1
|
The Fate of Transplanted Olfactory Progenitors Is Conditioned by the Cell Phenotypes of the Receiver Brain Tissue in Cocultures. Int J Mol Sci 2020; 21:ijms21197249. [PMID: 33008128 PMCID: PMC7582579 DOI: 10.3390/ijms21197249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Among the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one. Nevertheless, in order to focus on the integration of OPs in mature neural circuits, we cocultured OPs in primary cultures obtained from the cortex and hippocampus of newborn mice. When dissociated OPs were plated, they differentiated into both glial and neuronal phenotypes, but we obtained a 1.5-fold higher viability in cortex/OP cocultures than in hippocampus/OP ones. The fate of OPs in cocultures was characterized with different markers such as BrdU, Map-2, and Synapsin, indicating a healthy integration. These results suggest that the integration of transplanted OPs might by affected by trophic factors and the environmental conditions/cell phenotypes of the host tissue. Thus, a model of coculture could provide useful information on key cell events for the use of progenitors in cell therapy.
Collapse
|
2
|
AAV2/DJ-mediated alpha-synuclein overexpression in the rat substantia nigra as early stage model of Parkinson's disease. Cell Tissue Res 2019; 378:1-14. [PMID: 30989398 DOI: 10.1007/s00441-019-03013-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is pathologically characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and alpha-synucleinopathy. We mimic the disease pathology with overexpression of either the human α-syn wildtype (α-syn-WT) or E46K mutant form (α-syn-E46K) in DA neurons of the SNpc in adult rats using AAV2/DJ as a viral vector for the first time. Transduction efficiency was compared to an equal virus titer expressing the green fluorescent protein (GFP). Motor skills of all animals were evaluated in the cylinder and amphetamine-induced rotation test over a total time period of 12 weeks. Additionally, stereological quantification of DA cells and striatal fiber density measurements were performed every 4 weeks after injection. Rats overexpressing α-syn-WT showed a progressive loss of DA neurons with 40% reduction after 12 weeks accompanied by a greater loss of striatal DA fibers. In contrast, α-syn-E46K led to this reduction after 4 weeks without further progress. Insoluble α-syn positive cytoplasmic inclusions were observed in both groups within DA neurons of the SNpc and VTA. In addition, both α-syn groups developed a characteristic worsening of the rotational behavior over time. However, only the α-syn-WT group reached statistically significant different values in the cylinder test. Summarizing these effects, we established a motor symptom animal model of PD by using AAV2/DJ in the brain for the first time. Thereby, overexpressing of α-syn-E46K mimicked a rather pre-symptomatic stage of the disease, while the α-syn-WT overexpressing animals imitated an early symptomatic stage of PD.
Collapse
|
3
|
Wulansari N, Kim EH, Sulistio YA, Rhee YH, Song JJ, Lee SH. Vitamin C-Induced Epigenetic Modifications in Donor NSCs Establish Midbrain Marker Expressions Critical for Cell-Based Therapy in Parkinson's Disease. Stem Cell Reports 2017; 9:1192-1206. [PMID: 28943252 PMCID: PMC5639382 DOI: 10.1016/j.stemcr.2017.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 11/20/2022] Open
Abstract
Cultured neural stem/precursor cells (NSCs) are regarded as a potential systematic cell source to treat Parkinson's disease (PD). However, the therapeutic potential of these cultured NSCs is lost during culturing. Here, we show that treatment of vitamin C (VC) enhances generation of authentic midbrain-type dopamine (mDA) neurons with improved survival and functions from ventral midbrain (VM)-derived NSCs. VC acted by upregulating a series of mDA neuron-specific developmental and phenotype genes via removal of DNA methylation and repressive histone code (H3K9m3, H3K27m3) at associated gene promoter regions. Notably, the epigenetic changes induced by transient VC treatment were sustained long after VC withdrawal. Accordingly, transplantation of VC-treated NSCs resulted in improved behavioral restoration, along with enriched DA neuron engraftment, which faithfully expressed midbrain-specific markers in PD model rats. These results indicate that VC treatment to donor NSCs could be a simple, efficient, and safe therapeutic strategy for PD in the future. Vitamin C (VC) potentiates therapeutic capacity of donor NSCs to treat PD Long-lasting epigenetic activation of VM-specific genes underlies the VC effects The VC effects enhanced mDA neuron engraftment
Collapse
Affiliation(s)
- Noviana Wulansari
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Eun-Hee Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Yanuar Alan Sulistio
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Yong-Hee Rhee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Jae-Jin Song
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
4
|
Rhee YH, Kim TH, Jo AY, Chang MY, Park CH, Kim SM, Song JJ, Oh SM, Yi SH, Kim HH, You BH, Nam JW, Lee SH. LIN28A enhances the therapeutic potential of cultured neural stem cells in a Parkinson’s disease model. Brain 2016; 139:2722-2739. [DOI: 10.1093/brain/aww203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/30/2016] [Indexed: 01/23/2023] Open
|
5
|
Shen Y, Huang J, Liu L, Xu X, Han C, Zhang G, Jiang H, Li J, Lin Z, Xiong N, Wang T. A Compendium of Preparation and Application of Stem Cells in Parkinson's Disease: Current Status and Future Prospects. Front Aging Neurosci 2016; 8:117. [PMID: 27303288 PMCID: PMC4885841 DOI: 10.3389/fnagi.2016.00117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Parkinson's Disease (PD) is a progressively neurodegenerative disorder, implicitly characterized by a stepwise loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and explicitly marked by bradykinesia, rigidity, resting tremor and postural instability. Currently, therapeutic approaches available are mainly palliative strategies, including L-3,4-dihydroxy-phenylalanine (L-DOPA) replacement therapy, DA receptor agonist and deep brain stimulation (DBS) procedures. As the disease proceeds, however, the pharmacotherapeutic efficacy is inevitably worn off, worse still, implicated by side effects of motor response oscillations as well as L-DOPA induced dyskinesia (LID). Therefore, the frustrating status above has propeled the shift to cell replacement therapy (CRT), a promising restorative therapy intending to secure a long-lasting relief of patients' symptoms. By far, stem cell lines of multifarious origins have been established, which can be further categorized into embryonic stem cells (ESCs), neural stem cells (NSCs), induced neural stem cells (iNSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). In this review, we intend to present a compendium of preparation and application of multifarious stem cells, especially in relation to PD research and therapy. In addition, the current status, potential challenges and future prospects for practical CRT in PD patients will be elaborated as well.
