1
|
Wuerch EC, Mirzaei R, Yong VW. Niacin produces an inconsistent treatment response in the EAE model of multiple sclerosis. J Neuroimmunol 2024; 394:578421. [PMID: 39088907 DOI: 10.1016/j.jneuroim.2024.578421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Niacin was found in the lysolecithin model of multiple sclerosis (MS) to promote the phagocytic clearance of debris and enhance remyelination. Lysolecithin lesions have prominent microglia/macrophages but lack lymphocytes that populate plaques of MS or its experimental autoimmune encephalomyelitis (EAE) model. Thus, the current study assessed the efficacy of niacin in EAE. We found that niacin inconsistently affects EAE clinical score, and largely does not ameliorate neuropathology. In culture, niacin enhances phagocytosis by macrophages, but does not reduce T cell proliferation. We suggest that studies of niacin for potential remyelination in MS should include a therapeutic that targets adaptive immunity.
Collapse
Affiliation(s)
- Emily C Wuerch
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Reza Mirzaei
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
de la Rubia Ortí JE, Platero Armero JL, Cuerda-Ballester M, Sanchis-Sanchis CE, Navarro-Illana E, Lajara-Romance JM, Benlloch M, Ceron JJ, Tvarijonaviciute A, Proaño B. Lipid Profile in Multiple Sclerosis: Functional Capacity and Therapeutic Potential of Its Regulation after Intervention with Epigallocatechin Gallate and Coconut Oil. Foods 2023; 12:3730. [PMID: 37893623 PMCID: PMC10606609 DOI: 10.3390/foods12203730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) patients present dyslipidemia and functional disability. Epigallocatechin gallate (EGCG) and coconut oil have been shown to be effective against dyslipidemia. OBJECTIVE To analyze the relationship between lipid profiles, fat consumption, and functional disability in patients with MS after administering EGCG and coconut oil. METHODS A four-month pilot study was conducted on 45 MS patients, divided into an intervention group (IG) and a control group (CG). The IG received 800 mg of EGCG and 60 mL of coconut oil. Lipid profiles were measured before and after the intervention, along with other data such as dietary habits, inflammatory markers, and functional capacity. RESULTS Dyslipidemia did not correlate with the patients' fat consumption. After the intervention, triglycerides (TG) levels were lower in IG compared to CG. This decrease was positively correlated with an improvement in functional disability (determined by the Expanded Disability Status Scale (EDSS)) and negatively with high-density cholesterol (HDL) and apolipoprotein A1. Significant and positive correlations were observed between EDSS and C-reactive protein (CRP) in the IG. These changes in the IG could be related to body fat decrease, whose percentage shows a positive correlation with CRP and TG levels, and a negative correlation with HDL levels. CONCLUSIONS Patients with MS present a certain type of dyslipemia not associated with their nutritional habits. The administration of EGCG and coconut oil seems to decrease blood TG levels, which could explain the functional improvements.
Collapse
Affiliation(s)
- Jose Enrique de la Rubia Ortí
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Jose Luis Platero Armero
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - María Cuerda-Ballester
- Doctoral Degree School, Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Claudia Emmanuela Sanchis-Sanchis
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Esther Navarro-Illana
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | | | - María Benlloch
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Jose Joaquín Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Belén Proaño
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| |
Collapse
|
3
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Altaani B, Haddad R, Al-Tarakji A, Alrabadi N. Hydrolysis kinetics of the prodrug myristyl nicotinate. Pharm Dev Technol 2022; 27:1083-1092. [PMID: 36440492 DOI: 10.1080/10837450.2022.2152460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myristyl nicotinate is a prodrug of nicotinic acid. In this research, the kinetics of hydrolysis for myristyl nicotinate was studied in an aqueous phosphate buffer solution within a 5-10 pH range and constant ionic strength at a high temperature which was 80 °C to perform accelerated hydrolysis experiments. The effect of temperature, ionic strength, buffer concentrations, and buffer type was studied. The degradation was monitored using a validated HPLC method. The kinetics of hydrolysis of myristyl nicotinate was also studied in skin and liver homogenates. The hydrolysis was found to follow pseudo-first-order kinetics. The rate constant was calculated from the slope of a linear plot of Ln transformation (Ln) of the remaining parent prodrug concentration versus time. The hydrolysis was found pH- dependent, and a pH rate profile was constructed. Moreover, the hydrolysis rate of the prodrug was found to be buffer species dependent. Carbonate buffer has the most catalytic effect over borate and phosphate buffers. The effect of temperature on the kinetics of hydrolysis of myristyl nicotinate in phosphate buffer at pH 9 at 343, 348, 353, and 358°K was studied. The hydrolysis was found to follow the Arrhenius equation. From the Arrhenius plot, the half-life at 25 °C, and the activation energy were calculated and were found to be 466.5 days and 24.57 kcal mol-1, respectively. The hydrolysis of the prodrug was faster in liver and skin homogenates than those in aqueous buffer solutions. The pseudo-first-order rate constants were found to be 0.012, 0.028 min-1 for myristyl nicotinate in the liver, and skin homogenates, respectively.
