1
|
Richard P, Stojkovic T, Metay C, Lacau St Guily J, Trollet C. Distrofia muscolare oculofaringea. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)46725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
2
|
Yamashita S. Recent Progress in Oculopharyngeal Muscular Dystrophy. J Clin Med 2021; 10:jcm10071375. [PMID: 33805441 PMCID: PMC8036457 DOI: 10.3390/jcm10071375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/23/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset intractable myopathy, characterized by slowly progressive ptosis, dysphagia, and proximal limb weakness. It is caused by the abnormal expansion of the alanine-encoding (GCN)n trinucleotide repeat in the exon 1 of the polyadenosine (poly[A]) binding protein nuclear 1 gene (11-18 repeats in OPMD instead of the normal 10 repeats). As the disease progresses, the patients gradually develop a feeling of suffocation, regurgitation of food, and aspiration pneumonia, although the initial symptoms and the progression patterns vary among the patients. Autologous myoblast transplantation may provide therapeutic benefits by reducing swallowing problems in these patients. Therefore, it is important to assemble information on such patients for the introduction of effective treatments in nonendemic areas. Herein, we present a concise review of recent progress in clinical and pathological studies of OPMD and introduce an idea for setting up a nation-wide OPMD disease registry in Japan. Since it is important to understand patients' unmet medical needs, realize therapeutically targetable symptoms, and identify indices of therapeutic efficacy, our attempt to establish a unique patient registry of OPMD will be a helpful tool to address these urgent issues.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
3
|
Banerjee A, Phillips BL, Deng Q, Seyfried NT, Pavlath GK, Vest KE, Corbett AH. Proteomic analysis reveals that wildtype and alanine-expanded nuclear poly(A)-binding protein exhibit differential interactions in skeletal muscle. J Biol Chem 2019; 294:7360-7376. [PMID: 30837270 DOI: 10.1074/jbc.ra118.007287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset, primarily autosomal dominant disease caused by a short GCN expansion in the PABPN1 (polyadenylate-binding protein nuclear 1) gene that results in an alanine expansion at the N terminus of the PABPN1 protein. Expression of alanine-expanded PABPN1 is linked to the formation of nuclear aggregates in tissues from individuals with OPMD. However, as with other nuclear aggregate-associated diseases, controversy exists over whether these aggregates are the direct cause of pathology. An emerging hypothesis is that a loss of PABPN1 function and/or aberrant protein interactions contribute to pathology in OPMD. Here, we present the first global proteomic analysis of the protein interactions of WT and alanine-expanded PABPN1 in skeletal muscle tissue. These data provide both insight into the function of PABPN1 in muscle and evidence that the alanine expansion alters the protein-protein interactions of PABPN1. We extended this analysis to demonstrate altered complex formation with and loss of function of TDP-43 (TAR DNA-binding protein 43), which we show interacts with alanine-expanded but not WT PABPN1. The results from our study support a model where altered protein interactions with alanine-expanded PABPN1 that lead to loss or gain of function could contribute to pathology in OPMD.
Collapse
Affiliation(s)
| | - Brittany L Phillips
- From the Department of Biology and.,the Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322
| | - Quidong Deng
- the Department of Biochemistry, Center for Neurodegenerative Diseases and
| | | | - Grace K Pavlath
- the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Katherine E Vest
- the Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | |
Collapse
|
4
|
RNA-Based Therapy Utilizing Oculopharyngeal Muscular Dystrophy Transcript Knockdown and Replacement. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 15:12-25. [PMID: 30831428 PMCID: PMC6403420 DOI: 10.1016/j.omtn.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 11/23/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is caused by a small expansion of a short polyalanine (polyAla) tract in the poly(A)-binding protein nuclear 1 protein (PABPN1). Despite the monogenic nature of OPMD, no treatment is currently available. Here we report an RNA replacement strategy that has therapeutic potential in cell and C. elegans OPMD models. We develop selective microRNAs (miRNAs) against PABPN1, and we report that miRNAs and our previously developed hammerhead ribozymes (hhRzs) are capable of reducing the expression of both the mRNA and protein levels of PABPN1 by as much as 90%. Since OPMD derives from a very small expansion of GCG within the polyAla tract, our hhRz and miRNA molecules cannot distinguish between the wild-type and mutant mRNAs of PABPN1. Therefore, we designed an optimized-codon wild-type PABPN1 (opt-PABPN1) that is resistant to cleavage by hhRzs and miRNAs. Co-expression of opt-PABPN1 with either our hhRzs or miRNAs restored the level of PABPN1, concomitantly with a reduction in expanded PABPN1-associated cell death in a stable C2C12 OPMD model. Interestingly, knockdown of the PABPN1 by selective hhRzs in the C. elegans OPMD model significantly improved the motility of the PABPN1-13Ala worms. Taken together, RNA replacement therapy represents an exciting approach for OPMD treatment.
