1
|
Liu K, Song M, Gao S, Yao L, Zhang L, Feng J, Wang L, Gao R, Wang Y. The Dynamics of Dopamine D 2 Receptor-Expressing Striatal Neurons and the Downstream Circuit Underlying L-Dopa-Induced Dyskinesia in Rats. Neurosci Bull 2023; 39:1411-1425. [PMID: 37022638 PMCID: PMC10465438 DOI: 10.1007/s12264-023-01054-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 04/07/2023] Open
Abstract
L-dopa (l-3,4-dihydroxyphenylalanine)-induced dyskinesia (LID) is a debilitating complication of dopamine replacement therapy for Parkinson's disease. The potential contribution of striatal D2 receptor (D2R)-positive neurons and downstream circuits in the pathophysiology of LID remains unclear. In this study, we investigated the role of striatal D2R+ neurons and downstream globus pallidus externa (GPe) neurons in a rat model of LID. Intrastriatal administration of raclopride, a D2R antagonist, significantly inhibited dyskinetic behavior, while intrastriatal administration of pramipexole, a D2-like receptor agonist, yielded aggravation of dyskinesia in LID rats. Fiber photometry revealed the overinhibition of striatal D2R+ neurons and hyperactivity of downstream GPe neurons during the dyskinetic phase of LID rats. In contrast, the striatal D2R+ neurons showed intermittent synchronized overactivity in the decay phase of dyskinesia. Consistent with the above findings, optogenetic activation of striatal D2R+ neurons or their projections in the GPe was adequate to suppress most of the dyskinetic behaviors of LID rats. Our data demonstrate that the aberrant activity of striatal D2R+ neurons and downstream GPe neurons is a decisive mechanism mediating dyskinetic symptoms in LID rats.
Collapse
Affiliation(s)
- Kuncheng Liu
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
- Department of Clinical Medicine, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Miaomiao Song
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Shasha Gao
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Lu Yao
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Jie Feng
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Ling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710004, China
| | - Rui Gao
- Department of Medical Imaging and Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Yong Wang
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
2
|
Viaro R, Longo F, Vincenzi F, Varani K, Morari M. l-DOPA promotes striatal dopamine release through D1 receptors and reversal of dopamine transporter. Brain Res 2021; 1768:147583. [PMID: 34284020 DOI: 10.1016/j.brainres.2021.147583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
Previous studies have pointed out that l-DOPA can interact with D1 or D2 receptors independent of its conversion to endogenous dopamine. The present study was set to investigate whether l-DOPA modulates dopamine release from striatal nerve terminals, using a preparation of synaptosomes preloaded with [3H]DA. Levodopa (1 µM) doubled the K+-induced [3H]DA release whereas the D2/D3 receptor agonist pramipexole (100 nM) inhibited it. The l-DOPA-evoked facilitation was mimicked by the D1 receptor agonist SKF38393 (30-300 nM) and prevented by the D1/D5 antagonist SCH23390 (100 nM) but not the DA transporter inhibitor GBR12783 (300 nM) or the aromatic l-amino acid decarboxylase inhibitor benserazide (1 µM). Higher l-DOPA concentrations (10 and 100 µM) elevated spontaneous [3H]DA efflux. This effect was counteracted by GBR12783 but not SCH23390. Binding of [3H]SCH23390 in synaptosomes (in test tubes) revealed a dense population of D1 receptors (2105 fmol/mg protein). Both SCH23390 and SKF38393 fully inhibited [3H]SCH23390 binding (Ki 0.42 nM and 29 nM, respectively). l-DOPA displaced [3H]SCH23390 binding maximally by 44% at 1 mM. This effect was halved by addition of GBR12935 and benserazide. We conclude that l-DOPA facilitates exocytotic [3H]DA release through SCH23390-sensitive D1 receptors, independent of its conversion to DA. It also promotes non-exocytotic [3H]DA release, possibly via conversion to DA and reversal of DA transporter. These data confirm that l-DOPA can directly interact with dopamine D1 receptors and might extend our knowledge of the neurobiological mechanisms underlying l-DOPA clinical effects.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - Francesco Longo
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| |
Collapse
|
3
|
Dopamine receptor cooperativity synergistically drives dyskinesia, motor behavior, and striatal GABA neurotransmission in hemiparkinsonian rats. Neuropharmacology 2020; 174:108138. [DOI: 10.1016/j.neuropharm.2020.108138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
|
4
|
Soyal SM, Zara G, Ferger B, Felder TK, Kwik M, Nofziger C, Dossena S, Schwienbacher C, Hicks AA, Pramstaller PP, Paulmichl M, Weis S, Patsch W. The PPARGC1A locus and CNS-specific PGC-1α isoforms are associated with Parkinson's Disease. Neurobiol Dis 2019; 121:34-46. [DOI: 10.1016/j.nbd.2018.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/14/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
|
5
|
Cassano T, Lopalco A, de Candia M, Laquintana V, Lopedota A, Cutrignelli A, Perrone M, Iacobazzi RM, Bedse G, Franco M, Denora N, Altomare CD. Oxazepam-Dopamine Conjugates Increase Dopamine Delivery into Striatum of Intact Rats. Mol Pharm 2017; 14:3178-3187. [PMID: 28780872 DOI: 10.1021/acs.molpharmaceut.7b00405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurotransmitter dopamine (DA) was covalently linked to oxazepam (OXA), a well-known positive allosteric modulator of γ-aminobutyric acid type-A (GABAA) receptor, through a carbamate linkage (4) or a succinic spacer (6). These conjugates were synthesized with the aim of improving the delivery of DA into the brain and enhancing GABAergic transmission, which may be useful for the long-term treatment of Parkinson disease (PD). Structure-based permeability properties, in vitro stability, and blood-brain barrier (BBB) permeability studies led to identify the OXA-DA carbamate conjugate 4a as the compound better combining sufficient stability and ability to cross BBB. Finally, in vivo microdialysis experiments in freely moving rats demonstrated that 4a (20 mg/kg, i.p.) significantly increases extracellular DA levels into striatum, with a peak (more than 15-fold increase over the baseline) at about 80 min after a single administration. The stability and delivery data proved that 4a may be a promising candidate for further pharmacological studies in animal models of PD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia 71100, Italy
| | - Antonio Lopalco
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Valentino Laquintana
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Angela Lopedota
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Mara Perrone
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Rosa M Iacobazzi
- Istituto tumori IRCCS "Giovanni Paolo II" , Flacco, St. 65, 70124 Bari, Italy