Collapse
Affiliation(s)
- Bashar Altaani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Razan Haddad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Aliaa Al-Tarakji
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Oh J, Bar-Or A. Emerging therapies to target CNS pathophysiology in multiple sclerosis. Nat Rev Neurol 2022; 18:466-475. [PMID: 35697862 DOI: 10.1038/s41582-022-00675-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
The rapidly evolving therapeutic landscape of multiple sclerosis (MS) has contributed to paradigm shifts in our understanding of the biological mechanisms that contribute to CNS injury and in treatment philosophies. Opportunities remain to further improve treatment of relapsing-remitting MS, but two major therapeutic gaps are the limiting of progressive disease mechanisms and the repair of CNS injury. In this Review, we provide an overview of selected emerging therapies that predominantly target processes within the CNS that are thought to be involved in limiting non-relapsing, progressive disease injury or promoting tissue repair. Among these, we consider agents that modulate adaptive and innate CNS-compartmentalized inflammation, which can be mediated by infiltrating immune cells and/or resident CNS cells, including microglia and astrocytes. We also discuss agents that target degenerative disease mechanisms, agents that might confer neuroprotection, and agents that create a more favourable environment for or actively contribute to oligodendrocyte precursor cell differentiation, remyelination and axonal regeneration. We focus on agents that are novel for MS, that are known to or are presumed to penetrate the CNS, and that have already entered early stages of development in MS clinical trials.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Ontario, Canada.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, and Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Moutinho M, Puntambekar SS, Tsai AP, Coronel I, Lin PB, Casali BT, Martinez P, Oblak AL, Lasagna-Reeves CA, Lamb BT, Landreth GE. The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer's disease. Sci Transl Med 2022; 14:eabl7634. [PMID: 35320002 PMCID: PMC10161396 DOI: 10.1126/scitranslmed.abl7634] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased dietary intake of niacin has been correlated with reduced risk of Alzheimer's disease (AD). Niacin serves as a high-affinity ligand for the receptor HCAR2 (GPR109A). In the brain, HCAR2 is expressed selectively by microglia and is robustly induced by amyloid pathology in AD. The genetic inactivation of Hcar2 in 5xFAD mice, a model of AD, results in impairment of the microglial response to amyloid deposition, including deficits in gene expression, proliferation, envelopment of amyloid plaques, and uptake of amyloid-β (Aβ), ultimately leading to exacerbation of amyloid burden, neuronal loss, and cognitive deficits. In contrast, activation of HCAR2 with an FDA-approved formulation of niacin (Niaspan) in 5xFAD mice leads to reduced plaque burden and neuronal dystrophy, attenuation of neuronal loss, and rescue of working memory deficits. These data provide direct evidence that HCAR2 is required for an efficient and neuroprotective response of microglia to amyloid pathology. Administration of Niaspan potentiates the HCAR2-mediated microglial protective response and consequently attenuates amyloid-induced pathology, suggesting that its use may be a promising therapeutic approach to AD that specifically targets the neuroimmune response.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shweta S Puntambekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andy P Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Israel Coronel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter B Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brad T Casali
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Hedgehog Signalling Modulates Immune Response and Protects against Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2022; 23:ijms23063171. [PMID: 35328591 PMCID: PMC8954986 DOI: 10.3390/ijms23063171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for the embryonic development and homeostatic maintenance of many adult tissues and organs. It has also been associated with some functions of the innate and adaptive immune system. However, its involvement in the immune response has not been well determined. Here we study the role of Hh signalling in the modulation of the immune response by using the Ptch-1-LacZ+/- mouse model (hereinafter referred to as ptch+/-), in which the hemizygous inactivation of Patched-1, the Hh receptor gene, causes the constitutive activation of Hh response genes. The in vitro TCR stimulation of spleen and lymph node (LN) T cells showed increased levels of Th2 cytokines (IL-4 and IL-10) in ptch+/-cells compared to control cells from wild-type (wt) littermates, suggesting that the Th2 phenotype is favoured by Hh pathway activation. In addition, CD4+ cells secreted less IL-17, and the establishment of the Th1 phenotype was impaired in ptch+/- mice. Consistently, in response to an inflammatory challenge by the induction of experimental autoimmune encephalomyelitis (EAE), ptch+/- mice showed milder clinical scores and more minor spinal cord damage than wt mice. These results demonstrate a role for the Hh/ptch pathway in immune response modulation and highlight the usefulness of the ptch+/- mouse model for the study of T-cell-mediated diseases and for the search for new therapeutic strategies in inflammatory diseases.