Collapse
Affiliation(s)
- Yan Shen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Ling Liu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Xiaoyun Xu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Chao Han
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Haiyang Jiang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Jie Li
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean Hospital Belmont, MA, USA
| | - Nian Xiong
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Tao Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
6
|
Rumpel R, Hohmann M, Klein A, Wesemann M, Baumgärtner W, Ratzka A, Grothe C. Transplantation of fetal ventral mesencephalic progenitor cells overexpressing high molecular weight fibroblast growth factor 2 isoforms in 6-hydroxydopamine lesioned rats. Neuroscience 2015; 286:293-307. [DOI: 10.1016/j.neuroscience.2014.11.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/12/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
7
|
Effenberg A, Stanslowsky N, Klein A, Wesemann M, Haase A, Martin U, Dengler R, Grothe C, Ratzka A, Wegner F. Striatal Transplantation of Human Dopaminergic Neurons Differentiated From Induced Pluripotent Stem Cells Derived From Umbilical Cord Blood Using Lentiviral Reprogramming. Cell Transplant 2014; 24:2099-112. [PMID: 25420114 DOI: 10.3727/096368914x685591] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are promising sources for regenerative therapies like the replacement of dopaminergic neurons in Parkinson's disease. They offer an unlimited cell source that can be standardized and optimized to produce applicable cell populations to gain maximal functional recovery. In the present study, human cord blood-derived iPSCs (hCBiPSCs) were differentiated into dopaminergic neurons utilizing two different in vitro protocols for neural induction: (protocol I) by fibroblast growth factor (FGF-2) signaling, (protocol II) by bone morphogenetic protein (BMP)/transforming growth factor (TGF-β) inhibition. After maturation, in vitro increased numbers of tyrosine hydroxylase (TH)-positive neurons (7.4% of total cells) were observed by protocol II compared to 3.5% in protocol I. Furthermore, 3 weeks after transplantation in hemiparkinsonian rats in vivo, a reduced number of undifferentiated proliferating cells was achieved with protocol II. In contrast, proliferation still occurred in protocol I-derived grafts, resulting in tumor-like growth in two out of four animals 3 weeks after transplantation. Protocol II, however, did not increase the number of TH(+) cells in the striatal grafts of hemiparkinsonian rats. In conclusion, BMP/TGF-β inhibition was more effective than FGF-2 signaling with regard to dopaminergic induction of hCBiPSCs in vitro and prevented graft overgrowth in vivo.
Collapse
Affiliation(s)
- Anna Effenberg
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu J, Zhu B, Zhang G, Wang J, Tian W, Ju G, Wei X, Song B. Electric signals regulate directional migration of ventral midbrain derived dopaminergic neural progenitor cells via Wnt/GSK3β signaling. Exp Neurol 2014; 263:113-21. [PMID: 25265211 DOI: 10.1016/j.expneurol.2014.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/16/2014] [Accepted: 09/16/2014] [Indexed: 01/19/2023]
Abstract
Neural progenitor cell (NPC) replacement therapy is a promising treatment for neurodegenerative disorders including Parkinson's disease (PD). It requires a controlled directional migration and integration of NPCs, for example dopaminergic (DA) progenitor cells, into the damaged host brain tissue. There is, however, only limited understanding of how to regulate the directed migration of NPCs to the diseased or damaged brain tissues for repair and regeneration. The aims of this study are to explore the possibility of using a physiological level of electrical stimulation to regulate the directed migration of ventral midbrain NPCs (NPCs(vm)), and to investigate their potential regulation via GSK3β and associated downstream effectors. We tested the effects of direct-current (DC) electric fields (EFs) on the migration behavior of the NPCs(vm). A DC EF induced directional cell migration toward the cathode, namely electrotaxis. Reversal of the EF polarity triggered a sharp reversal of the NPC(vm) electrotaxis. The electrotactic response was both time and EF voltage dependent. Pharmacologically inhibiting the canonical Wnt/GSK3β pathway significantly reduced the electrotactic response of NPCs(vm), which is associated with the down-regulation of GSK3β phosphorylation, β-catenin activation and CLASP2 expression. This was further proved by RNA interference of GSK3β, which also showed a significantly reduced electrotactic response in association with reduced β-catenin activation and CLASP2 expression. In comparison, RNA interference of β-catenin slightly reduced electrotactic response and CLASP2 expression. Both pharmacological inhibition of Wnt/GSK3β and RNA interference of GSK3β/β-catenin clearly reduced the asymmetric redistribution of CLASP2 and its co-localization with α-tubulin. These results suggest that Wnt/GSK3β signaling contributes to the electrotactic response of NPCs(vm) through the coordination of GSK3β phosphorylation, β-catenin activation, CLASP2 expression and asymmetric redistribution to the leading edge of the migrating cells.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory Animal Center, China Medical University, Shenyang, 110001, China; School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Bangfu Zhu
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Gaofeng Zhang
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Jian Wang
- Institute of Neurosciences, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, China
| | - Weiming Tian
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Gong Ju
- Institute of Neurosciences, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, China
| | - Xiaoqing Wei
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Bing Song
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK; Department of Dermatology, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
9
|
Hohmann M, Rumpel R, Fischer M, Donert M, Ratzka A, Klein A, Wesemann M, Effenberg A, Fahlke C, Grothe C. Electrophysiological Characterization of eGFP-Labeled Intrastriatal Dopamine Grafts. Cell Transplant 2014; 24:1451-67. [PMID: 25199117 DOI: 10.3727/096368914x683034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Substitution of degenerated dopaminergic (DA) neurons by intrastriatally transplanted ventral mesencephalon (VM)-derived progenitor cells has been shown to improve motor functions in parkinsonian patients and animal models, whereas investigations of electrophysiological properties of the grafted DA neurons have been rarely performed. Here we show electrophysiological properties of grafted VM progenitor cells at different time intervals up to 12 weeks after transplantation measured in acute brain slices using eGFP-Flag transfection to identify the graft. We were able to classify typical DA neurons according to the biphasic progression (voltage "sag") to hyperpolarizing current injections. Two types of DA-like neurons were classified. Whereas type 1 neurons were characterized by delayed action potentials after hyperpolarization and irregular spontaneous firing, type 2 neurons displayed burst firing after hyperpolarization, spontaneous bursts, and regular firing. Comparison to identified DA neurons in vitro indicates a high integration of the intrastriatally grafted neurons, since in vitro cultures displayed regular firing spontaneously, whereas grafted identified DA neurons showed irregular firing. Additionally, type 1 and type 2 neurons exhibited a slight increase in the spontaneous firing frequency over time intervals after grafting, which might reflect a progressive integration of the grafted DA neurons. Our results provide evidence of the differentiation of grafted VM progenitor cells into mature integrated DA neurons, which are shown to replace the missing DA neurons functionally early after grafting.