| | - Gaurav Bedse
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , 00185 Rome, Italy.,Department of Psychiatry, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Massimo Franco
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| |
Collapse
|
6
|
Contrasting effects of selective MAGL and FAAH inhibition on dopamine depletion and GDNF expression in a chronic MPTP mouse model of Parkinson's disease. Neurochem Int 2017; 110:14-24. [PMID: 28826718 DOI: 10.1016/j.neuint.2017.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 01/07/2023]
Abstract
The modulation of the brain endocannabinoid system has been identified as an option to treat neurodegenerative diseases including Parkinson's disease (PD). Especially the elevation of endocannabinoid levels by inhibition of hydrolytic degradation represents a valuable approach. To evaluate whether monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH) inhibition could be beneficial for PD, we examined in parallel the therapeutic potential of the highly selective MAGL inhibitor KML29 elevating 2-arachidonoylglyerol (2-AG) levels and the highly selective FAAH inhibitor PF-3845 elevating anandamide (AEA) levels in a chronic methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/probenecid) mouse model of PD. Chronic administration of KML29 (10 mg/kg) but not PF-3845 (10 mg/kg) attenuated striatal MPTP/probenecid-induced dopamine depletion. Furthermore, KML29 induced an increase in Gdnf but not Bdnf expression, whereas PF-3845 decreased the MPTP/probenecid-induced Cnr2 expression without any effects on neurotrophin expression. Investigation of treatment-naïve striatal mRNA levels revealed a high presence of Gdnf and Mgll in contrast to Bdnf and Faah. Treatment of primary mouse microglia with 2-AG increased Gdnf but not Bdnf expression, suggesting that microglia might mediate the observed KML29-induced increase in Gdnf. In summary, pharmacological MAGL but not FAAH inhibition in the chronic MPTP/probenecid model attenuated the MPTP/probenecid-induced effects on striatal dopamine levels which were accompanied by an increase in 2-AG levels.
Collapse
|
7
|
Pasquarelli N, Voehringer P, Henke J, Ferger B. Effect of a change in housing conditions on body weight, behavior and brain neurotransmitters in male C57BL/6J mice. Behav Brain Res 2017. [PMID: 28625548 DOI: 10.1016/j.bbr.2017.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The development of modern housing regimes such as individually ventilated cage (IVC) systems has become very popular and attractive in order to reduce spreading of pathogenic organisms and to lower the risk to develop a laboratory animal allergy for staff members. Additionally, optimal housing of laboratory animals contributes to improve animal health status and ensures high and comparable experimental and animal welfare standards. However, it has not been clearly elucidated whether 1) a change to IVC systems have an impact on various physiological phenotypic parameters of mice when compared to conventional, standard cages and 2) if this is further affected by changing from social to single housing. Therefore, we investigated the influence of a change in housing conditions (standard cages with social housing changed to standard or IVC cages combined with social or single housing) on body weight, behavior and a neurochemical fingerprint of male C57BL/6J mice. Body weight progression was significantly reduced when changing mice to single or social IVC cages as well as in single standard cages when compared to social standard housing. Automated motor activity measurement in the open field showed that mice maintained in social husbandry with standard cages displayed the lowest exploratory behavior but the highest activity difference upon amphetamine treatment. Elevated plus maze test revealed that a change to IVC single and social housing as well as single standard housing produced anxiety-related behavior when compared to maintenance in social standard housing. Additionally, postmortem neurochemical analysis of the striatum using high-performance liquid chromatography coupled to electrochemical detection showed significant differences in striatal dopamine and serotonin turnover levels. In summary, our data indicate a crucial influence of a change in housing conditions on several mouse phenotype parameters. We propose that the maintenance of well-defined housing conditions is mandatory to ensure reproducible and comparable results and contributes to the application of the 3R refinement principle in animal studies by contributing to welfare and hygienical standards.
Collapse
Affiliation(s)
- Noemi Pasquarelli
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany; Department of Experimental Neurology, Ulm University, 89081 Ulm, Germany
| | - Patrizia Voehringer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany
| | - Julia Henke
- Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany
| | - Boris Ferger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany.
| |
Collapse
|
8
|
Abstract
Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson's disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine-lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres.
Collapse
|
9
|
Bortolanza M, Padovan-Neto FE, Cavalcanti-Kiwiatkoski R, Dos Santos-Pereira M, Mitkovski M, Raisman-Vozari R, Del-Bel E. Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson's disease induced by L-DOPA? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0190. [PMID: 26009769 DOI: 10.1098/rstb.2014.0190] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inflammatory mechanisms are proposed to play a role in L-DOPA-induced dyskinesia. Cyclooxygenase-2 (COX2) contributes to inflammation pathways in the periphery and is constitutively expressed in the central nervous system. Considering that inhibition of nitric oxide (NO) formation attenuates L-DOPA-induced dyskinesia, this study aimed at investigating if a NO synthase (NOS) inhibitor would change COX2 brain expression in animals with L-DOPA-induced dyskinesia. To this aim, male Wistar rats received unilateral 6-hydroxydopamine microinjection into the medial forebrain bundle were treated daily with L-DOPA (21 days) combined with 7-nitroindazole or vehicle. All hemi-Parkinsonian rats receiving l-DOPA showed dyskinesia. They also presented increased neuronal COX2 immunoreactivity in the dopamine-depleted dorsal striatum that was directly correlated with dyskinesia severity. Striatal COX2 co-localized with choline-acetyltransferase, calbindin and DARPP-32 (dopamine-cAMP-regulated phosphoprotein-32), neuronal markers of GABAergic neurons. NOS inhibition prevented L-DOPA-induced dyskinesia and COX2 increased expression in the dorsal striatum. These results suggest that increased COX2 expression after L-DOPA long-term treatment in Parkinsonian-like rats could contribute to the development of dyskinesia.