Collapse
|
8
|
Sanchez JMS, DePaula-Silva AB, Libbey JE, Fujinami RS. Role of diet in regulating the gut microbiota and multiple sclerosis. Clin Immunol 2022; 235:108379. [PMID: 32156562 PMCID: PMC7483914 DOI: 10.1016/j.clim.2020.108379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Robert S. Fujinami
- Corresponding author at: University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA. (R.S. Fujinami)
| |
Collapse
|
9
|
Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat Rev Neurol 2021; 18:40-55. [PMID: 34732831 DOI: 10.1038/s41582-021-00581-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
In contrast to the multiple disease-modifying therapies that are available for relapsing-remitting multiple sclerosis (MS), the therapeutic options for progressive MS (PMS) are limited. Recent advances in our understanding of the neuroimmunology of PMS, including the mechanisms that drive slowly expanding lesions, have fuelled optimism for improved treatment of this condition. In this Review, we highlight the commonly observed neuropathology of PMS and discuss the associated mechanisms of CNS injury. We then apply this knowledge to formulate criteria for therapeutic efficacy in PMS, beginning with the need for early treatment owing to the substantial neuropathology that is already present at the initial clinical presentation. Other requirements include: antagonism of neuroaxonal injury mediators such as pro-inflammatory microglia and lymphocytes; remediation of oxidative stress resulting from iron deposition and mitochondrial dysfunction; and promotion of neuroprotection through remyelination. We consider whether current disease-modifying therapies for relapsing-remitting MS meet the criteria for successful therapeutics in PMS and suggest that the evidence favours the early introduction of sphingosine 1-phosphate receptor modulators. Finally, we weigh up emerging medications, including repurposed generic medications and Bruton's tyrosine kinase inhibitors, against these fundamental criteria. In this new therapeutic era in PMS, success depends collectively on understanding disease mechanisms, drug characteristics (including brain penetration) and rational use.