Collapse
Affiliation(s)
- Meltem Hohmann
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bloch J, Brunet JF, McEntire CRS, Redmond DE. Primate adult brain cell autotransplantation produces behavioral and biological recovery in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian St. Kitts monkeys. J Comp Neurol 2014; 522:2729-40. [PMID: 24610674 DOI: 10.1002/cne.23579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 02/03/2023]
Abstract
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts.
Collapse
Affiliation(s)
- Jocelyne Bloch
- Department of Clinical Neurosciences, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | | | | | | |
Collapse
|
11
|
Adult hemiparkinsonian rats do not benefit from tactile stimulation. Behav Brain Res 2014; 261:97-105. [DOI: 10.1016/j.bbr.2013.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/03/2013] [Accepted: 12/07/2013] [Indexed: 10/25/2022]
|
12
|
Rumpel R, Alam M, Klein A, Özer M, Wesemann M, Jin X, Krauss JK, Schwabe K, Ratzka A, Grothe C. Neuronal firing activity and gene expression changes in the subthalamic nucleus after transplantation of dopamine neurons in hemiparkinsonian rats. Neurobiol Dis 2013; 59:230-43. [DOI: 10.1016/j.nbd.2013.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 12/28/2022] Open
|
13
|
|
14
|
A novel strategy for intrastriatal dopaminergic cell transplantation: sequential "nest" grafting influences survival and behavioral recovery in a rat model of Parkinson's disease. Exp Cell Res 2012; 318:2531-42. [PMID: 23010385 DOI: 10.1016/j.yexcr.2012.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 08/01/2012] [Accepted: 08/19/2012] [Indexed: 10/27/2022]
Abstract
Neural transplantation in experimental parkinsonism (PD) is limited by poor survival of grafted embryonic dopaminergic (DA) cells. In this proof-of-principle study we hypothesized that a first regular initial graft may create a "dopaminergic" environment similar to the perinatal substantia nigra and consequently stimulate a subsequent graft. Therefore, we grafted ventral mesencephalic neurons sequentially at different time intervals into the same target localization. Rats with a unilateral lesion of the dopamine neurons produced by injections of 6-hydroxydopamine (6-OHDA) received E14 ventral mesencephalon derived grafts into the DA-depleted striatum. In the control group we grafted all 6 deposits on the first day (d0). The other 4 groups received four graft deposits distributed over 2 implantation tracts followed by a second engraftment injected into the same site 3, 6, 14 and 21 days later. Quantitative assessment of the survival of tyrosine hydroxylase-immunoreactive neurons and graft volume revealed best results for those DA grafts implanted 6 days after the first one. In the present study, a model of short-interval sequential transplantation into the same target-site, so called "nest" grafts were established in the 6-OHDA rat model of PD which might become a useful tool to further elucidate the close neurotrophic and neurotopic interactions between the immediate graft vicinity and the cell suspension graft. In addition, we could show that the optimal milieu was established around the sixth day after the initial transplantation. This may also help to further optimize current transplantation strategies to restore the DA system in patients with PD.