Collapse
Affiliation(s)
- Mariza Bortolanza
- School of Odontology of Ribeirão Preto, Department of Morphology, University of São Paulo (USP), Physiology and Basic Pathology, Av. Café S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil
| | - Fernando E Padovan-Neto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Department of Behavioural Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Roberta Cavalcanti-Kiwiatkoski
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| | - Maurício Dos Santos-Pereira
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Rita Raisman-Vozari
- Institut de Cerveau et de la Moelle Epinière, Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Paris, France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto, Department of Morphology, University of São Paulo (USP), Physiology and Basic Pathology, Av. Café S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Department of Behavioural Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Wiesner D, Sinniger J, Henriques A, Dieterlé S, Müller HP, Rasche V, Ferger B, Dirrig-Grosch S, Soylu-Kucharz R, Petersén A, Walther P, Linkus B, Kassubek J, Wong PC, Ludolph AC, Dupuis L. Low dietary protein content alleviates motor symptoms in mice with mutant dynactin/dynein-mediated neurodegeneration. Hum Mol Genet 2014; 24:2228-40. [PMID: 25552654 DOI: 10.1093/hmg/ddu741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mutations in components of the molecular motor dynein/dynactin lead to neurodegenerative diseases of the motor system or atypical parkinsonism. These mutations are associated with prominent accumulation of vesicles involved in autophagy and lysosomal pathways, and with protein inclusions. Whether alleviating these defects would affect motor symptoms remain unknown. Here, we show that a mouse model expressing low levels of disease linked-G59S mutant dynactin p150(Glued) develops motor dysfunction >8 months before loss of motor neurons or dopaminergic degeneration is observed. Abnormal accumulation of autophagosomes and protein inclusions were efficiently corrected by lowering dietary protein content, and this was associated with transcriptional upregulations of key players in autophagy. Most importantly this dietary modification partially rescued overall neurological symptoms in these mice after onset. Similar observations were made in another mouse strain carrying a point mutation in the dynein heavy chain gene. Collectively, our data suggest that stimulating the autophagy/lysosomal system through appropriate nutritional intervention has significant beneficial effects on motor symptoms of dynein/dynactin diseases even after symptom onset.
Collapse
Affiliation(s)
| | - Jérome Sinniger
- Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg F-67085, France, Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France
| | - Alexandre Henriques
- Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg F-67085, France, Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France
| | - Stéphane Dieterlé
- Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg F-67085, France, Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France
| | | | | | - Boris Ferger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Sylvie Dirrig-Grosch
- Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg F-67085, France, Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France
| | - Rana Soylu-Kucharz
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, 22184 Lund, Sweden and
| | - Asa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, 22184 Lund, Sweden and
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | | | | | - Philip C Wong
- Department of Pathology and Neuroscience and Division of Neuropathology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Luc Dupuis
- Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg F-67085, France, Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France,
| |
Collapse
|
11
|
Wang Y, Chen X, Wang T, Sun YN, Han LN, Li LB, Zhang L, Wu ZH, Huang C, Liu J. Additional noradrenergic depletion aggravates forelimb akinesia and abnormal subthalamic nucleus activity in a rat model of Parkinson's disease. Life Sci 2014; 119:18-27. [PMID: 25445222 DOI: 10.1016/j.lfs.2014.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 11/25/2022]
Abstract
AIMS This study aims to identify the contribution of additional noradrenergic depletion to forelimb akinesia and abnormal subthalamic nucleus (STN) firing activity in Parkinson's disease (PD). MAIN METHODS Forelimb akinesia behaviors were tested in awake rats with noradrenergic N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) lesions, unilateral 6-hydroxydopamine (6-OHDA) lesions in the substantia nigra pars compacta (SNc) and with combined 6-OHDA and DSP-4 lesions. STN extracellular single-unit and local field potential (LFP) activities were examined in the animals that were anesthetized with urethane. KEY FINDINGS The adjusting steps and the contralateral touches of rats in the forelimb akinesia behavior tests were markedly inhibited by a further noradrenergic lesion with DSP-4 in 6-OHDA+DSP-4-lesioned group when compared with those of 6-OHDA-lesioned animals (P<0.05 for all comparisons). Meanwhile, the neuronal firing pattern of STN also changed significantly towards more bursty in 6-OHDA + DSP-4-lesioned group (P <0 .05). Compared with 6-OHDA-lesioned animals, an additional noradrenergic lesion increased the 0.3-2.5 Hz oscillatory activity and the spike power of STN neurons (P < 0.01 for both comparisons), and strengthened the synchronized oscillation between subthalamic neuronal firing and LFP activity in 6-OHDA + DSP-4-lesioned group (P < 0.01). SIGNIFICANCE The results provide evidence to support the correlation between noradrenergic depletion and the further exaggerated dysfunction of STN electrical activity in PD and suggest that an aberrant noradrenergic system might play a specific role in the motor deficits of PD.
Collapse
Affiliation(s)
- Yong Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiang Chen
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Na Sun
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ling Na Han
- The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China
| | - Li Bo Li
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhong Heng Wu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chen Huang
- The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
12
|
Substantial telomere shortening in the substantia nigra of telomerase-deficient mice does not increase susceptibility to MPTP-induced dopamine depletion. Neuroreport 2014; 25:335-9. [PMID: 24525820 DOI: 10.1097/wnr.0000000000000099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The most important risk factor for developing Parkinson's disease (PD) is age. Aging is ascribed to different mechanisms, including telomere shortening. Telomeres consist of repetitive DNA sequences and stabilize chromosome integrity. Currently, however, the data reported on telomere shortening in PD patients are inconsistent. We investigated the effect of telomere shortening in the MPTP mouse model of PD using late-generation telomerase-deficient mice (G3 Terc mice). G3 Terc mice showed a reduction in telomere length in nigral tyrosine hydroxylase-positive neurons by 40%, as indicated by quantitative fluorescence in-situ hybridization. There was no difference in the total motor activity and striatal tissue concentrations of dopamine, DOPAC (3,4-dihydroxyphenylacetic acid), HVA (4-hydroxy-3-methoxyphenylacetic acid), and 3-MT (3-methoxytyramine) concentrations or dopamine turnover in G3 Terc mice in comparison with controls without MPTP treatment. Low-dose MPTP treatment (four injections, 2 h intervals, 2 × 5 and 2 × 7.5 mg/kg) led to a significant decrease in striatal dopamine concentrations that did not differ in G3 Terc mice compared with control mice (19.15 ± 0.44 to 12.81 ± 1.26 ng/mg in control mice in comparison with 19.51 ± 0.59 to 13.56 ± 1.10 ng/mg in G3 Terc mice). In conclusion, telomere shortening does not increase susceptibility to MPTP-induced dopamine depletion in mice. These data indicate that other age-related mechanisms in the brain may play a more important role in enhancing MPTP-induced dopamine depletion.
