free PTX. These results suggest that PAMAM-CHex-Phe exhibited both efficient T-cell association and drug loading properties.
Collapse
Affiliation(s)
- Hiroya Shiba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Hirose
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Akinobu Sakai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ikuhiko Nakase
- Department of Biological Science, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
7
|
Hu F, Huang J, Bing T, Mou W, Li D, Zhang H, Chen Y, Jin Q, Yu Y, Yang Z. Stimulus-Responsive Copper Complex Nanoparticles Induce Cuproptosis for Augmented Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309388. [PMID: 38269649 PMCID: PMC10987162 DOI: 10.1002/advs.202309388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Indexed: 01/26/2024]
Abstract
Cuproptosis, an emerging form of programmed cell death, has received tremendous attention in cancer therapy. However, the efficacy of cuproptosis remains limited by the poor delivery efficiency of copper ion carriers. Herein, copper complex nanoparticles (denoted as Cu(I) NP) are developed that can efficiently deliver copper complex into cancer cells to induce cuproptosis. Cu(I) NP demonstrate stimulus-responsive release of copper complexes, which results in mitochondrial dysfunction and promotes the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), leading to cuproptosis. Notably, Cu(I) NP not only induce cuproptosis, but also elicit robust immune responses to suppress tumor growth. Overall, this study provides a promising strategy for cuproptosis-based cancer therapy.
Collapse
Affiliation(s)
- Fuzhen Hu
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Jia Huang
- Department of Hepatobiliary SurgeryChina−Japan Friendship HospitalBeijing100029China
| | - Tiejun Bing
- Immunology and Oncology CenterICE BioscienceBeijing100176China
| | - Wenlong Mou
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Duo Li
- Department of Hepatobiliary SurgeryChina−Japan Friendship HospitalBeijing100029China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and Chemistry Institute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Yang Chen
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryThe First Medical Center of Chinese People's Liberation Army (PLA) General HospitalBeijing100039China
| | - Qionghua Jin
- Department of ChemistryCapital Normal UniversityBeijing100048China
- State Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| | - Yingjie Yu
- State Key Laboratory of Organic‐Inorganic Composites, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Zhiying Yang
- Department of Hepatobiliary SurgeryChina−Japan Friendship HospitalBeijing100029China
| |
Collapse
|
8
|
Pandey R, Chiu CC, Wang LF. Immunotherapy Study on Non-small-Cell Lung Cancer (NSCLC) Combined with Cytotoxic T Cells and miRNA34a. Mol Pharm 2024; 21:1364-1381. [PMID: 38291993 PMCID: PMC10915804 DOI: 10.1021/acs.molpharmaceut.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Immunotherapy has emerged as a promising approach for cancer treatment, and the use of microRNAs (miRNAs) as therapeutic agents has gained significant attention. In this study, we investigated the effectiveness of immunotherapy utilizing miRNA34a and Jurkat T cells in inducing cell death in non-small-cell lung cancer cells, specifically A549 cells. Moreover, we explored the impact of Jurkat T cell activation and miRNA34a delivery using iron oxide nanorods (IONRs) on the killing of cancer cells. A549 cells were cocultured with both activated and inactivated Jurkat T cells, both before and after the delivery of miRNA34a. Surprisingly, our results revealed that even inactive Jurkat T cells were capable of inducing cell death in cancer cells. This unexpected observation suggested the presence of alternative mechanisms by which Jurkat T cells can exert cytotoxic effects on cancer cells. We stimulated Jurkat T cells using anti-CD3/CD28 and analyzed their efficacy in killing A549 compared to that of the inactive Jurkat T cells in conjunction with miRNA34a. Our findings indicated that the activation of Jurkat T cells significantly enhanced their cytotoxic potential against cancer cells compared to their inactive counterparts. The combined treatment of A549 cells with activated Jurkat T cells and miRNA34a demonstrated the highest level of cancer cell death, suggesting a synergistic effect between Jurkat T cell activation and miRNA therapy. Besides the apoptosis mechanism for the Jurkat T cells' cytotoxic effects on A549 cells, we furthermore investigated the ferroptosis pathway, which was found to have an impact on the cancer cell killing due to the presence of miRNA34a and IONRs as the delivery agent inside the cancer cells.