Collapse
|
15
|
Ratzka A, Baron O, Stachowiak MK, Grothe C. Fibroblast growth factor 2 regulates dopaminergic neuron development in vivo. J Neurochem 2012; 122:94-105. [DOI: 10.1111/j.1471-4159.2012.07768.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Baron O, Förthmann B, Lee YW, Terranova C, Ratzka A, Stachowiak EK, Grothe C, Claus P, Stachowiak MK. Cooperation of nuclear fibroblast growth factor receptor 1 and Nurr1 offers new interactive mechanism in postmitotic development of mesencephalic dopaminergic neurons. J Biol Chem 2012; 287:19827-40. [PMID: 22514272 DOI: 10.1074/jbc.m112.347831] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Experiments in mice deficient for Nurr1 or expressing the dominant-negative FGF receptor (FGFR) identified orphan nuclear receptor Nurr1 and FGFR1 as essential factors in development of mesencephalic dopaminergic (mDA) neurons. FGFR1 affects brain cell development by two distinct mechanisms. Activation of cell surface FGFR1 by secreted FGFs stimulates proliferation of neural progenitor cells, whereas direct integrative nuclear FGFR1 signaling (INFS) is associated with an exit from the cell cycle and neuronal differentiation. Both Nurr1 and INFS activate expression of neuronal genes, such as tyrosine hydroxylase (TH), which is the rate-limiting enzyme in dopamine synthesis. Here, we show that nuclear FGFR1 and Nurr1 are expressed in the nuclei of developing TH-positive cells in the embryonic ventral midbrain. Both nuclear receptors were effectively co-immunoprecipitated from the ventral midbrain of FGF-2-deficient embryonic mice, which previously showed an increase of mDA neurons and enhanced nuclear FGFR1 accumulation. Immunoprecipitation and co-localization experiments showed the presence of Nurr1 and FGFR1 in common nuclear protein complexes. Fluorescence recovery after photobleaching and chromatin immunoprecipitation experiments demonstrated the Nurr1-mediated shift of nuclear FGFR1-EGFP mobility toward a transcriptionally active population and that both Nurr1 and FGFR1 bind to a common region in the TH gene promoter. Furthermore, nuclear FGFR1 or its 23-kDa FGF-2 ligand (FGF-2(23)) enhances Nurr1-dependent activation of the TH gene promoter. Transcriptional cooperation of FGFR1 with Nurr1 was confirmed on isolated Nurr1-binding elements. The proposed INFS/Nurr1 nuclear partnership provides a novel mechanism for TH gene regulation in mDA neurons and a potential therapeutic target in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Olga Baron
- Institute of Neuroanatomy, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ratzka A, Kalve I, Özer M, Nobre A, Wesemann M, Jungnickel J, Köster-Patzlaff C, Baron O, Grothe C. The colayer method as an efficient way to genetically modify mesencephalic progenitor cells transplanted into 6-OHDA rat model of Parkinson's disease. Cell Transplant 2011; 21:749-62. [PMID: 21929871 DOI: 10.3727/096368911x586774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Exogenous cell replacement represents a potent treatment option for Parkinson's disease. However, the low survival rate of transplanted dopaminergic neurons (DA) calls for methodological improvements. Here we evaluated a method to combine transient genetic modification of neuronal progenitor cells with an optimized cell culture protocol prior to intrastriatal transplantation into 6-hydroxydopamine (6-OHDA) unilateral lesioned rats. Plasmid-based delivery of brain-derived neurotrophic factor (BDNF) increases the number of DA neurons, identified by tyrosine hydroxylase immunoreactivity (TH-ir), by 25% in vitro, compared to enhanced green fluorescence protein (EGFP)-transfected controls. However, the nucleofection itself, especially the cell detachment and reseeding procedure, decreases the TH-ir neuron number to 40% compared with nontransfected control cultures. To circumvent this drawback we established the colayer method, which contains a mix of nucleofected cells reseeded on top of an adherent sister culture in a ratio 1:3. In this setup TH-ir neuron number remains high and could be further increased by 25% after BDNF transfection. Comparison of both cell culture procedures (standard and colayer) after intrastriatal transplantation revealed a similar DA neuron survival as seen in vitro. Two weeks after grafting TH-ir neuron number was strongly reduced in animals receiving the standard EGFP-transfected cells (271 ± 62) compared to 1,723 ± 199 TH-ir neurons in the colayer group. In contrast to the in vitro results, no differences in the number of grafted TH-ir neurons were observed between BDNF, EGFP, and nontransfected colayer groups, neither 2 nor 13 weeks after transplantation. Likewise, amphetamine and apomorphine-induced rotational behavior improved similarly over time in all groups. Nevertheless, the colayer protocol provides an efficient way for neurotrophic factor release by transplanted progenitor cells and will help to study the effects of candidate factors on survival and integration of transplanted DA neurons.
Collapse
Affiliation(s)
- Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Signaling of Glial Cell Line-Derived Neurotrophic Factor and Its Receptor GFRα1 Induce Nurr1 and Pitx3 to Promote Survival of Grafted Midbrain-Derived Neural Stem Cells in a Rat Model of Parkinson Disease. J Neuropathol Exp Neurol 2011; 70:736-47. [DOI: 10.1097/nen.0b013e31822830e5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
19
|
Ratzka A, Baron O, Grothe C. FGF-2 deficiency does not influence FGF ligand and receptor expression during development of the nigrostriatal system. PLoS One 2011; 6:e23564. [PMID: 21876757 PMCID: PMC3158085 DOI: 10.1371/journal.pone.0023564] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/21/2011] [Indexed: 11/21/2022] Open
Abstract
Secreted proteins of the fibroblast growth factor (FGF) family play important roles during development of various organ systems. A detailed knowledge of their temporal and spatial expression profiles, especially of closely related FGF family members, are essential to further identification of specific functions in distinct tissues. In the central nervous system dopaminergic neurons of the substantia nigra and their axonal projections into the striatum progressively degenerate in Parkinson's disease. In contrast, FGF-2 deficient mice display increased numbers of dopaminergic neurons. In this study, we determined the expression profiles of all 22 FGF-ligands and 10 FGF-receptor isoforms, in order to clarify, if FGF-2 deficiency leads to compensatory up-regulation of other FGFs in the nigrostriatal system. Three tissues, ventral mesencephalon (VM), striatum (STR) and as reference tissue spinal cord (SC) of wild-type and FGF-2 deficient mice at four developmental stages E14.5, P0, P28, and adult were comparatively analyzed by quantitative RT-PCR. As no differences between the genotypes were observed, a compensatory up-regulation can be excluded. Moreover, this analysis revealed that the majority of FGF-ligands (18/22) and FGF-receptors (9/10) are expressed during normal development of the nigrostriatal system and identified dynamic changes for some family members. By comparing relative expression level changes to SC reference tissue, general alterations in all 3 tissues, such as increased expression of FGF-1, -2, -22, FgfR-2c, -3c and decreased expression of FGF-13 during postnatal development were identified. Further, specific changes affecting only one tissue, such as increased FGF-16 (STR) or decreased FGF-17 (VM) expression, or two tissues, such as decreased expression of FGF-8 (VM, STR) and FGF-15 (SC, VM) were found. Moreover, 3 developmentally down-regulated FGFs (FGF-8b, FGF-15, FGF-17a) were functionally characterized by plasmid-based over-expression in dissociated E11.5 VM cell cultures, however, such a continuous exposure had no influence on the yield of dopaminergic neurons in vitro.