Collapse
|
13
|
Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, da-Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel E. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease. Neurobiol Dis 2014; 73:377-87. [PMID: 25447229 DOI: 10.1016/j.nbd.2014.10.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease.
Collapse
Affiliation(s)
- Mariza Bortolanza
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Roberta Cavalcanti-Kiwiatkoski
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Fernando E Padovan-Neto
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Department of Behavioral Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Miso Mitkovski
- Light Microscopy Facility Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Rita Raisman-Vozari
- Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Department of Behavioral Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Wang Y, Wang HS, Wang T, Huang C, Liu J. L-DOPA-induced dyskinesia in a rat model of Parkinson's disease is associated with the fluctuational release of norepinephrine in the sensorimotor striatum. J Neurosci Res 2014; 92:1733-45. [PMID: 24975553 DOI: 10.1002/jnr.23439] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 11/05/2022]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) is the most common complication of standard L-DOPA therapy for Parkinson's disease experienced by most parkinsonian patients. LID is associated with disruption of dopaminergic homeostasis in basal ganglia following L-DOPA administration. Norepinephrine (NE) is another important catecholaminergic neurotransmitter that is also believed to be involved in the pathogenesis of LID. This study compared NE release in the ipsilateral sensorimotor striatum of dyskinetic and nondyskinetic 6-hydroxydopamine-lesioned hemiparkinsonian rats treated chronically with L-DOPA. After L-DOPA injection, the time-course curves of NE levels in the sensorimotor striatum were significantly different between dyskinetic and nondyskinetic rats. Several metabolic kinetic parameters of NE levels were also differentially expressed between the two groups. In comparison with nondyskinetic rats, the ΔCmax of NE was significantly higher in dyskinetic rats, whereas Tmax and t1/2 of NE were significantly shorter. Intrastriatal perfusion of NE into the lesioned sensorimotor striatum revealed a moderate dyskinesia in dyskinetic rats, which was similar to the dyskinetic behavior after L-DOPA administration. The L-DOPA-related dyskinetic behavior was inhibited significantly by a further pretreatment of noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine or intrastriatal administration of the α2 -adrenoceptor antagonist idazoxan, accompanied by significant changes in metabolic kinetic parameters of NE in the sensorimotor striatum. The results provide evidence to support the correlation between abnormal NE neurotransmission and the induction of LID and suggest that the aberrant change of the quantitative and temporal releasing of NE in the sensorimotor striatum might play an important role in the pathogenesis of LID.
Collapse
Affiliation(s)
- Yong Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
15
|
Porras G, De Deurwaerdere P, Li Q, Marti M, Morgenstern R, Sohr R, Bezard E, Morari M, Meissner WG. L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Sci Rep 2014; 4:3730. [PMID: 24429495 PMCID: PMC3893648 DOI: 10.1038/srep03730] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/20/2013] [Indexed: 01/07/2023] Open
Abstract
L-dopa remains the mainstay treatment for Parkinson's disease (PD), although in later stages, treatment is complicated by L-dopa-induced dyskinesias (LID). Current evidence links LID to excessive striatal L-dopa-derived dopamine (DA) release, while the possibility of a direct involvement of L-dopa itself in LID has been largely ignored. Here we show that L-dopa can alter basal ganglia activity and produce LID without enhancing striatal DA release in parkinsonian non-human primates. These data may have therapeutic implications for the management of advanced PD since they suggest that LID could result from diverse mechanisms of action of L-dopa.
Collapse
Affiliation(s)
- Gregory Porras
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Motac neuroscience, Manchester, UK
| | - Philippe De Deurwaerdere
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Qin Li
- 1] Motac neuroscience, Manchester, UK [2] Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Rudolf Morgenstern
- Institute of Pharmacology and Toxicology, Charité Campus Mitte, Humboldt University, 10117 Berlin, Germany
| | - Reinhard Sohr
- Institute of Pharmacology and Toxicology, Charité Campus Mitte, Humboldt University, 10117 Berlin, Germany
| | - Erwan Bezard
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Motac neuroscience, Manchester, UK [4] Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China [5] Service de Neurologie, Centre Expert Parkinson, CHU de Bordeaux, 33076 Bordeaux, France
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Wassilios G Meissner
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Service de Neurologie, Centre Expert Parkinson, CHU de Bordeaux, 33076 Bordeaux, France [4] Centre de référence AMS, CHU de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
16
|
Bastide MF, Dovero S, Charron G, Porras G, Gross CE, Fernagut PO, Bézard E. Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia. Neurobiol Dis 2013; 62:179-92. [PMID: 24103779 DOI: 10.1016/j.nbd.2013.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 09/27/2013] [Indexed: 01/20/2023] Open
Abstract
Long-term l-3,4-dihydroxyphenylalanine (l-DOPA) treatment in Parkinson's disease (PD) leads to l-DOPA-induced dyskinesia (LID), a condition thought to primarily involve the dopamine D1 receptor-expressing striatal medium spiny neurons. Activation of the D1 receptor results in increased expression of several molecular markers, in particular the members of the immediate-early gene (IEG) family, a class of genes rapidly transcribed in response to an external stimulus. However, several dopaminoceptive structures in the brain that are likely to be affected by the exogenously produced DA have received little attention although they might play a key role in mediating those l-DOPA-induced abnormal behaviours. ΔFosB, ARC, FRA2 and Zif268 IEGs expression patterns were thus characterised, using unbiased stereological methods, in the whole brain of dyskinetic and non-dyskinetic rats to identify brain nuclei displaying a transcriptional response specifically related to LID. Within the basal ganglia, the striatum and the substantia nigra pars reticulata showed an increased expression of all four IEGs in dyskinetic compared to non-dyskinetic rats. Outside the basal ganglia, there was a striking increased expression of the four IEGs in the motor cortex, the bed nucleus of the stria terminalis, the dorsal hippocampus, the pontine nuclei, the cuneiform nucleus and the pedunculopontine nuclei. Moreover, the zona incerta and the lateral habenula displayed an overexpression of ΔFosB, ARC and Zif268. Among these structures, the IEG expression in the striatum, the bed nucleus of the stria terminalis, the lateral habenula, the pontine nuclei and the cuneiform nucleus correlate with LID severity. These results illustrate a global transcriptional response to a dyskinetic state in the whole brain suggesting the possible involvement of these structures in LID.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sandra Dovero