Collapse
|
5
|
Abu-Baker A, Parker A, Ramalingam S, Laganiere J, Brais B, Neri C, Dion P, Rouleau G. Valproic acid is protective in cellular and worm models of oculopharyngeal muscular dystrophy. Neurology 2018; 91:e551-e561. [PMID: 30006409 PMCID: PMC6105050 DOI: 10.1212/wnl.0000000000005942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/08/2018] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To explore valproic acid (VPA) as a potentially beneficial drug in cellular and worm models of oculopharyngeal muscular dystrophy (OPMD). METHODS Using a combination of live cell imaging and biochemical measures, we evaluated the potential protective effect of VPA in a stable C2C12 muscle cell model of OPMD, in lymphoblastoid cell lines derived from patients with OPMD and in a transgenic Caenorhabditis elegans OPMD model expressing human mutant PABPN1. RESULTS We demonstrated that VPA protects against the toxicity of mutant PABPN1. Of note, we found that VPA confers its long-term protective effects on C2C12 cell survival, proliferation, and differentiation by increasing the acetylated level of histones. Furthermore, VPA enhances the level of histone acetylation in lymphoblastoid cell lines derived from patients with OPMD. Moreover, treatment of nematodes with moderate concentrations of VPA significantly improved the motility of the PABPN-13 Alanines worms. CONCLUSIONS Our results suggest that VPA helps to counteract OPMD-related phenotypes in the cellular and C elegans disease models.
Collapse
Affiliation(s)
- Aida Abu-Baker
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Alex Parker
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Siriram Ramalingam
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Janet Laganiere
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Bernard Brais
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Christian Neri
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Patrick Dion
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Guy Rouleau
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France.
| |
Collapse
|
6
|
Vest KE, Phillips BL, Banerjee A, Apponi LH, Dammer EB, Xu W, Zheng D, Yu J, Tian B, Pavlath GK, Corbett AH. Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology. Hum Mol Genet 2017; 26:3235-3252. [PMID: 28575395 PMCID: PMC5886286 DOI: 10.1093/hmg/ddx206] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/14/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease caused by polyalanine expansion in the poly(A) binding protein nuclear 1 (PABPN1). Several mouse models have been generated to study OPMD; however, most of these models have employed transgenic overexpression of alanine-expanded PABPN1. These models do not recapitulate the OPMD patient genotype and PABPN1 overexpression could confound molecular phenotypes. We have developed a knock-in mouse model of OPMD (Pabpn1+/A17) that contains one alanine-expanded Pabpn1 allele under the control of the native promoter and one wild-type Pabpn1 allele. This mouse is the closest available genocopy of OPMD patients. We show that Pabpn1+/A17 mice have a mild myopathic phenotype in adult and aged animals. We examined early molecular and biochemical phenotypes associated with expressing native levels of A17-PABPN1 and detected shorter poly(A) tails, modest changes in poly(A) signal (PAS) usage, and evidence of mitochondrial damage in these mice. Recent studies have suggested that a loss of PABPN1 function could contribute to muscle pathology in OPMD. To investigate a loss of function model of pathology, we generated a heterozygous Pabpn1 knock-out mouse model (Pabpn1+/Δ). Like the Pabpn1+/A17 mice, Pabpn1+/Δ mice have mild histologic defects, shorter poly(A) tails, and evidence of mitochondrial damage. However, the phenotypes detected in Pabpn1+/Δ mice only partially overlap with those detected in Pabpn1+/A17 mice. These results suggest that loss of PABPN1 function could contribute to but may not completely explain the pathology detected in Pabpn1+/A17 mice.
Collapse
Affiliation(s)
- Katherine E. Vest
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Brittany L. Phillips
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Ayan Banerjee
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Luciano H. Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B. Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiting Xu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Julia Yu
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Grace K. Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Richard P, Roth F, Stojkovic T, Trollet C. Distrofia muscolare oculofaringea. Neurologia 2017. [DOI: 10.1016/s1634-7072(16)81777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Klein P, Oloko M, Roth F, Montel V, Malerba A, Jarmin S, Gidaro T, Popplewell L, Perie S, Lacau St Guily J, de la Grange P, Antoniou MN, Dickson G, Butler-Browne G, Bastide B, Mouly V, Trollet C. Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing. Nucleic Acids Res 2016; 44:10929-10945. [PMID: 27507886 PMCID: PMC5159528 DOI: 10.1093/nar/gkw703] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 11/21/2022] Open
Abstract
A short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined. Using exon array, for the first time we have identified several splicing defects in OPMD. In particular, we have demonstrated a defect in the splicing regulation of the muscle-specific Troponin T3 (TNNT3) mutually exclusive exons 16 and 17 in OPMD samples compared to controls. This splicing defect is directly linked to the SC35 (SRSF2) splicing factor and to the presence of nuclear aggregates. As reported here, PABPN1 aggregates are able to trap TNNT3 pre-mRNA, driving it outside nuclear speckles, leading to an altered SC35-mediated splicing. This results in a decreased calcium sensitivity of muscle fibers, which could in turn plays a role in muscle pathology. We thus report a novel mechanism of alternative splicing deregulation that may play a role in various other diseases with nuclear inclusions or foci containing an RNA binding protein.