Collapse
Affiliation(s)
- Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Olga Baron
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- * E-mail:
| |
Collapse
|
20
|
Jungnickel J, Kalve I, Reimers L, Nobre A, Wesemann M, Ratzka A, Halfer N, Lindemann C, Schwabe K, Töllner K, Gernert M, Grothe C. Topology of intrastriatal dopaminergic grafts determines functional and emotional outcome in neurotoxin-lesioned rats. Behav Brain Res 2011; 216:129-35. [DOI: 10.1016/j.bbr.2010.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/16/2010] [Accepted: 07/18/2010] [Indexed: 11/26/2022]
|
21
|
Nobre A, Kalve I, Cesnulevicius K, Ragancokova D, Rangancokova D, Ratzka A, Halfer N, Wesemann M, Krampfl K, Claus P, Grothe C. Characterization and differentiation potential of rat ventral mesencephalic neuronal progenitor cells immortalized with SV40 large T antigen. Cell Tissue Res 2010; 340:29-43. [PMID: 20177706 DOI: 10.1007/s00441-010-0933-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/19/2010] [Indexed: 01/01/2023]
Abstract
Neuronal progenitor cells (NPCs) possess high potential for use in regenerative medicine. To overcome their limited mitotic competence, various immortalization strategies have been applied that allow their prolonged maintenance and expansion in vitro. Such immortalized cells can be used for the design and discovery of new cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. We immortalized rat ventral mesencephalic NPCs by using SV40 large T antigen (SV40Tag). All cell clones displayed a two- to three-fold higher proliferation rate compared with the primary cells. In order to induce dopaminergic differentiation of generated cell clones, both glial-derived neurotrophic factor and di-butyryl cyclic adenosine monophosphate were applied. Treated cells were then characterized regarding the expression of dopaminergic lineage markers, differentiation of various cell populations, calcium imaging in the presence of kainate, and immunohistochemistry after intrastriatal transplantation. Treated cells displayed morphological maturation, and calcium imaging revealed neuronal properties in the presence of kainate. These cells also expressed low mRNA levels of the dopamine transporter and tyrosine hydroxylase (TH), although no TH-immunopositive neurons were found. Intrastriatal transplantation into the neurotoxin-lesioned rats did not induce further differentiation. As an alternative approach, we silenced SV40Tag with short interfering RNA, but this was not sufficient to trigger differentiation into dopaminergic neurons. Nevertheless, neuronal and glial cells were detected as shown by beta-tubulin type III and glial fibrillary acidic protein staining, respectively. SV40Tag cells are suitable for carrying out controlled genetic modifications as shown by overexpression of enhanced green fluorescence protein after efficient non-viral transfection.
Collapse
Affiliation(s)
- André Nobre
- Institute of Neuroanatomy, Hannover Medical School, 30625, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pruszak J, Just L, Isacson O, Nikkhah G. Isolation and culture of ventral mesencephalic precursor cells and dopaminergic neurons from rodent brains. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2009; Chapter 2:Unit 2D.5. [PMID: 19960452 DOI: 10.1002/9780470151808.sc02d05s11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability to isolate ventral midbrain (VM) precursor cells and neurons provides a powerful means to characterize their differentiation properties and to study their potential for restoring dopamine (DA) neurons degenerated in Parkinson's disease (PD). Preparation and maintenance of DA VM in primary culture involves a number of critical steps to yield healthy cells and appropriate data. Here, we offer a detailed description of protocols to consistently prepare VM DA cultures from rat and mouse embryonic fetal-stage midbrain. We also present methods for organotypic culture of midbrain tissue, for differentiation as aggregate cultures, and for adherent culture systems of DA differentiation and maturation, followed by a synopsis of relevant analytical read-out options. Isolation and culture of rodent VM precursor cells and DA neurons can be exploited for studies of DA lineage development, of neuroprotection, and of cell therapeutic approaches in animal models of PD.
Collapse
Affiliation(s)
- Jan Pruszak
- Freiburg University Hospital, Freiburg, Germany
| | | | | | | |
Collapse
|
23
|
Zhu QF, Ma J, Yu LL, Yuan CG. Grafted neural stem cells migrate to substantia nigra and improve behavior in Parkinsonian rats. Neurosci Lett 2009; 462:213-8. [DOI: 10.1016/j.neulet.2009.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/11/2009] [Accepted: 07/06/2009] [Indexed: 01/18/2023]
|
24
|
Schiff M, Weinhold B, Grothe C, Hildebrandt H. NCAM and polysialyltransferase profiles match dopaminergic marker gene expression but polysialic acid is dispensable for development of the midbrain dopamine system. J Neurochem 2009; 110:1661-73. [DOI: 10.1111/j.1471-4159.2009.06267.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Hahn M, Timmer M, Nikkhah G. Survival and early functional integration of dopaminergic progenitor cells following transplantation in a rat model of Parkinson's disease. J Neurosci Res 2009; 87:2006-19. [PMID: 19235889 DOI: 10.1002/jnr.22031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dopaminergic (DA) grafts in rat models of Parkinson's disease (PD) have previously been derived from embryonic day (E) 14 grafts. Because there is an increasing interest in the restorative capacity of DA stem and progenitor cells, in the present study we examined the survival and early and late functional behavioral effects of DA progenitor cells derived from E12, E13, E14, and E15 grafts transplanted into rats with unilateral 6-hydroxydopamin lesions. DA transplant-induced functional recovery was already observed in postural balancing reactions after 10 days and in stepping behavior after 13 days, that is, in spontaneous complex behaviors, and later, after 16 days, in the amphetamine-induced rotation test. Three distinct patterns of functional recovery could be observed at 6-9 weeks posttransplantation. First, behavioral improvements in drug-induced rotational asymmetry, stepping, and skilled forelimb behavior were directly related to DA neuron survival and TH-positive fiber reinnervation. Second, recovery in postural balancing reactions was closely related to a specific developmental time window of donor age, for example, only seen in E13 and E14 grafts. Finally, no functional graft effects were seen in the table lift test. Interestingly, DA neuron graft survival, TH-positive fiber outgrowth, and graft volume were significantly influenced by the developmental time window in which the DA progenitor cells were dissected from the ventral mesencephalon, that is, from E12, E13, E14, or E15 rat embryos. These data highlight the complexity of graft-host interactions and provide novel insights into the dynamics of DA progenitor graft-mediated functional recovery in animal models of Parkinson's disease.