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Giselle Charron
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Gregory Porras
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Christian E Gross
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
17
|
Cheng Z, Yang BQ, Yang MP, Zhang BL. Benzimidazolylacetate metal complexes as catalysts for carbonylation reactions. REACTION KINETICS MECHANISMS AND CATALYSIS 2013. [DOI: 10.1007/s11144-013-0610-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Astrocyte-specific IKK2 activation in mice is sufficient to induce neuroinflammation but does not increase susceptibility to MPTP. Neurobiol Dis 2012; 48:481-7. [PMID: 22750522 DOI: 10.1016/j.nbd.2012.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 12/21/2022] Open
Abstract
A key regulator of inflammatory gene expression is the transcription factor NF-κB that is controlled by the IκB proteins. We used a transgenic mouse model expressing a constitutively active IκB-kinase-2 (IKK2-CA) in astrocytes under control of the human glial fibrillary acidic protein promotor (IKK2-mice) to investigate neuroinflammation, proinflammatory cytokine expression, microglial activation and a potential enhanced susceptibility to the neurotoxin MPTP (4×10 mg/kg). Readouts included the determination of cytokines, striatal dopamine (DA), nigral tyrosine hydroxylase (TH) positive neurons, microglial activation and motor activity. IKK2-CA expression in astrocytes conditionally induced by the tet-off system resulted in a widespread neuroinflammation indicated by the increased expression of inflammatory cytokines and the presence of activated microglia and astrogliosis. Additionally, striatal DA concentrations but not nigral TH-positive neurons were reduced in IKK2-mice by 20%. Motor activity of IKK2-mice was not affected. Surprisingly, there was a similar reduction in striatal DA concentrations and the number of nigral TH-positive neurons in IKK2 and control mice after MPTP treatment. In conclusion, although naïve IKK2-mice showed reduced striatal DA concentrations and an increase in inflammatory markers in the brain, a higher susceptibility to MPTP was not observed. This finding argues against a prominent role of astrocyte specific, IKK2-mediated neuroinflammation in MPTP-induced neurodegeneration.
Collapse
|
19
|
Tsai TC, Guo CX, Han HZ, Li YT, Huang YZ, Li CM, Chen JJJ. Microelectrodes with gold nanoparticles and self-assembled monolayers for in vivo recording of striatal dopamine. Analyst 2012; 137:2813-20. [PMID: 22577657 DOI: 10.1039/c2an16306c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical determination of in vivo dopamine (DA) using implantable microelectrodes is essential for monitoring the DA depletion of an animal model of Parkinson's disease (PD), but faces substantial interference from ascorbic acid (AA) in the brain area due to similar electroactive characteristics. This study utilizes gold nanoparticles (Au-NPs) and self-assembled monolayers (SAMs) to modify platinum microelectrodes for improving sensitivity and specificity to DA and alleviating AA interference. With appropriate choice of ω-mercaptoalkane carboxylic acid chain length, our results show that a platinum microelectrode coated with Au-NPs and 3-mercaptopropionic acid (MPA) has approximately an 881-fold specificity to AA. During amperometric measurements, Au-NP/MPA reveals that the responsive current is linearly dependent on DA over the range of 0.01-5 μM with a correlation coefficient of 0.99 and the sensitivity is 2.7-fold that of a conventional Nafion-coated electrode. Other important features observed include fast response time (below 2 s), resistance to albumin adhesion and low detection limit (7 nM) at a signal to noise ratio of 3. Feasibility of in vivo DA recording with the modified microelectrodes is verified by real-time monitoring of electrically stimulated DA release in the striatum of anesthetized rats with various stimulation parameters and administration of a DA uptake inhibitor. The developed microelectrodes present an attractive alternative to the traditional options for continuous electrochemical in vivo DA monitoring.
Collapse
Affiliation(s)
- Tien-Chun Tsai
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Serotonergic involvement in levodopa-induced dyskinesias in Parkinson’s disease. J Clin Neurosci 2012; 19:343-8. [DOI: 10.1016/j.jocn.2011.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/29/2011] [Accepted: 09/29/2011] [Indexed: 12/17/2022]
|
21
|
King JM, Muthian G, Mackey V, Smith M, Charlton C. L-Dihydroxyphenylalanine modulates the steady-state expression of mouse striatal tyrosine hydroxylase, aromatic L-amino acid decarboxylase, dopamine and its metabolites in an MPTP mouse model of Parkinson's disease. Life Sci 2011; 89:638-43. [PMID: 21871902 DOI: 10.1016/j.lfs.2011.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/13/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
AIMS l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most effective symptomatic treatment for Parkinson's disease (PD), but PD patients usually experience a successful response to L-DOPA therapy followed by a progressive loss of response. L-DOPA efficacy relies on its decarboxylation by aromatic l-amino acid decarboxylase (AAAD) to form dopamine (DA). So exogenous L-DOPA drives the reaction and AAAD becomes the rate limiting enzyme in the supply of DA. In turn, exogenous L-DOPA regulates the expression and activity of AAAD as well as the synthesis of DA and its metabolites, changes that may be linked to the efficacy and side-effects of L-DOPA. MAIN METHODS One-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse PD model was utilized to study the effects of L-DOPA on the steady-state level and activity of AAAD, tyrosine hydroxylase (TH), DA and the metabolites of DA. The MPTP and control mice were treated twice daily with PBS or with 100mg/kg of L-DOPA for 14days and the expression and activity of AAAD, the expression of TH and the levels of DA and its metabolites were determined 24h after L-DOPA or PBS treatment, when exogenous L-DOPA is eliminated. KEY FINDINGS In the MPTP model, L-DOPA reduced the steady-state expression and the activity of striatal AAAD by 52% and 50%, respectively, DA and metabolites were also significantly decreased. SIGNIFICANCE The outcome shows that while L-DOPA replenishes striatal DA it also down-regulates AAAD and the steady-state synthesis and metabolic capability of the dopaminergic system. These findings are important in the precipitation of L-DOPA induced side effects and the management of L-DOPA therapy.