Collapse
Affiliation(s)
- Pierre Klein
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Martine Oloko
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Fanny Roth
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Valérie Montel
- Univ. Lille - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, équipe APMS, F-59000 Lille, France
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Susan Jarmin
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Teresa Gidaro
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Sophie Perie
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France.,Department of Otolaryngology-Head and Neck Surgery, University Pierre-et-Marie-Curie, Paris VI, Tenon Hospital, Assistance Publique des Hopitaux de Paris, Paris, France
| | - Jean Lacau St Guily
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France.,Department of Otolaryngology-Head and Neck Surgery, University Pierre-et-Marie-Curie, Paris VI, Tenon Hospital, Assistance Publique des Hopitaux de Paris, Paris, France
| | | | - Michael N Antoniou
- King's College London School of Medicine, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | - George Dickson
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Gillian Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Bruno Bastide
- Univ. Lille - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, équipe APMS, F-59000 Lille, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Capucine Trollet
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| |
Collapse
|
9
|
Chou CC, Alexeeva OM, Yamada S, Pribadi A, Zhang Y, Mo B, Williams KR, Zarnescu DC, Rossoll W. PABPN1 suppresses TDP-43 toxicity in ALS disease models. Hum Mol Genet 2015; 24:5154-73. [PMID: 26130692 DOI: 10.1093/hmg/ddv238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a major disease protein in amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases. Both the cytoplasmic accumulation of toxic ubiquitinated and hyperphosphorylated TDP-43 fragments and the loss of normal TDP-43 from the nucleus may contribute to the disease progression by impairing normal RNA and protein homeostasis. Therefore, both the removal of pathological protein and the rescue of TDP-43 mislocalization may be critical for halting or reversing TDP-43 proteinopathies. Here, we report poly(A)-binding protein nuclear 1 (PABPN1) as a novel TDP-43 interaction partner that acts as a potent suppressor of TDP-43 toxicity. Overexpression of full-length PABPN1 but not a truncated version lacking the nuclear localization signal protects from pathogenic TDP-43-mediated toxicity, promotes the degradation of pathological TDP-43 and restores normal solubility and nuclear localization of endogenous TDP-43. Reduced levels of PABPN1 enhances the phenotypes in several cell culture and Drosophila models of ALS and results in the cytoplasmic mislocalization of TDP-43. Moreover, PABPN1 rescues the dysregulated stress granule (SG) dynamics and facilitates the removal of persistent SGs in TDP-43-mediated disease conditions. These findings demonstrate a role for PABPN1 in rescuing several cytopathological features of TDP-43 proteinopathy by increasing the turnover of pathologic proteins.
Collapse
Affiliation(s)
- Ching-Chieh Chou
- Department of Cell Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Shizuka Yamada
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA and
| | - Amy Pribadi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA and
| | - Yi Zhang
- Department of Cell Biology, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bi Mo
- Department of Cell Biology
| | | | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA and
| | - Wilfried Rossoll
- Department of Cell Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA,
| |
Collapse
|
10
|
Goodwin M, Swanson MS. RNA-binding protein misregulation in microsatellite expansion disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:353-88. [PMID: 25201111 PMCID: PMC4483269 DOI: 10.1007/978-1-4939-1221-6_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play pivotal roles in multiple cellular pathways from transcription to RNA turnover by interacting with RNA sequence and/or structural elements to form distinct RNA-protein complexes. Since these complexes are required for the normal regulation of gene expression, mutations that alter RBP functions may result in a cascade of deleterious events that lead to severe disease. Here, we focus on a group of hereditary disorders, the microsatellite expansion diseases, which alter RBP activities and result in abnormal neurological and neuromuscular phenotypes. While many of these diseases are classified as adult-onset disorders, mounting evidence indicates that disruption of normal RNA-protein interaction networks during embryogenesis modifies developmental pathways, which ultimately leads to disease manifestations later in life. Efforts to understand the molecular basis of these disorders has already uncovered novel pathogenic mechanisms, including RNA toxicity and repeat-associated non-ATG (RAN) translation, and current studies suggest that additional surprising insights into cellular regulatory pathways will emerge in the future.