Collapse
Affiliation(s)
- Richa Pandey
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department
of Biotechnology, Kaohsiung Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
| | - Li-Fang Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, No.70 Lien-Hai Road, Kaohsiung 804201, Taiwan
| |
Collapse
|
9
|
Yu B, Wang Y, Bing T, Tang Y, Huang J, Xiao H, Liu C, Yu Y. Platinum Prodrug Nanoparticles with COX-2 Inhibition Amplify Pyroptosis for Enhanced Chemotherapy and Immune Activation of Pancreatic Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310456. [PMID: 38092007 DOI: 10.1002/adma.202310456] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/26/2023] [Indexed: 12/22/2023]
Abstract
Pyroptosis, an emerging mechanism of programmed cell death, holds great potential to trigger a robust antitumor immune response. Platinum-based chemotherapeutic agents can induce pyroptosis via caspase-3 activation. However, these agents also enhance cyclooxygenase-2 (COX-2) expression in tumor tissues, leading to drug resistance and immune evasion in pancreatic cancer and significantly limiting the effectiveness of chemotherapy-induced pyroptosis. Here, an amphiphilic polymer (denoted as PHDT-Pt-In) containing both indomethacin (In, a COX-2 inhibitor) and platinum(IV) prodrug (Pt(IV)) is developed, which is responsive to glutathione (GSH). This polymer self-assemble into nanoparticles (denoted as Pt-In NP) that can disintegrate in cancer cells due to the GSH responsiveness, releasing In to inhibit the COX-2 expression, hence overcoming the chemoresistance and amplifying cisplatin-induced pyroptosis. In a pancreatic cancer mouse model, Pt-In NP significantly inhibit tumor growth and elicit both innate and adaptive immune responses. Moreover, when combined with anti-programmed death ligand (α-PD-L1) treatment, Pt-In NP demonstrate the ability to completely suppress metastatic tumors, transforming "cold tumors" into "hot tumors". Overall, the sustained release of Pt(IV) and In from Pt-In NP amplifies platinum-drug-induced pyroptosis to elicit long-term immune responses, hence presenting a generalizable strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Bingzheng Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yushu Wang
- The People's Hospital of Gaozhou, Gaozhou, 525200, China
| | - Tiejun Bing
- Immunology and Oncology center, ICE Bioscience, Beijing, 100176, China
| | - Yujing Tang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd, Beijing, 100013, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Chaoyong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Xiang D, Han X, Li J, Zhang J, Xiao H, Li T, Zhao X, Xiong H, Xu M, Bi W. Combination of IDO inhibitors and platinum(IV) prodrugs reverses low immune responses to enhance cancer chemotherapy and immunotherapy for osteosarcoma. Mater Today Bio 2023; 20:100675. [PMID: 37304579 PMCID: PMC10250924 DOI: 10.1016/j.mtbio.2023.100675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years, immune checkpoint blockades (ICBs) have made great progress in the treatment of cancer. However, most ICBs have not yet been observed to be satisfactory in the treatment of osteosarcoma. Herein, we designed composite nanoparticles (NP-Pt-IDOi) from a reactive oxygen species (ROS) sensitive amphiphilic polymer (PHPM) with thiol-ketal bonds in the main chain to encapsulate a Pt(IV) prodrug (Pt(IV)-C12) and an indoleamine-(2/3)-dioxygenase (IDO) inhibitor (IDOi, NLG919). Once NP-Pt-IDOi enter the cancer cells, the polymeric nanoparticles could dissociate due to the intracellular ROS, and release Pt(IV)-C12 and NLG919. Pt(IV)-C12 induces DNA damage and activates the cGAS-STING pathway, increasing infiltration of CD8+ T cells in the tumor microenvironment. In addition, NLG919 inhibits tryptophan metabolism and enhances CD8+ T cell activity, ultimately activating anti-tumor immunity and enhancing the anti-tumor effects of platinum-based drugs. NP-Pt-IDOi were shown to have superior anti-cancer activity in vitro and in vivo in mouse models of osteosarcoma, providing a new clinical paradigm for combining chemotherapy with immunotherapy for osteosarcoma.