Collapse
Affiliation(s)
- Jennifer M King
- Department of Neuroscience and Pharmacology, 1005 Dr. D.B. Todd Jr. Blvd. Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | |
Collapse
|
22
|
Nevalainen N, Af Bjerkén S, Lundblad M, Gerhardt GA, Strömberg I. Dopamine release from serotonergic nerve fibers is reduced in L-DOPA-induced dyskinesia. J Neurochem 2011; 118:12-23. [PMID: 21534956 DOI: 10.1111/j.1471-4159.2011.07292.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
L-DOPA is the most commonly used treatment for symptomatic control in patients with Parkinson's disease. Unfortunately, most patients develop severe side-effects, such as dyskinesia, upon chronic l-DOPA treatment. The patophysiology of dyskinesia is unclear; however, involvement of serotonergic nerve fibers in converting l-DOPA to dopamine has been suggested. Therefore, potassium-evoked dopamine release was studied after local application of l-DOPA in the striata of normal, dopamine- and dopamine/serotonin-lesioned l-DOPA naïve, and dopamine-denervated chronically l-DOPA-treated dyskinetic rats using in vivo chronoamperometry. The results revealed that local l-DOPA administration into normal and intact hemisphere of dopamine-lesioned l-DOPA naïve animals significantly increased the potassium-evoked dopamine release. l-DOPA application also increased the dopamine peak amplitude in the dopamine-depleted l-DOPA naïve striatum, although these dopamine levels were several-folds lower than in the normal striatum, whereas no increased dopamine release was found in the dopamine/serotonin-denervated striatum. In dyskinetic animals, local l-DOPA application did not affect the dopamine release, resulting in significantly attenuated dopamine levels compared with those measured in l-DOPA naïve dopamine-denervated striatum. To conclude, l-DOPA is most likely converted to dopamine in serotonergic nerve fibers in the dopamine-depleted striatum, but the dopamine release is several-fold lower than in normal striatum. Furthermore, l-DOPA loading does not increase the dopamine release in dyskinetic animals as found in l-DOPA naïve animals, despite similar density of serotonergic innervation. Thus, the dopamine overflow produced from the serotonergic nerve fibers appears not to be the major cause of dyskinetic behavior.
Collapse
|
23
|
Buck K, Ferger B. l-DOPA-induced dyskinesia in Parkinson's disease: a drug discovery perspective. Drug Discov Today 2010; 15:867-75. [DOI: 10.1016/j.drudis.2010.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/28/2010] [Accepted: 08/20/2010] [Indexed: 12/26/2022]
|
24
|
Locomotor response to L-DOPA in reserpine-treated rats following central inhibition of aromatic L-amino acid decarboxylase: further evidence for non-dopaminergic actions of L-DOPA and its metabolites. Neurosci Res 2010; 68:44-50. [PMID: 20542064 DOI: 10.1016/j.neures.2010.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 11/22/2022]
Abstract
L-DOPA is the most widely used treatment for Parkinson's disease. The anti-parkinsonian and pro-dyskinetic actions of L-DOPA are widely attributed to its conversion, by the enzyme aromatic L-amino acid decarboxylase (AADC), to dopamine. We investigated the hypothesis that exogenous L-DOPA can induce behavioural effects without being converted to dopamine in the reserpine-treated rat-model of Parkinson's disease. A parkinsonian state was induced with reserpine (3 mg/kg s.c.). Eighteen hours later, the rats were administered L-DOPA plus the peripherally acting AADC inhibitor benserazide (25 mg/kg), with or without the centrally acting AADC inhibitor NSD1015 (100 mg/kg). L-DOPA/benserazide alone reversed reserpine-induced akinesia (4158+/-1125 activity counts/6 h, cf vehicle 1327+/-227). Addition of NSD1015 elicited hyperactive behaviour that was approximately 7-fold higher than L-DOPA/benserazide (35755+/-5226, P<0.001). The hyperactivity induced by L-DOPA and NSD1015 was reduced by the alpha(2C) antagonist rauwolscine (1 mg/kg) and the 5-HT(2C) agonist MK212 (5 mg/kg), but not by the D2 dopamine receptor antagonist remoxipride (3 mg/kg) or the D1 dopamine receptor antagonist SCH23390 (1 mg/kg). These data suggest that L-DOPA, or metabolites produced via routes not involving AADC, might be responsible for the generation of at least some L-DOPA actions in reserpine-treated rats.
Collapse
|
25
|
Flibanserin, a drug intended for treatment of hypoactive sexual desire disorder in pre-menopausal women, affects spontaneous motor activity and brain neurochemistry in female rats. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:573-9. [DOI: 10.1007/s00210-010-0515-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
|
26
|
The timing of administration, dose dependence and efficacy of dopa decarboxylase inhibitors on the reversal of motor disability produced by L-DOPA in the MPTP-treated common marmoset. Eur J Pharmacol 2010; 635:109-16. [PMID: 20303948 DOI: 10.1016/j.ejphar.2010.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/15/2010] [Accepted: 03/03/2010] [Indexed: 11/24/2022]
Abstract
Dopa decarboxylase inhibitors are routinely used to potentiate the effects of L-DOPA in the treatment of Parkinson's disease. However, neither in clinical use nor in experimental models of Parkinson's disease have the timing and dose of dopa decarboxylase inhibitors been thoroughly explored. We now report on the choice of dopa decarboxylase inhibitors, dose and the time of dosing relationships of carbidopa, benserazide and L-alpha-methyl dopa (L-AMD) in potentiating the effects of L-DOPA in the 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-treated common marmoset. Pre-treatment with benserazide for up to 3h did not alter the motor response to L-DOPA compared to simultaneous administration with L-DOPA. There was some evidence of a relationship between carbidopa and benserazide dose and increased locomotor activity and the reversal of motor disability. But in general, commonly used dose levels of dopa decarboxylase inhibitors appeared to produce a maximal motor response to L-DOPA. In contrast, dyskinesia intensity and duration continued to increase with both carbidopa and benserazide dose. The novel dopa decarboxylase inhibitor, L-AMD, increased locomotor activity and improved motor disability to the same extent as carbidopa or benserazide but importantly this was accompanied by significantly less dyskinesia. This study shows that currently, dopa decarboxylase inhibitors may be routinely employed in the MPTP-treated primate at doses which are higher than those necessary to produce a maximal potentiation of the anti-parkinsonian effect of L-DOPA. This may lead to excessive expression of dyskinesia in this model of Parkinson's disease and attention should be given to the dose regimens currently employed.