Collapse
Affiliation(s)
- Marianne Goodwin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL, 32610-3610, USA
| | | |
Collapse
|
11
|
Lithium chloride attenuates cell death in oculopharyngeal muscular dystrophy by perturbing Wnt/β-catenin pathway. Cell Death Dis 2013; 4:e821. [PMID: 24091664 PMCID: PMC3824652 DOI: 10.1038/cddis.2013.342] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/05/2013] [Accepted: 08/02/2013] [Indexed: 01/24/2023]
Abstract
Expansion of polyalanine tracts causes at least nine inherited human diseases. Among these, a polyalanine tract expansion in the poly (A)-binding protein nuclear 1 (expPABPN1) causes oculopharyngeal muscular dystrophy (OPMD). So far, there is no treatment for OPMD patients. Developing drugs that efficiently sustain muscle protection by activating key cell survival mechanisms is a major challenge in OPMD research. Proteins that belong to the Wnt family are known for their role in both human development and adult tissue homeostasis. A hallmark of the Wnt signaling pathway is the increased expression of its central effector, beta-catenin (β-catenin) by inhibiting one of its upstream effector, glycogen synthase kinase (GSK)3β. Here, we explored a pharmacological manipulation of a Wnt signaling pathway using lithium chloride (LiCl), a GSK-3β inhibitor, and observed the enhanced expression of β-catenin protein as well as the decreased cell death normally observed in an OPMD cell model of murine myoblast (C2C12) expressing the expanded and pathogenic form of the expPABPN1. Furthermore, this effect was also observed in primary cultures of mouse myoblasts expressing expPABPN1. A similar effect on β-catenin was also observed when lymphoblastoid cells lines (LCLs) derived from OPMD patients were treated with LiCl. We believe manipulation of the Wnt/β-catenin signaling pathway may represent an effective route for the development of future therapy for patients with OPMD.
Collapse
|
12
|
Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Trinucleotide repeats: a structural perspective. Front Neurol 2013; 4:76. [PMID: 23801983 PMCID: PMC3687200 DOI: 10.3389/fneur.2013.00076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are present in a wide range of genes involved in several neurological disorders, being directly involved in the molecular mechanisms underlying pathogenesis through modulation of gene expression and/or the function of the RNA or protein it encodes. Structural and functional information on the role of TNR sequences in RNA and protein is crucial to understand the effect of TNR expansions in neurodegeneration. Therefore, this review intends to provide to the reader a structural and functional view of TNR and encoded homopeptide expansions, with a particular emphasis on polyQ expansions and its role at inducing the self-assembly, aggregation and functional alterations of the carrier protein, which culminates in neuronal toxicity and cell death. Detail will be given to the Machado-Joseph Disease-causative and polyQ-containing protein, ataxin-3, providing clues for the impact of polyQ expansion and its flanking regions in the modulation of ataxin-3 molecular interactions, function, and aggregation.
Collapse
Affiliation(s)
- Bruno Almeida
- Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | | | | | | |
Collapse
|
13
|
Raz V, Butler-Browne G, van Engelen B, Brais B. 191st ENMC International Workshop: Recent advances in oculopharyngeal muscular dystrophy research: From bench to bedside 8-10 June 2012, Naarden, The Netherlands. Neuromuscul Disord 2013; 23:516-23. [DOI: 10.1016/j.nmd.2013.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Indexed: 10/27/2022]
|
14
|
Banerjee A, Apponi LH, Pavlath GK, Corbett AH. PABPN1: molecular function and muscle disease. FEBS J 2013; 280:4230-50. [PMID: 23601051 DOI: 10.1111/febs.12294] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
The polyadenosine RNA binding protein polyadenylate-binding nuclear protein 1 (PABPN1) plays key roles in post-transcriptional processing of RNA. Although PABPN1 is ubiquitously expressed and presumably contributes to control of gene expression in all tissues, mutation of the PABPN1 gene causes the disease oculopharyngeal muscular dystrophy (OPMD), in which a limited set of skeletal muscles are affected. A major goal in the field of OPMD research is to understand why mutation of a ubiquitously expressed gene leads to a muscle-specific disease. PABPN1 plays a well-documented role in controlling the poly(A) tail length of RNA transcripts but new functions are emerging through studies that exploit a variety of unbiased screens as well as model organisms. This review addresses (a) the molecular function of PABPN1 incorporating recent findings that reveal novel cellular functions for PABPN1 and (b) the approaches that are being used to understand the molecular defects that stem from expression of mutant PABPN1. The long-term goal in this field of research is to understand the key molecular functions of PABPN1 in muscle as well as the mechanisms that underlie the pathological consequences of mutant PABPN1. Armed with this information, researchers can seek to develop therapeutic approaches to enhance the quality of life for patients afflicted with OPMD.