Collapse
Affiliation(s)
- Dongquan Xiang
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xinli Han
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Medicine, Nankai University, Tianjin, 300074, PR China
| | - Jianxiong Li
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jiabing Zhang
- Xidian University, Xi'an, 710071, PR China
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, 100853, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Ting Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Xuelin Zhao
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Meng Xu
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Wenzhi Bi
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| |
Collapse
|
11
|
Li Y, Wang J, Tang Y, Lu S, Lv Y, Li W, Zhang M, Yu Y. Stimuli-responsive ultra-small vanadate prodrug nanoparticles with NIR photothermal properties to precisely inhibit Na/K-ATPase for enhanced cancer therapy. NANOSCALE 2023; 15:9116-9122. [PMID: 37129433 DOI: 10.1039/d2nr07117g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inhibition of Na/K-ATPase is a promising cancer treatment owing to the essential role of Na/K-ATPase in maintaining various cellular functions. The potent Na/K-ATPase inhibitor, vanadate(V) (termed as V(V)), has exhibited efficient anticancer effects. However, nonspecific inhibition using V(V) results in serious side effects, which hinder its clinical application. Here, bovine serum albumin (BSA)-modified ultra-small vanadate prodrug nanoparticles (V(IV) NPs) were synthesized via a combined reduction-coordination strategy with a natural polyphenol tannic acid (TA). A lower systemic toxicity of V(IV) NPs is achieved by strong metal-polyphenol coordination interactions. An efficient V(V) activation is realized by reactive oxygen species (ROS) at the tumor site. Furthermore, V(IV) NPs show excellent photothermal properties in the near-infrared (NIR) region. By NIR irradiation at the tumor site for mild hyperthermia, selective enhancement of the interactions between V(V) and Na/K-ATPase achieves stronger inhibition of Na/K-ATPase for robust cell killing effect. Altogether, V(IV) NPs specifically inhibit Na/K-ATPase in cancer cells with negligible toxicity to normal tissues, thus making them a promising candidate for clinical applications of Na/K-ATPase inhibition.
Collapse
Affiliation(s)
- Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujing Tang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd, Beijing, 100013, China
| | - Sheng Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing 102206, China.
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Huang Y, Wei D, Wang B, Tang D, Cheng A, Xiao S, Yu Y, Huang W. NIR-II light evokes DNA cross-linking for chemotherapy and immunogenic cell death. Acta Biomater 2023; 160:198-210. [PMID: 36792048 DOI: 10.1016/j.actbio.2023.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
As a DNA damaging agent, oxaliplatin (OXA) can induce immunogenic cell death (ICD) in tumors to activate the immune system. However, the DNA damage induced by OXA is limited and the ICD effect is not strong enough to enhance anti-tumor efficacy. Here, we propose a strategy to maximize the ICD effect of OXA through the mild hyperthermia generated by nanoparticles with a platinum (IV) prodrug of OXA (Pt(IV)-C16) and a near-infrared-II (NIR-II) photothermal agent IR1061 upon the irradiation of NIR-II light. The mild hyperthermia (43 °C) holds advantages in two aspects: 1) increase the Pt-DNA cross-linking, leading to enhanced DNA damage and apoptosis; 2) induce stronger ICD effects for cancer immunotherapy. We demonstrated that, compared with OXA and photothermal therapy of IR1061 alone, these nanoparticles under NIR-II light irradiation can significantly improve the anti-cancer efficacy against triple-negative breast cancer 4T1 tumor. This new strategy provides an effective way to improve the therapeutic outcome of OXA. STATEMENT OF SIGNIFICANCE: OXA could induce immunogenic cell death (ICD) via stimulating immune responses by increasing tumor cell stress and death, which triggers tumor-specific immune responses to achieve immunotherapy. However, due to the insufficient Pt-DNA crosslinks, the ICD effect triggered by OXA cannot induce robust immune response. Mild hyperthermia has great potential to maximize the therapeutic outcome of oxaliplatin by increasing the Pt-DNA cross-linking to augment the immunoresponse for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yun Huang
- Guangxi Key Laboratory of Tumor Immunity and Microenvironment Regulation, Guilin Medical University, Guilin 541199, China; Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, China
| | - Shengjun Xiao
- Guangxi Key Laboratory of Tumor Immunity and Microenvironment Regulation, Guilin Medical University, Guilin 541199, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, China.