Collapse
Affiliation(s)
- Michaela Hahn
- Department of Stereotactic and Functional Neurosurgery, Albert-Ludwigs-University, Freiburg, Germany
| | | | | |
Collapse
|
26
|
Wijeyekoon R, Barker RA. Cell replacement therapy for Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:688-702. [DOI: 10.1016/j.bbadis.2008.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/12/2008] [Accepted: 10/13/2008] [Indexed: 12/21/2022]
|
27
|
Brunet JF, Redmond DE, Bloch J. Primate adult brain cell autotransplantation, a pilot study in asymptomatic MPTP-treated monkeys. Cell Transplant 2009; 18:787-99. [PMID: 19500480 DOI: 10.3727/096368909x470847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Autologous brain cell transplantation might be useful for repairing lesions and restoring function of the central nervous system. We have demonstrated that adult monkey brain cells, obtained from cortical biopsy and kept in culture for a few weeks, exhibit neural progenitor characteristics that make them useful for brain repair. Following MPTP treatment, primates were dopamine depleted but asymptomatic. Autologous cultured cells were reimplanted into the right caudate nucleus of the donor monkey. Four months after reimplantation, histological analysis by stereology and TH immunolabeling showed that the reimplanted cells successfully survived, bilaterally migrated in the whole striatum, and seemed to have a neuroprotection effect over time. These results may add a new strategy to the field of brain neuroprotection or regeneration and could possibly lead to future clinical applications.
Collapse
Affiliation(s)
- Jean-François Brunet
- Department of Neurosurgery, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
28
|
Maciaczyk J, Singec I, Maciaczyk D, Nikkhah G. Combined use of BDNF, ascorbic acid, low oxygen, and prolonged differentiation time generates tyrosine hydroxylase-expressing neurons after long-term in vitro expansion of human fetal midbrain precursor cells. Exp Neurol 2008; 213:354-62. [DOI: 10.1016/j.expneurol.2008.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/11/2008] [Accepted: 06/17/2008] [Indexed: 02/05/2023]
|
29
|
Jensen P, Pedersen EG, Zimmer J, Widmer HR, Meyer M. Functional effect of FGF2- and FGF8-expanded ventral mesencephalic precursor cells in a rat model of Parkinson's disease. Brain Res 2008; 1218:13-20. [DOI: 10.1016/j.brainres.2008.04.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/10/2008] [Accepted: 04/20/2008] [Indexed: 11/26/2022]
|
30
|
Hedlund E, Pruszak J, Lardaro T, Ludwig W, Viñuela A, Kim KS, Isacson O. Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson's disease. Stem Cells 2008; 26:1526-36. [PMID: 18388307 DOI: 10.1634/stemcells.2007-0996] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Both fetal ventral mesencephalic (VM) and embryonic stem (ES) cell-derived dopamine neurons have been used successfully to correct behavioral responses in animal models of Parkinson's disease. However, grafts derived from fetal VM cells or from ES cells contain multiple cell types, and the majority of these cells are not dopamine neurons. Isolation of ES cell-derived dopamine neurons and subsequent transplantation would both elucidate the capacity of these neurons to provide functional input and also further explore an efficient and safer use of ES cells for the treatment of Parkinson's disease. Toward this goal, we used a Pitx3-enhanced green fluorescent protein (Pitx3-eGFP) knock-in mouse blastocyst-derived embryonic stem (mES) cell line and fluorescence-activated cell sorting (FACS) to select and purify midbrain dopamine neurons. Initially, the dopaminergic marker profile of intact Pitx3-eGFP mES cultures was evaluated after differentiation in vitro. eGFP expression overlapped closely with that of Pitx3, Nurr1, Engrailed-1, Lmx1a, tyrosine hydroxylase (TH), l-aromatic amino acid decarboxylase (AADC), and vesicular monoamine transporter 2 (VMAT2), demonstrating that these cells were of a midbrain dopamine neuron character. Furthermore, postmitotic Pitx3-eGFP(+) dopamine neurons, which constituted 2%-5% of all live cells in the culture after dissociation, could be highly enriched to >90% purity by FACS, and these isolated neurons were viable, extended neurites, and maintained a dopaminergic profile in vitro. Transplantation to 6-hydroxydopamine-lesioned rats showed that an enriched dopaminergic population could survive and restore both amphetamine- and apomorphine-induced functions, and the grafts contained large numbers of midbrain dopamine neurons, which innervated the host striatum. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Eva Hedlund
- Udall Parkinson's Disease Research Center for Excellence, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Zietlow R, Lane EL, Dunnett SB, Rosser AE. Human stem cells for CNS repair. Cell Tissue Res 2007; 331:301-22. [PMID: 17901985 DOI: 10.1007/s00441-007-0488-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 07/25/2007] [Indexed: 12/31/2022]
Abstract
Although most peripheral tissues have at least a limited ability for self-repair, the central nervous system (CNS) has long been known to be relatively resistant to regeneration. Small numbers of stem cells have been found in the adult brain but do not appear to be able to affect any significant recovery following disease or insult. In the last few decades, the idea of being able to repair the brain by introducing new cells to repair damaged areas has become an accepted potential treatment for neurodegenerative diseases. This review focuses on the suitability of various human stem cell sources for such treatments of both slowly progressing conditions, such as Parkinson's disease, Huntington's disease and multiple sclerosis, and acute insult, such as stroke and spinal cord injury. Despite stem cell transplantation having now moved a step closer to the clinic with the first trials of autologous mesenchymal stem cells, the effects shown are moderate and are not yet at the stage of development that can fulfil the hopes that have been placed on stem cells as a means to replace degenerating cells in the CNS. Success will depend on careful investigation in experimental models to enable us to understand not just the practicalities of stem cell use, but also the underlying biological principles.