Collapse
|
10
|
Xiao Y, Sun Y, Liu W, Zeng F, Shi J, Li J, Chen H, Tu C, Xu Y, Tan Z, Gong F, Shu X, Zheng F. HMGB1 Promotes the Release of Sonic Hedgehog From Astrocytes. Front Immunol 2021; 12:584097. [PMID: 33868221 PMCID: PMC8047406 DOI: 10.3389/fimmu.2021.584097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
High mobility group box 1 protein (HMGB1) is known to be a trigger of inflammation in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, it may play a different role in some way. Here we investigated the effect of HMGB1 on promoting sonic hedgehog (shh) release from astrocytes as well as the possible signal pathway involved in it. Firstly, shh increased in astrocytes after administration of recombinant HMGB1 or decreased after HMGB1 was blocked when stimulated by homogenate of the onset stage of EAE. Moreover, the expression of HMGB1 receptors, toll-like receptor (TLR) 2 and receptor for advanced glycation end products (RAGE) increased after HMGB1 administration in primary astrocytes. However, the enhancing effect of HMGB1 on shh release from astrocytes was suppressed only after RAGE was knocked out or blocked. Mechanistically, HMGB1 functioned by activating RAGE-mediated JNK, p38, stat3 phosphorylation. Moreover, HMGB1 could induce shh release in EAE. Additionally, intracerebroventricular injection of recombinant shh protein on the onset stage of EAE alleviated the progress of disease and decreased demylination, compared to the mice with normal saline treatment. Overall, HMGB1 promoted the release of shh from astrocytes through signal pathway JNK, p38 and stat3 mediated by receptor RAGE, which may provide new insights of HMGB1 function in EAE.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Cells, Cultured
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Glycyrrhizic Acid/pharmacology
- HMGB1 Protein/genetics
- HMGB1 Protein/pharmacology
- Hedgehog Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/prevention & control
- Receptor for Advanced Glycation End Products/genetics
- Receptor for Advanced Glycation End Products/metabolism
- Recombinant Proteins/pharmacology
- Signal Transduction/drug effects
- Mice
Collapse
Affiliation(s)
- Yifan Xiao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Medicine, Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, China
- Department of Neurobiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wei Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- School of Medicine, Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - FanFan Zeng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyu Shi
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chang Tu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiji Shu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- School of Medicine, Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
11
|
Cunniffe N, Vuong KA, Ainslie D, Baker D, Beveridge J, Bickley S, Camilleri P, Craner M, Fitzgerald D, de la Fuente AG, Giovannoni G, Gray E, Hazlehurst L, Kapoor R, Kaur R, Kozlowski D, Lumicisi B, Mahad D, Neumann B, Palmer A, Peruzzotti-Jametti L, Pluchino S, Robertson J, Rothaul A, Shellard L, Smith KJ, Wilkins A, Williams A, Coles A. Systematic approach to selecting licensed drugs for repurposing in the treatment of progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2021; 92:295-302. [PMID: 33184094 DOI: 10.1136/jnnp-2020-324286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/08/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To establish a rigorous, expert-led, evidence-based approach to the evaluation of licensed drugs for repurposing and testing in clinical trials of people with progressive multiple sclerosis (MS). METHODS We long-listed licensed drugs with evidence of human safety, blood-brain barrier penetrance and demonstrable efficacy in at least one animal model, or mechanistic target, agreed by a panel of experts and people with MS to be relevant to the pathogenesis of progression. We systematically reviewed the preclinical and clinical literature for each compound, condensed this into a database of summary documents and short-listed drugs by scoring each one of them. Drugs were evaluated for immediate use in a clinical trial, and our selection was scrutinised by a final independent expert review. RESULTS From a short list of 55 treatments, we recommended four treatments for immediate testing in progressive MS: R-α-lipoic acid, metformin, the combination treatment of R-α-lipoic acid and metformin, and niacin. We also prioritised clemastine, lamotrigine, oxcarbazepine, nimodipine and flunarizine. CONCLUSIONS We report a standardised approach for the identification of candidate drugs for repurposing in the treatment of progressive MS.