Collapse
Affiliation(s)
- Ayan Banerjee
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
15
|
Atrophy, Fibrosis, and Increased PAX7-Positive Cells in Pharyngeal Muscles of Oculopharyngeal Muscular Dystrophy Patients. J Neuropathol Exp Neurol 2013; 72:234-43. [DOI: 10.1097/nen.0b013e3182854c07] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Bengoechea R, Tapia O, Casafont I, Berciano J, Lafarga M, Berciano MT. Nuclear speckles are involved in nuclear aggregation of PABPN1 and in the pathophysiology of oculopharyngeal muscular dystrophy. Neurobiol Dis 2012; 46:118-29. [PMID: 22249111 DOI: 10.1016/j.nbd.2011.12.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/19/2011] [Accepted: 12/31/2011] [Indexed: 10/14/2022] Open
Abstract
Nuclear speckles are essential nuclear compartments involved in the assembly, delivery and recycling of pre-mRNA processing factors, and in the post-transcriptional processing of pre-mRNAs. Oculopharyngeal muscular dystrophy (OPMD) is caused by a small expansion of the polyalanine tract in the poly(A)-binding protein nuclear 1 (PABPN1). Aggregation of expanded PABPN1 into intranuclear inclusions (INIs) in skeletal muscle fibers is the pathological hallmark of OPMD. In this study what we have analyzed in muscle fibers of OPMD patients and in primary cultures of human myoblasts are the relationships between nuclear speckles and INIs, and the contribution of the former to the biogenesis of the latter. While nuclear speckles concentrate snRNP splicing factors and PABPN1 in control muscle fibers, they are depleted of PABPN1 and appear closely associated with INIs in muscle fibers of OPMD patients. The induction of INI formation in human myoblasts expressing either wild type GFP-PABPN1 or expanded GFP-PABPN1-17ala demonstrates that the initial aggregation of PABPN1 proteins and their subsequent growth in INIs occurs at the edges of the nuclear speckles. Moreover, the growing of INIs gradually depletes PABPN1 proteins and poly(A) RNA from nuclear speckles, although the existence of these nuclear compartments is preserved. Time-lapse experiments in cultured myoblasts confirm nuclear speckles as biogenesis sites of PABPN1 inclusions. Given the functional importance of nuclear speckles in the post-transcriptional processing of pre-mRNAs, the INI-dependent molecular reorganization of these nuclear compartments in muscle fibers may cause a severe dysfunction in nuclear trafficking and processing of polyadenylated mRNAs, thereby contributing to the molecular pathophysiology of OPMD. Our results emphasize the potential importance of nuclear speckles as nuclear targets of neuromuscular disorders.
Collapse
Affiliation(s)
- Rocío Bengoechea
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Cantabria, Santander, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Bernacki JP, Murphy RM. Length-dependent aggregation of uninterrupted polyalanine peptides. Biochemistry 2011; 50:9200-11. [PMID: 21932820 DOI: 10.1021/bi201155g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyalanine (polyA) is the third-most prevalent homopeptide repeat in eukaryotes, behind polyglutamine and polyasparagine. Abnormal expansion of the polyA repeat is linked to at least nine human diseases, and the disease mechanism likely involves enhanced length-dependent aggregation. Because of the simplicity of its side chain, polyA has been a favorite target of computational studies, and because of their tendency to fold into α-helix, peptides containing polyA-rich domains have been a popular experimental subject. However, experimental studies on uninterrupted polyA are very limited. We synthesized polyA peptides containing uninterrupted sequences of 7 to 25 alanines (A7 to A25) and characterized their length-dependent conformation and aggregation properties. The peptides were primarily disordered, with a modest component of α-helix that increased with increasing length. From measurements of mean distance spanned by the polyA segment, we concluded that physiological buffers are neutral solvents for shorter polyA peptides and poor solvents for longer peptides. At moderate concentration and near-physiological temperature, polyA assembled into soluble oligomers, with a sharp transition in oligomer physical properties between A19 and A25. With A19, oligomers were large, contained only a small fraction of the total peptide mass, and slowly grew into loose clusters, while A25 rapidly and completely assembled into small stable oligomers of ~7 nm radius. At high temperatures, A19 assembled into fibrils, but A25 precipitated as dense, micrometer-sized particles. A comparison of these results to those obtained with polyglutamine peptides of similar design sheds light on the role of the side chain in regulating conformation and aggregation.