Collapse
|
27
|
Buck K, Ferger B. The selective α1adrenoceptor antagonist HEAT reduces L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Synapse 2010; 64:117-26. [DOI: 10.1002/syn.20709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Buck K, Voehringer P, Ferger B. The α2adrenoceptor antagonist idazoxan alleviates l-DOPA-induced dyskinesia by reduction of striatal dopamine levels: anin vivomicrodialysis study in 6-hydroxydopamine-lesioned rats. J Neurochem 2010; 112:444-52. [DOI: 10.1111/j.1471-4159.2009.06482.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Site-specific action of L-3,4-dihydroxyphenylalanine in the striatum but not globus pallidus and substantia nigra pars reticulata evokes dyskinetic movements in chronic L-3,4-dihydroxyphenylalanine-treated 6-hydroxydopamine-lesioned rats. Neuroscience 2009; 166:355-8. [PMID: 20026252 DOI: 10.1016/j.neuroscience.2009.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/07/2009] [Accepted: 12/11/2009] [Indexed: 11/23/2022]
Abstract
Dyskinesia eventually develops in the majority of Parkinson's disease patients treated with l-3,4-dihydroxyphenylalanine (l-DOPA). We have investigated the effect of an acute and local administration of L-DOPA, GABA and glutamate to provoke dyskinetic movements in three basal ganglia structures (striatum, globus pallidus (GP) and substantia nigra pars reticulata (SNr)) of chronically L-DOPA-treated, unilaterally 6-hydroxydopamine-lesioned rats. We demonstrated that L-DOPA administration into the lesioned striatum using the technique of reverse in vivo microdialysis was an effective trigger to switch on dyskinesia. Notably, local L-DOPA perfusion at the same concentration in the ipsilateral GP and SNr did not provoke significant dyskinetic behaviour. Neither GABA nor glutamate triggered dyskinetic movements in the striatum, GP or SNr. We postulate a site-specific action of L-DOPA for the evocation of already established dyskinesia since L-DOPA in the striatum but not in the GP or SNr switched on dyskinetic behaviour.
Collapse
|
30
|
Morgese MG, Cassano T, Gaetani S, Macheda T, Laconca L, Dipasquale P, Ferraro L, Antonelli T, Cuomo V, Giuffrida A. Neurochemical changes in the striatum of dyskinetic rats after administration of the cannabinoid agonist WIN55,212-2. Neurochem Int 2009; 54:56-64. [PMID: 19010365 PMCID: PMC2657321 DOI: 10.1016/j.neuint.2008.10.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 11/30/2022]
Abstract
Chronic use of levodopa, the most effective treatment for Parkinson's disease, causes abnormal involuntary movements named dyskinesias, which are linked to maladaptive changes in plasticity and disturbances of dopamine and glutamate neurotransmission in the basal ganglia. Dyskinesias can be modeled in rats with unilateral 6-hydroxydopamine lesions by repeated administration of low doses of levodopa (6 mg/kg, s.c.). Previous studies from our lab showed that sub-chronic treatment with the cannabinoid agonist WIN55,212-2 attenuates levodopa-induced dyskinesias at doses that do not interfere with physiological motor function. To investigate the neurochemical changes underlying WIN55,212-2 anti-dyskinetic effects, we used in vivo microdialysis to monitor extracellular dopamine and glutamate in the dorsal striatum of both the hemispheres of freely moving 6-hydroxydopamine-treated, SHAM-operated and intact rats receiving levodopa acutely or chronically (11 days), and studied how sub-chronic WIN55,212-2 (1 injection x 3 days, 20 min before levodopa) affected these neurochemical outputs. Our data indicate that: (1) the 6-hydroxydopamine lesion decreases dopamine turnover in the denervated striatum; (2) levodopa injection reduces extracellular glutamate in the side ipsilateral to the lesion of dyskinetic rats; (3) sub-chronic WIN55,212-2 prevents levodopa-induced glutamate volume transmission unbalances across the two hemispheres; and (4) levodopa-induced dyskinesias are inversely correlated with glutamate levels in the denervated striatum. These data indicate that the anti-dyskinetic properties of WIN55,212-2 are accompanied by changes of dopamine and glutamate outputs in the two brain hemispheres of 6-hydroxydopamine-treated rats.