Collapse
Affiliation(s)
- Nick Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Debbie Ainslie
- Research Network, Multiple Sclerosis Society, London, UK
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, UK
| | - Judy Beveridge
- Research Network, Multiple Sclerosis Society, London, UK
| | | | | | - Matthew Craner
- Department of Neurology, University of Oxford, Oxford, UK
| | - Denise Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's Univeristy, Belfast, UK
| | - Alerie G de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's Univeristy, Belfast, UK
| | | | - Emma Gray
- Multiple Sclerosis Society, London, UK
| | | | - Raj Kapoor
- Faculty of Brain Sciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Ranjit Kaur
- Research Network, Multiple Sclerosis Society, London, UK
| | | | | | - Don Mahad
- Centre for Clinical Brain Sciences, Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Björn Neumann
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alan Palmer
- University of Reading, Reading, Berkshire, UK
| | | | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Alan Rothaul
- Independent consultant, Woodstock, Oxfordshire, UK
| | | | - Kenneth J Smith
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
| | | | - Anna Williams
- MS Centre, Centre for regenerative medicine, University of Edinburgh, Edinburgh, UK
| | - Alasdair Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Tian J, Li X, Zhao L, Shen P, Wang Z, Zhu L, Li C, Su C, Zhang Y. Glycyrrhizic acid promotes neural repair by directly driving functional remyelination. Food Funct 2020; 11:992-1005. [PMID: 31808502 DOI: 10.1039/c9fo01459d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural compounds are a rich source of effective candidate drugs for the treatment of neurological disorders. Glycyrrhizic acid (GA), the major water-soluble ingredient isolated from Glycyrrhiza glabra, is reported to show anti-inflammatory and immunomodulatory activities. However, its effect on CNS demyelinating disease is unclear. In this study, we showed that GA ameliorated the clinical disease severity of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), especially at the chronic stage of clinical EAE. Histological evaluation demonstrated that, in the prophylactic treatment regimen, GA significantly inhibited inflammatory demyelination in the CNS. During the chronic stage when myelin and axon damage has already occurred, GA induced oligodendrocyte progenitor cell (OPC) differentiation into mature oligodendrocytes, thus effectively accelerating remyelination. Evidence from the cuprizone-induced mouse model of de- and remyelination, ex vivo organotypic slice cultures, and in vitro OPC maturation experiments indicated that the observed efficacy of this compound resulted directly from enhanced remyelination rather than immune suppression. Furthermore, we found that GA promoted oligodendrocyte maturation through modulating GSK-3β signaling pathways. Our data led to the conclusion that GA could be used as a potential therapeutic candidate for the treatment of demyelinating diseases such as MS, which remains refractory to available treatments.
Collapse
Affiliation(s)
- Jing Tian
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rawji KS, Young AMH, Ghosh T, Michaels NJ, Mirzaei R, Kappen J, Kolehmainen KL, Alaeiilkhchi N, Lozinski B, Mishra MK, Pu A, Tang W, Zein S, Kaushik DK, Keough MB, Plemel JR, Calvert F, Knights AJ, Gaffney DJ, Tetzlaff W, Franklin RJM, Yong VW. Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathol 2020; 139:893-909. [PMID: 32030468 PMCID: PMC7181452 DOI: 10.1007/s00401-020-02129-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Remyelination following CNS demyelination restores rapid signal propagation and protects axons; however, its efficiency declines with increasing age. Both intrinsic changes in the oligodendrocyte progenitor cell population and extrinsic factors in the lesion microenvironment of older subjects contribute to this decline. Microglia and monocyte-derived macrophages are critical for successful remyelination, releasing growth factors and clearing inhibitory myelin debris. Several studies have implicated delayed recruitment of macrophages/microglia into lesions as a key contributor to the decline in remyelination observed in older subjects. Here we show that the decreased expression of the scavenger receptor CD36 of aging mouse microglia and human microglia in culture underlies their reduced phagocytic activity. Overexpression of CD36 in cultured microglia rescues the deficit in phagocytosis of myelin debris. By screening for clinically approved agents that stimulate macrophages/microglia, we have found that niacin (vitamin B3) upregulates CD36 expression and enhances myelin phagocytosis by microglia in culture. This increase in myelin phagocytosis is mediated through the niacin receptor (hydroxycarboxylic acid receptor 2). Genetic fate mapping and multiphoton live imaging show that systemic treatment of 9-12-month-old demyelinated mice with therapeutically relevant doses of niacin promotes myelin debris clearance in lesions by both peripherally derived macrophages and microglia. This is accompanied by enhancement of oligodendrocyte progenitor cell numbers and by improved remyelination in the treated mice. Niacin represents a safe and translationally amenable regenerative therapy for chronic demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Khalil S Rawji
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Adam M H Young
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Tanay Ghosh
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nathan J Michaels
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Reza Mirzaei
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Janson Kappen
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | | | | | - Brian Lozinski
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Manoj K Mishra
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Annie Pu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Weiwen Tang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Salma Zein
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Deepak K Kaushik
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | | | | | - Fiona Calvert
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
14
|
Evans E, Piccio L, Cross AH. Use of Vitamins and Dietary Supplements by Patients With Multiple Sclerosis: A Review. JAMA Neurol 2019; 75:1013-1021. [PMID: 29710293 DOI: 10.1001/jamaneurol.2018.0611] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Surveys of patients with multiple sclerosis report that most are interested in modifying their diet and using supplements to potentially reduce the severity and symptoms of the disease. This review provides an updated overview of the current state of evidence for the role that vitamins and dietary supplements play in multiple sclerosis and its animal models, with an emphasis on recent studies, and addresses biological plausibility and safety issues. Observations Several vitamins and dietary supplements have been recently explored both in animal models and by patients with multiple sclerosis. Most human trials have been small or nonblinded, limiting their generalizability. Biotin and vitamin D are currently being tested in large randomized clinical trials. Smaller trials are ongoing or planned for other supplements such as lipoic acid and probiotics. The results of these studies may help guide clinical recommendations. Conclusions and Relevance At the present time, the only vitamin with sufficient evidence to support routine supplementation for patients with multiple sclerosis is vitamin D. Vitamin deficiencies should be avoided. It is important for clinicians to know which supplements their patients are taking and to educate patients on any known efficacy data, along with any potential medication interactions and adverse effects of individual supplements. Given that dietary supplements and vitamins are not subject to the same regulatory oversight as prescription pharmaceuticals in the United States, it is recommended that vitamins and supplements be purchased from reputable manufacturers with the United States Pharmacopeia designation.