Collapse
Affiliation(s)
- Joseph P Bernacki
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
18
|
Mankodi A, Wheeler TM, Shetty R, Salceies KM, Becher MW, Thornton CA. Progressive myopathy in an inducible mouse model of oculopharyngeal muscular dystrophy. Neurobiol Dis 2011; 45:539-46. [PMID: 21964252 DOI: 10.1016/j.nbd.2011.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/04/2011] [Accepted: 09/13/2011] [Indexed: 01/23/2023] Open
Abstract
The genetic basis of oculopharyngeal muscular dystrophy (OPMD) is a short expansion of a polyalanine tract (normal allele: 10 alanines, mutant allele: 11-17 alanines) in the nuclear polyadenylate binding protein PABPN1 which is essential for controlling poly(A) tail length in messenger RNA. Mutant PABPN1 forms nuclear inclusions in OPMD muscle. To investigate the pathogenic role of mutant PABPN1 in vivo, we generated a ligand-inducible transgenic mouse model by using the mifepristone-inducible gene expression system. Induction of ubiquitous expression of mutant PABPN1 resulted in skeletal and cardiac myopathy. Histological changes of degenerative myopathy were preceded by nuclear inclusions of insoluble PABPN1. Downregulation of mutant PABPN1 expression attenuated the myopathy and reduced the nuclear burden of insoluble PABPN1. These results support association between mutant PABPN1 accumulation and degenerative myopathy in mice. Resolution of myopathy in mice suggests that the disease process in OPMD patients may be treatable.
Collapse
Affiliation(s)
- Ami Mankodi
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14620, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Di Zanni E, Ceccherini I, Bachetti T. Toward a therapeutic strategy for polyalanine expansions disorders: in vivo and in vitro models for drugs analysis. Eur J Paediatr Neurol 2011; 15:449-52. [PMID: 21388845 DOI: 10.1016/j.ejpn.2011.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/05/2011] [Indexed: 11/26/2022]
Abstract
Molecular pathogenesis of congenital disorders associated with polyalanine expansions has been investigated for several years. Despite different pathological hallmarks characterize each polyalanine disease, they share common features, mainly represented by aggregates containing the mutant proteins, usually mislocated inside the cellular compartments, along with ubiquitin and proteasome components. Recently, particular interest has been raised by investigations on molecules able to restore both correct localization and function of the expanded proteins. Here we report a list of drugs whose effects have been assayed both in in vitro and in vivo models of polyalanine disorders, such as the oculopharyingeal muscular dystrophy, congenital central hypoventilation syndrome, synpolydactyly and in cell and animal models carrying specific artificial mutations. In particular, we have reviewed, for each polyalanine mutant protein, the molecules tested, cellular models under investigation, drugs effects on aggregation and underlying mechanisms.
Collapse
Affiliation(s)
- Eleonora Di Zanni
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, Genova, Italy
| | | | | |
Collapse
|
20
|
Modeling oculopharyngeal muscular dystrophy in myotube cultures reveals reduced accumulation of soluble mutant PABPN1 protein. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1988-2000. [PMID: 21854744 DOI: 10.1016/j.ajpath.2011.06.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 12/17/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disease caused by an alanine tract expansion mutation in poly(A) binding protein nuclear 1 (expPABPN1). To model OPMD in a myogenic and physiological context, we generated mouse myoblast cell clones stably expressing either human wild type (WT) or expPABPN1 at low levels. Transgene expression is induced on myotube differentiation and results in formation of insoluble nuclear PABPN1 aggregates that are similar to those observed in patients with OPMD. Quantitative analysis of PABPN1 in myotube cultures revealed that expPABPN1 accumulation and aggregation is greater than that of the WT protein. We found that aggregation of expPABPN1 is more affected than WT PABPN1 by inhibition of proteasome activity. Consistent with this, in myotube cultures expressing expPABPN1, deregulation of the proteasome was identified as the most significantly perturbed pathway. Differences in the accumulation of soluble WT and expPABPN1 were consistent with differences in ubiquitination and rate of protein turnover. This study demonstrates, for the first time to our knowledge, that, in myotubes, the ratio of soluble/insoluble expPABPN1 is significantly lower compared with that of the WT protein. We suggest that this difference can contribute to muscle weakness in OPMD.