Collapse
Affiliation(s)
- Rike Zietlow
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, CF10 3US, UK.
| | | | | | | |
Collapse
|
32
|
Wang Y, Chen S, Yang D, Le WD. Stem Cell Transplantation: A Promising Therapy for Parkinson’s Disease. J Neuroimmune Pharmacol 2007; 2:243-50. [DOI: 10.1007/s11481-007-9074-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/04/2007] [Indexed: 12/19/2022]
|
33
|
Grothe C, Timmer M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. ACTA ACUST UNITED AC 2007; 54:80-91. [PMID: 17229467 DOI: 10.1016/j.brainresrev.2006.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/28/2006] [Accepted: 12/11/2006] [Indexed: 12/24/2022]
Abstract
Basic fibroblast growth factor (FGF-2) is a physiological relevant neurotrophic factor in the nigrostriatal system and hence a promising candidate for the establishment of alternative therapeutic strategies in Parkinson's disease. FGF-2 and its high-affinity receptors (FGFR) display an expression in the developing, postnatal, and adult substantia nigra (SN) and in the striatum. Exogenous application promoted survival, neurite outgrowth and protection from neurotoxin-induced death of dopaminergic (DA) neurons both in vitro and in vivo. In animal models of Parkinson's disease, co-transplantation of fetal DA cells with FGF-2 expressing cells increased survival and functional integration of the grafted DA neurons resulting in improved behavioral performance. Analyzing the physiological function of the endogenous FGF-2 system during development and after neurotoxin-induced lesion revealed for the DA neurons of the SNpc a dependence on FGFR3 signaling during development. In addition, in the absence of FGF-2 an increased number of DA neurons was found, whereas enhanced levels of FGF-2 resulted in a reduced DA cell density. Following neurotoxin-induced lesion of DA neurons, FGF-2-deleted mice displayed a higher extent of DA neuron death whereas in FGF-2 overexpressing mice more DA neurons were protected. According to the data, FGF-2 seems to promote DA neuron survival via FGFR3 during development, whereas absence of this ligand could be compensated by other members of the FGF family. In contrast, in the adult organism, FGF-2 cannot be compensated by other factors under lesion conditions suggesting a central role for this molecule in the nigrostriatal system.
Collapse
Affiliation(s)
- Claudia Grothe
- Department of Neuroanatomy, Hannover Medical School, OE 4140, Center for Systems Neuroscience Hannover (ZSN), Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | |
Collapse
|
34
|
Timmer M, Cesnulevicius K, Winkler C, Kolb J, Lipokatic-Takacs E, Jungnickel J, Grothe C. Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J Neurosci 2007; 27:459-71. [PMID: 17234579 PMCID: PMC6672785 DOI: 10.1523/jneurosci.4493-06.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Basic fibroblast growth factor (FGF-2) is involved in the development and maintenance of the nervous system. Exogenous administration of FGF-2 increased dopaminergic (DA) graft survival in different animal models of Parkinson's disease. To study the physiological function of the endogenous FGF-2 system, we analyzed the nigrostriatal system of mice lacking FGF-2, mice overexpressing FGF-2, and FGF-receptor-3 (FGFR3)-deficient mice both after development and after 6-hydroxydopamine lesion. FGFR3-deficient mice (+/-) displayed a reduced number of DA neurons compared with the respective wild type. Whereas absence of FGF-2 led to significantly increased numbers of DA neurons, enhanced amount of the growth factor in mice overexpressing FGF-2 resulted in less tyrosine hydroxylase expression and a reduced DA cell density. The volumes of the substantia nigra were enlarged in both FGF-2(-/-) and in FGF-2 transgenic mice, suggesting an important role of FGF-2 for the establishment of the proper number of DA neurons and a normal sized substantia nigra during development. In a second set of experiments, the putative relevance of endogenous FGF-2 after neurotoxin application was investigated regarding the number of rescued DA neurons after partial 6-OHDA lesion. Interestingly, the results after lesion were directly opposed to the results after development: significantly less DA neurons survived in FGF-2(-/-) mice compared with wild-type mice. Together, the results indicate that FGFR3 is crucially involved in regulating the number of DA neurons. The lack of FGF-2 seems to be (over)compensated during development, but, after lesion, compensation mechanisms fail. The transgenic mice showed that endogenous FGF-2 protects DA neurons from 6-OHDA neurotoxicity.