Collapse
Affiliation(s)
- Emily Evans
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| | - Laura Piccio
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| | - Anne H Cross
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
15
|
Bolino A, Piguet F, Alberizzi V, Pellegatta M, Rivellini C, Guerrero-Valero M, Noseda R, Brombin C, Nonis A, D'Adamo P, Taveggia C, Previtali SC. Niacin-mediated Tace activation ameliorates CMT neuropathies with focal hypermyelination. EMBO Mol Med 2016; 8:1438-1454. [PMID: 27799291 PMCID: PMC5167133 DOI: 10.15252/emmm.201606349] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Charcot–Marie–Tooth (CMT) neuropathies are highly heterogeneous disorders caused by mutations in more than 70 genes, with no available treatment. Thus, it is difficult to envisage a single suitable treatment for all pathogenetic mechanisms. Axonal Neuregulin 1 (Nrg1) type III drives Schwann cell myelination and determines myelin thickness by ErbB2/B3‐PI3K–Akt signaling pathway activation. Nrg1 type III is inhibited by the α‐secretase Tace, which negatively regulates PNS myelination. We hypothesized that modulation of Nrg1 levels and/or secretase activity may constitute a unifying treatment strategy for CMT neuropathies with focal hypermyelination as it could restore normal levels of myelination. Here we show that in vivo delivery of Niaspan, a FDA‐approved drug known to enhance TACE activity, efficiently rescues myelination in the Mtmr2−/− mouse, a model of CMT4B1 with myelin outfoldings, and in the Pmp22+/− mouse, which reproduces HNPP (hereditary neuropathy with liability to pressure palsies) with tomacula. Importantly, we also found that Niaspan reduces hypermyelination of Vim (vimentin)−/− mice, characterized by increased Nrg1 type III and Akt activation, thus corroborating the hypothesis that Niaspan treatment downregulates Nrg1 type III signaling.
Collapse
Affiliation(s)
- Alessandra Bolino
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy .,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Françoise Piguet
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Alberizzi
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Marta Pellegatta
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Rivellini
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Marta Guerrero-Valero
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Noseda
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Centre of Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Nonis
- University Centre of Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Patrizia D'Adamo
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Carla Taveggia
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Carlo Previtali
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Fingolimod treatment promotes proliferation and differentiation of oligodendrocyte progenitor cells in mice with experimental autoimmune encephalomyelitis. Neurobiol Dis 2015; 76:57-66. [DOI: 10.1016/j.nbd.2015.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/24/2014] [Accepted: 01/29/2015] [Indexed: 12/12/2022] Open
|
17
|
Offermanns S, Schwaninger M. Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation. Trends Mol Med 2015; 21:245-55. [PMID: 25766751 DOI: 10.1016/j.molmed.2015.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 10/23/2022]
Abstract
Neuroinflammation is a pathology common to many neurological diseases, including multiple sclerosis (MS) and stroke. However, therapeutic attempts to modulate neuroinflammation have proved difficult. Neuroinflammatory cells express HCA2, a receptor for the endogenous neuroprotective ketone body β-hydroxybutyrate (BHB) as well as for the drugs dimethyl fumarate (DMF) and nicotinic acid, which have established efficacy in the treatment of MS and experimental stroke, respectively. This review summarizes the evidence that HCA2 is involved in the therapeutic effects of DMF, nicotinic acid, and ketone bodies in reducing neuroinflammation. Furthermore, we discuss the mechanisms underlying the beneficial effects of HCA2 activation in neuroinflammatory diseases and the therapeutic potential of recently developed synthetic ligands of HCA2.