| | - Weiguo Huang
- Guangxi Key Laboratory of Tumor Immunity and Microenvironment Regulation, Guilin Medical University, Guilin 541199, China; Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, China.
| |
Collapse
|
13
|
Fibrous dressing containing bioactive glass with combined chemotherapy and wound healing promotion for post-surgical treatment of melanoma. BIOMATERIALS ADVANCES 2023; 149:213387. [PMID: 36990026 DOI: 10.1016/j.bioadv.2023.213387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Surgery is the mainstream treatment for melanoma. However, inappropriate post-surgical treatment could result in the tumor recurrence and sever tissue damage, which ultimately leads to the failure of therapy and significantly compromises the therapeutic outcome of surgery. Herein, taking advantages of the co-axial electrospinning technology, we construct a dual-function nanofibrous wound dressing for the post-surgical treatment of melanoma. Si-Ca-P-based mesoporous bioactive glass (MBG) was prepared by the template-sol-gel process, with the compositions being set as 60 SiO2: 36 CaO: 4 P2O5 in mol%. Through rational design, 5-fluorouracil (5-FU)-loaded MBG nanoparticles (MBG-U) are successfully incorporated into the fiber core with biodegradable poly(lactic-co-glycolic acid) (PLGA) as the cladding layer to form the core-shell nanofibers (MBG-U CSF), which achieves sustained releases of chemotherapeutic drug (i.e.,5-FU) and wound healing promotion function. Thereafter, the post-surgical melanoma model was established to evaluate the in-situ anti-cancer and wound healing effect of MBG-U CSF. Thereafter, the post-surgical melanoma model was established to evaluate the anti-cancer and wound healing effect. The results demonstrated that the core-shell nanofibrous dressing almost complete suppressed tumor growth, and simultaneously promoted skin regeneration, which provides a promising strategy for the post-surgical treatment for melanoma.
Collapse
|
14
|
Zhang L, Zhu L, Tang L, Xie J, Gao Y, Yu C, Shang K, Han H, Liu C, Lu Y. Glutathione-Responsive Nanoparticles of Camptothecin Prodrug for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205246. [PMID: 36442854 PMCID: PMC9875659 DOI: 10.1002/advs.202205246] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Indexed: 05/28/2023]
Abstract
Camptothecin (CPT) is a potent chemotherapeutic agent for various cancers, but the broader application of CPT is still hindered by its poor bioavailability and systemic toxicity. Here, a prodrug that releases CPT in response to glutathione (GSH), which is commonly overexpressed by cancer cells is reported. Through assembling with PEGylated lipids, the prodrug is incorporated within as-assembled nanoparticles, affording CPT with a prolonged half-life in blood circulation, enhanced tumor targetingability, and improved therapeutic efficacy. Furthermore, such prodrug nanoparticles can also promote dendritic cell maturation and tumor infiltration of CD8+ T cells, providing a novel strategy to improve the therapeutic efficacy of CPT.
Collapse
Affiliation(s)
- Lingpu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Lin Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jiayi Xie
- Department of AutomaticTsinghua UniversityPeking University Third HospitalBeijing Key Laboratory of Magnetic Resonance Imaging Devices and TechnologyBeijing100191P. R. China
| | - Yajuan Gao
- Department of RadiologyPeking University Third HospitalInstitute of Medical TechnologyPeking University Health Science CenterBeijing100019P. R. China
| | - Changyuan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Kun Shang
- Department of RadiologyPeking University Third HospitalInstitute of Medical TechnologyPeking University Health Science CenterBeijing100019P. R. China
| | - Hongbin Han
- Department of RadiologyPeking University Third HospitalInstitute of Medical TechnologyPeking University Health Science CenterBeijing100019P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|