Collapse
Affiliation(s)
| | | | - Christian Winkler
- Neurology, Hannover Medical School, Center for Systems Neuroscience Hannover, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
35
|
Haile Y, Haastert K, Cesnulevicius K, Stummeyer K, Timmer M, Berski S, Dräger G, Gerardy-Schahn R, Grothe C. Culturing of glial and neuronal cells on polysialic acid. Biomaterials 2007; 28:1163-73. [PMID: 17123601 DOI: 10.1016/j.biomaterials.2006.10.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/30/2006] [Indexed: 12/16/2022]
Abstract
Although peripheral nerves exhibit regeneration capacities after transection injuries, the success of nerve repair depends crucially on the length of the gap. In addition to autologous nerve grafting as the conventional neurosurgical treatment to overcome long gaps, alternative strategies are needed. Numerous experimental studies have been undertaken to find the optimal material for production of artificial prostheses, which can be introduced as conduits between the nerve stumps. The current study follows the aim to establish polysialic acid (polySia), a homopolymer of alpha2,8-linked sialic acid residues, as a novel, biocompatible, and bioresorbable material for nerve tissue engineering. As a first step towards this goal, protocols for efficient coating of cell culture dishes with soluble polySia were established. In addition, primary nerve cells which are candidates for reconstructive therapies, including neonatal and adult Schwann cells, neural progenitor cells, spinal ganglionic neurons and motoneurons were cultured on polySia substrates. Cultures were evaluated with regard to cell survival and cell proliferation capacities. polySia turned out to be stable under cell culture conditions, and induced degradable and degradation products had no negative effects on cell cultures. Furthermore, polySia revealed its compatibility for several cell types derived from rat embryonic, postnatal and adult nervous tissue when used as a substrate.
Collapse
Affiliation(s)
- Y Haile
- Hannover Medical School, Department of Neuroanatomy, OE-4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hedlund E, Pruszak J, Ferree A, Viñuela A, Hong S, Isacson O, Kim KS. Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations. Stem Cells 2007; 25:1126-35. [PMID: 17234989 PMCID: PMC2614084 DOI: 10.1634/stemcells.2006-0540] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transplantation of mouse embryonic stem (mES) cells can restore function in Parkinson disease models, but can generate teratomas. Purification of dopamine neurons derived from embryonic stem cells by fluorescence-activated cell sorting (FACS) could provide a functional cell population for transplantation while eliminating the risk of teratoma formation. Here we used the tyrosine hydroxylase (TH) promoter to drive enhanced green fluorescent protein (eGFP) expression in mES cells. First, we evaluated 2.5-kilobase (kb) and 9-kb TH promoter fragments and showed that clones generated using the 9-kb fragment produced significantly more eGFP+/TH+ neurons. We selected the 9-kb TH clone with the highest eGFP/TH overlap for further differentiation, FACS, and transplantation experiments. Grafts contained large numbers of eGFP+ dopamine neurons of an appropriate phenotype. However, there were also numerous eGFP+ cells that did not express TH and did not have a neuronal morphology. In addition, we found cells in the grafts representing all three germ layers. Based on these findings, we examined the expression of stem cell markers in our eGFP+ population. We found that a majority of eGFP+ cells were stage-specific embryonic antigen-positive (SSEA-1+) and that the genetically engineered clones contained more SSEA-1+ cells after differentiation than the original D3 mES cells. By negative selection of SSEA-1, we could isolate a neuronal eGFP+ population of high purity. These results illustrate the complexity of using genetic selection to purify mES cell-derived dopamine neurons and provide a comprehensive analysis of cell selection strategies based on tyrosine hydroxylase expression. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Eva Hedlund
- Udall Parkinson's Disease Research Center for Excellence, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Molecular Neurobiology Laboratories, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Neuroregeneration Laboratories, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Jan Pruszak
- Udall Parkinson's Disease Research Center for Excellence, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Neuroregeneration Laboratories, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Andrew Ferree
- Udall Parkinson's Disease Research Center for Excellence, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Neuroregeneration Laboratories, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Angel Viñuela
- Udall Parkinson's Disease Research Center for Excellence, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Neuroregeneration Laboratories, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Sunghoi Hong
- Udall Parkinson's Disease Research Center for Excellence, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Neuroregeneration Laboratories, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Ole Isacson
- Udall Parkinson's Disease Research Center for Excellence, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Neuroregeneration Laboratories, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kwang-Soo Kim
- Udall Parkinson's Disease Research Center for Excellence, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Molecular Neurobiology Laboratories, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| |
Collapse
|
37
|
Grothe C. Cell-based Therapeutic Strategies for Parkinson's Disease. CHEM-ING-TECH 2006. [DOI: 10.1002/cite.200650200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Cesnulevicius K, Timmer M, Wesemann M, Thomas T, Barkhausen T, Grothe C. Nucleofection is the most efficient nonviral transfection method for neuronal stem cells derived from ventral mesencephali with no changes in cell composition or dopaminergic fate. Stem Cells 2006; 24:2776-91. [PMID: 16902196 DOI: 10.1634/stemcells.2006-0176] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuronal progenitor cells (NPCs) play an important role in potential regenerative therapeutic strategies for neurodegenerative diseases, such as Parkinson disease. However, survival of transplanted cells is, as yet, limited, and the identification of grafted cells in situ remains difficult. The use of NPCs could be more effective with regard to a better survival and maturation when transfected with one or more neurotrophic factors. Therefore, we investigated the possibility of transfecting mesencephalic neuronal progenitors with different constructs carrying neurotrophic factors or the expression reporters enhanced green fluorescence protein (EGFP) and red fluorescent protein (DsRed). Different techniques for transfection were compared, and the highest transfection rate of up to 47% was achieved by nucleofection. Mesencephalic neuronal progenitors survived the transfection procedure; 6 hours after transfection, viability was approximately 40%, and the transfected cells differentiated into, for example, tyrosine hydroxylase-positive neurons. Within the group of transfected cells, many progenitors and several neurons were found. To provide the progenitor cells with a neurotrophic factor, different isoforms of fibroblast growth factor-2 were introduced. To follow the behavior of the transfected cells in vitro, functional tests such as the cell viability assay (water-soluble tetrazolium salt assay [WST-1]) and the cell proliferation assay (5-bromo-2'-deoxyuridine-enzyme-linked immunosorbent assay) were performed. In addition, these transfected NPCs were viable after transplantation, expressed tyrosine hydroxylase in vivo, and could easily be detected within the host striatum because of their EGFP expression. This study shows that genetic modification of neural progenitors could provide attractive perspectives for new therapeutic concepts in neurodegenerative diseases.
Collapse
|