Collapse
|
21
|
Affiliation(s)
- Bernard Brais
- Laboratory of Neurogenetics of Motion, Faculté de Médecine de l'Université de Montréal, Centre de Recherche cu CHUM, Hôpital Notre-Dame-CHUM, Montréal, Québec, Canada.
| |
Collapse
|
22
|
Davies JE, Rose C, Sarkar S, Rubinsztein DC. Cystamine suppresses polyalanine toxicity in a mouse model of oculopharyngeal muscular dystrophy. Sci Transl Med 2010; 2:34ra40. [PMID: 20519718 DOI: 10.1126/scitranslmed.3000723] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is caused by a trinucleotide repeat expansion mutation in the coding region of the gene encoding PABPN1 (polyadenylate-binding protein nuclear 1). Mutant PABPN1 with a polyalanine tract expansion forms aggregates within the nuclei of skeletal muscle fibers. There is currently no effective treatment. We have developed cell and mouse models of OPMD and have identified the aggregation of mutant PABPN1 and apoptosis as therapeutic targets. Here, we show that transglutaminase activity is increased in muscle from OPMD model mice. Elevated transglutaminase 2 expression enhances, whereas TG2 knockdown suppresses, the toxicity and aggregation of mutant PABPN1 in cells. Cystamine protects against the toxicity of mutant PABPN1 and exerts its effect via the inhibition of transglutaminase 2, as cystamine treatment is unable to further reduce the protective effect of transglutaminase 2 knockdown on mutant PABPN1 toxicity in cells. Cystamine also reduces the aggregation and toxicity of mutant PABPN1 in human cells. In a mouse model of OPMD, cystamine treatment reduced the elevated transglutaminase activity, attenuated muscle weakness, reduced aggregate load, and decreased apoptotic markers in muscle. Therefore, inhibitors of transglutaminase 2 should be considered as possible therapeutics for OPMD.
Collapse
Affiliation(s)
- Janet E Davies
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | |
Collapse
|
23
|
Impagliazzo A, Tepper AW, Verrips TC, Ubbink M, van der Maarel SM. Structural basis for a PABPN1 aggregation-preventing antibody fragment in OPMD. FEBS Lett 2010; 584:1558-64. [DOI: 10.1016/j.febslet.2010.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022]
|
24
|
Trollet C, Anvar SY, Venema A, Hargreaves IP, Foster K, Vignaud A, Ferry A, Negroni E, Hourde C, Baraibar MA, 't Hoen PAC, Davies JE, Rubinsztein DC, Heales SJ, Mouly V, van der Maarel SM, Butler-Browne G, Raz V, Dickson G. Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres. Hum Mol Genet 2010; 19:2191-207. [PMID: 20207626 DOI: 10.1093/hmg/ddq098] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)(8-13) expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.
Collapse
|
25
|
Kabashi E, Lin L, Tradewell ML, Dion PA, Bercier V, Bourgouin P, Rochefort D, Bel Hadj S, Durham HD, Vande Velde C, Rouleau GA, Drapeau P. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 2009; 19:671-83. [PMID: 19959528 DOI: 10.1093/hmg/ddp534] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TDP-43 has been found in inclusion bodies of multiple neurological disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson's disease and Alzheimer's disease. Mutations in the TDP-43 encoding gene, TARDBP, have been subsequently reported in sporadic and familial ALS patients. In order to investigate the pathogenic nature of these mutants, the effects of three consistently reported TARDBP mutations (A315T, G348C and A382T) were tested in cell lines, primary cultured motor neurons and living zebrafish embryos. Each of the three mutants and wild-type (WT) human TDP-43 localized to nuclei when expressed in COS1 and Neuro2A cells by transient transfection. However, when expressed in motor neurons from dissociated spinal cord cultures these mutant TARDBP alleles, but less so for WT TARDBP, were neurotoxic, concomitant with perinuclear localization and aggregation of TDP-43. Finally, overexpression of mutant, but less so of WT, human TARDBP caused a motor phenotype in zebrafish (Danio rerio) embryos consisting of shorter motor neuronal axons, premature and excessive branching as well as swimming deficits. Interestingly, knock-down of zebrafisfh tardbp led to a similar phenotype, which was rescued by co-expressing WT but not mutant human TARDBP. Together these approaches showed that TARDBP mutations cause motor neuron defects and toxicity, suggesting that both a toxic gain of function as well as a novel loss of function may be involved in the molecular mechanism by which mutant TDP-43 contributes to disease pathogenesis.