Collapse
Affiliation(s)
- M G Morgese
- Department of Biomedical Sciences, University of Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Di Giovanni G, Esposito E, Di Matteo V. In vivo microdialysis in Parkinson's research. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:223-43. [PMID: 20411781 DOI: 10.1007/978-3-211-92660-4_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopamine (DA) neurons in the nigrostriatal system, which in turn produces profound neurochemical changes within the basal ganglia, representing the neural substrate for parkinsonian motor symptoms. The pathogenesis of the disease is still not completely understood, but environmental and genetic factors are thought to play important roles. Research into the pathogenesis and the development of new therapeutic intervention strategies that will slow or stop the progression of the disease in human has rapidly advanced by the use of neurotoxins that specifically target DA neurons. Over the years, a broad variety of experimental models of the disease has been developed and applied in diverse animal species. The two most common toxin models used employ 6-hydroxydopamine (6-OHDA) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenilpyridinium ion (MPTP/MPP+), either given systemically or locally applied into the nigrostriatal pathway, to resemble PD features in animals. Both neurotoxins selectively and rapidly destroy catecolaminergic neurons, although with different mechanisms. Since in vivo microdialysis coupled to high-performance liquid chromatography is an established technique for studying physiological, pharmacological, and pathological changes of a wide range of low molecular weight substances in the brain extracellular fluid, here we review the most prominent animal and human data obtained by the use of this technique in PD research.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, G. Pagano, Universitá degli Studi di Palermo, 90134, Palermo, Italy
| | | | | |
Collapse
|
32
|
Buck K, Ferger B. Comparison of intrastriatal administration of noradrenaline and l-DOPA on dyskinetic movements: a bilateral reverse in vivo microdialysis study in 6-hydroxydopamine-lesioned rats. Neuroscience 2008; 159:16-20. [PMID: 19146929 DOI: 10.1016/j.neuroscience.2008.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/10/2008] [Accepted: 12/17/2008] [Indexed: 11/29/2022]
Abstract
l-DOPA-induced dyskinesia is known as involuntary debilitating movement, which limits quality of life in patients suffering from Parkinson's disease. The present study focuses on the role of the neurotransmitter noradrenaline (NA) on dyskinetic movements in comparison to the effect of l-DOPA. Rats were unilaterally lesioned with 6-hydroxydopamine and treated with l-DOPA/benserazide (6/15 mg/kg, p.o.) to induce stable dyskinetic movements. On the day of the experiment, NA (0.04 nmol/min, 0.4 nmol/min) and l-DOPA (0.04 nmol/min, 0.4 nmol/min) were perfused into the lesioned and non-lesioned striatum of dyskinetic rats using the reverse in vivo microdialysis technique. Neither NA nor l-DOPA treatment of the non-lesioned striatum produced any dyskinetic behavior. In contrast, administration of l-DOPA 0.4 nmol/min into the lesioned striatum led to a significant increase in dyskinesia indicated by abnormal axial, limb and orolingual movements. Notably, perfusion with NA 0.4 nmol/min into the lesioned striatum revealed a highly significant induction of dyskinetic movements, which are similar to the dyskinesia subtype profile of l-DOPA. In conclusion, NA is as potent as l-DOPA to express dyskinetic movements in l-DOPA-primed rats.
Collapse
Affiliation(s)
- K Buck
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | | |
Collapse
|
33
|
Barnum CJ, Eskow KL, Dupre K, Blandino P, Deak T, Bishop C. Exogenous corticosterone reduces L-DOPA-induced dyskinesia in the hemi-parkinsonian rat: role for interleukin-1beta. Neuroscience 2008; 156:30-41. [PMID: 18687386 DOI: 10.1016/j.neuroscience.2008.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/18/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
While the etiology of Parkinson's disease (PD) remains unknown, there is overwhelming evidence that neuroinflammation plays a critical role in the progressive loss of dopamine (DA) neurons. Because nearly all persons suffering from PD receive l-DOPA, it is surprising that inflammation has not been examined as a potential contributor to the abnormal involuntary movements (AIMs) that occur as a consequence of chronic l-DOPA treatment. As an initial test of this hypothesis, we examined the effects of exogenously administered corticosterone (CORT), an endogenous anti-inflammatory agent, on the expression and development of l-DOPA-induced dyskinesia (LID) in unilateral DA-depleted rats. To do this, male Sprague-Dawley rats received unilateral medial forebrain bundle 6-hydroxydopamine lesions. Three weeks later, l-DOPA primed rats received acute injections of CORT (0-3.75 mg/kg) prior to l-DOPA to assess the expression of LID. A second group of rats was used to examine the development of LID in l-DOPA naïve rats co-treated with CORT and l-DOPA for 2 weeks. AIMs and rotations were recorded. Exogenous CORT dose-dependently attenuated both the expression and development of AIMs without affecting rotations. Real-time reverse-transcription polymerase chain reaction of striatal tissue implicated a role for interleukin-1 (IL-1) beta in these effects as its expression was increased on the lesioned side in rats treated with l-DOPA (within the DA-depleted striatum) and attenuated with CORT. In the final experiment, interleukin-1 receptor antagonist (IL-1ra) was microinjected into the striatum of l-DOPA-primed rats to assess the impact of IL-1 signaling on LID. Intrastriatal IL-1ra reduced the expression of LID without affecting rotations. These findings indicate a novel role for neuroinflammation in the expression of LID, and may implicate the use of anti-inflammatory agents as a potential adjunctive therapy for the treatment of LID.
Collapse
Affiliation(s)
- C J Barnum
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | | | | | | | | | | |
Collapse
|
34
|
Cenci MA, Lindgren HS. Advances in understanding L-DOPA-induced dyskinesia. Curr Opin Neurobiol 2008; 17:665-71. [PMID: 18308560 DOI: 10.1016/j.conb.2008.01.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/08/2008] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
The crucial role of dopamine (DA) in movement control is illustrated by the spectrum of motor disorders caused by either a deficiency or a hyperactivity of dopaminergic transmission in the basal ganglia. The degeneration of nigrostriatal DA neurons in Parkinson's disease causes poverty and slowness of movement. These symptoms are greatly improved by pharmacological DA replacement with L-3,4-dihydroxy-phenylalanine (L-DOPA), which however causes excessive involuntary movements in a majority of patients. L-DOPA-induced dyskinesia (abnormal involuntary movements) provides a topic of investigation at the interface between clinical and basic neuroscience. In this article, we review recent studies in rodent models, which have uncovered two principal alterations at the basis of the movement disorder, namely, an abnormal pre-synaptic handling of exogenous L-DOPA, and a hyper-reactive post-synaptic response to DA. Dysregulated nigrostriatal DA transmission causes secondary alterations in a variety of non-dopaminergic transmitter systems, the manipulation of which modulates dyskinesia through mechanisms that are presently unclear. Further research on L-DOPA-induced dyskinesia will contribute to a deeper understanding of the functional interplay between neurotransmitters and neuromodulators in the motor circuits of the basal ganglia.
Collapse
Affiliation(s)
- M A Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden.
| | | |
Collapse
|