Collapse
Affiliation(s)
- Edor Kabashi
- Centre of Excellence in Neuromics, Department of Medicine, Université de Montré al,Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Messaed C, Rouleau G. Molecular mechanisms underlying polyalanine diseases. Neurobiol Dis 2009; 34:397-405. [DOI: 10.1016/j.nbd.2009.02.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022] Open
|
27
|
Chartier A, Raz V, Sterrenburg E, Verrips CT, van der Maarel SM, Simonelig M. Prevention of oculopharyngeal muscular dystrophy by muscular expression of Llama single-chain intrabodies in vivo. Hum Mol Genet 2009; 18:1849-59. [DOI: 10.1093/hmg/ddp101] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
28
|
Abstract
It has been 10 years since the identification of the first PABPN1 gene (GCN)(n)/polyalanine mutations responsible for oculopharyngeal muscular dystrophy (OPMD). These mutations have been found in most cases of OPMD diagnosed in more than 35 countries. Sequence analyses have shown that such mutations have occurred numerous times in human history. Although PABPN1 was found early on to be a component of the classic filamentous intranuclear inclusions (INIs), mRNA and other proteins also have been found to coaggregate in the INIs. It is still unclear if the INIs play a pathologic or a protective role. The generation of numerous cell and animal models of OPMD has led to greater insight into its complex molecular pathophysiology and identified the first candidate therapeutic molecules. This paper reviews basic and clinical research on OPMD, with special emphasis on recent developments in the understanding of its pathophysiology.
Collapse
|
29
|
Structural basis for RNA recognition by a type II poly(A)-binding protein. Proc Natl Acad Sci U S A 2008; 105:15317-22. [PMID: 18824697 DOI: 10.1073/pnas.0801274105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identified a functional domain (XlePABP2-TRP) of Xenopus laevis embryonic type II poly(A)-binding protein (XlePABP2). The NMR structure of XlePABP2-TRP revealed that the protein is a homodimer formed by the antiparallel association of beta-strands from the single RNA recognition motif (RRM) domain of each subunit. In each subunit of the homodimer, the canonical RNA recognition site is occluded by a polyproline motif. Upon poly(A) binding, XlePABP2-TRP undergoes a dimer-monomer transition that removes the polyproline motif from the RNA recognition site and allows it to be replaced by the adenosine nucleotides of poly(A). Our results provide high-resolution structural information concerning type II PABPs and an example of a single RRM domain protein that transitions from a homodimer to a monomer upon RNA binding. These findings advance our understanding of RRM domain regulation, poly(A) recognition, and are relevant to understanding how type II PABPs function in mRNA processing and human disease.
Collapse
|
30
|
Sirtuin inhibition protects from the polyalanine muscular dystrophy protein PABPN1. Hum Mol Genet 2008; 17:2108-17. [DOI: 10.1093/hmg/ddn109] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Villagra NT, Bengoechea R, Vaqué JP, Llorca J, Berciano MT, Lafarga M. Nuclear compartmentalization and dynamics of the poly(A)-binding protein nuclear 1 (PABPN1) inclusions in supraoptic neurons under physiological and osmotic stress conditions. Mol Cell Neurosci 2008; 37:622-33. [DOI: 10.1016/j.mcn.2007.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/14/2007] [Accepted: 12/06/2007] [Indexed: 11/26/2022] Open
|
32
|
Klein AF, Ebihara M, Alexander C, Dicaire MJ, Sasseville AMJ, Langelier Y, Rouleau GA, Brais B. PABPN1 polyalanine tract deletion and long expansions modify its aggregation pattern and expression. Exp Cell Res 2008; 314:1652-66. [PMID: 18367172 DOI: 10.1016/j.yexcr.2008.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 02/07/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Expansions of a (GCN)10/polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) cause autosomal dominant oculopharyngeal muscular dystrophy (OPMD). In OPMD muscles, as in models, PABPN1 accumulates in intranuclear inclusions (INIs) whereas in other diseases caused by similar polyalanine expansions, the mutated proteins have been shown to abnormally accumulate in the cytoplasm. This study presents the impact on the subcellular localization of PABPN1 produced by large expansions or deletion of its polyalanine tract. Large tracts of more than 24 alanines result in the nuclear accumulation of PABPN1 in SFRS2-positive functional speckles and a significant decline in cell survival. These large expansions do not cause INIs formation nor do they lead to cytoplasmic accumulation. Deletion of the polyalanine tract induces the formation of aggregates that are located on either side and cross the nuclear membrane, highlighting the possible role of the N-terminal polyalanine tract in PABPN1 nucleo-cytoplasmic transport. We also show that even though five other proteins with polyalanine tracts tend to aggregate when over-expressed they do not co-aggregate with PABPN1 INIs. This study presents the first experimental evidence that there may be a relative loss of function in OPMD by decreasing the availability of PABPN1 through an INI-independent mechanism.
Collapse
Affiliation(s)
- Arnaud F Klein
- Laboratory of neurogenetics of motion, Centre d'excellence en neuromique de l'Université de Montréal, CRCHUM, Université de Montréal, Montréal, Canada
| | | | | | | | | | | | | | | |
Collapse
|