Collapse
Affiliation(s)
- Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany; Medical Faculty, J.W. Goethe University, Frankfurt, Germany.
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany.
| |
Collapse
|
18
|
Chen H, Assmann JC, Krenz A, Rahman M, Grimm M, Karsten CM, Köhl J, Offermanns S, Wettschureck N, Schwaninger M. Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate's protective effect in EAE. J Clin Invest 2014; 124:2188-92. [PMID: 24691444 DOI: 10.1172/jci72151] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/30/2014] [Indexed: 01/09/2023] Open
Abstract
Taken orally, the drug dimethyl fumarate (DMF) has been shown to improve functional outcomes for patients with MS; however, it is unclear how DMF mediates a protective effect. DMF and, more so, its active metabolite, monomethyl fumarate, are known agonists of the hydroxycarboxylic acid receptor 2 (HCA₂), a G protein-coupled membrane receptor. Here, we evaluated the contribution of HCA₂ in mediating the protective effect afforded by DMF in EAE, a mouse model of MS. DMF treatment reduced neurological deficit, immune cell infiltration, and demyelination of the spinal cords in wild-type mice, but not in Hca2⁻/⁻ mice, indicating that HCA₂ is required for the therapeutic effect of DMF. In particular, DMF decreased the number of infiltrating neutrophils in a HCA₂-dependent manner, likely by interfering with neutrophil adhesion to endothelial cells and chemotaxis. Together, our data indicate that HCA₂ mediates the therapeutic effects of DMF in EAE. Furthermore, identification of HCA₂ as a molecular target may help to optimize MS therapy.
Collapse
MESH Headings
- Animals
- Cell Adhesion/drug effects
- Cell Adhesion/genetics
- Dimethyl Fumarate
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Fumarates/pharmacology
- Humans
- Immunosuppressive Agents/pharmacology
- Mice
- Mice, Knockout
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Neutrophil Infiltration/drug effects
- Neutrophils/metabolism
- Neutrophils/pathology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
Collapse
|
19
|
G protein-coupled receptors for energy metabolites as new therapeutic targets. Nat Rev Drug Discov 2012; 11:603-19. [PMID: 22790105 DOI: 10.1038/nrd3777] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several G protein-coupled receptors (GPCRs) that are activated by intermediates of energy metabolism - such as fatty acids, saccharides, lactate and ketone bodies - have recently been discovered. These receptors are able to sense metabolic activity or levels of energy substrates and use this information to control the secretion of metabolic hormones or to regulate the metabolic activity of particular cells. Moreover, most of these receptors appear to be involved in the pathophysiology of metabolic diseases such as diabetes, dyslipidaemia and obesity. This Review summarizes the functions of these metabolite-sensing GPCRs in physiology and disease, and discusses the emerging pharmacological agents that are being developed to target these GPCRs for the treatment of metabolic disorders.
Collapse
|
20
|
Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol Sci 2011; 32:700-7. [PMID: 21944259 DOI: 10.1016/j.tips.2011.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 02/04/2023]
Abstract
Nicotinic acid (niacin) has been used for decades to prevent and treat atherosclerosis. The well-documented antiatherogenic activity is believed to result from its antidyslipidemic effects, which are accompanied by unwanted effects, especially a flush. There has been renewed interest in nicotinic acid owing to the need for improved prevention of atherosclerosis in patients already taking statins. In addition, the identification of a nicotinic acid receptor expressed in adipocytes and immune cells has helped to elucidate the mechanisms underlying the antiatherosclerotic as well as the unwanted effects of this drug. Nicotinic acid exerts its antiatherosclerotic effects at least in part independently of its antidyslipidemic effects through mechanisms involving its receptor on immune cells as well as through direct and indirect effects on the vascular endothelium. Here, we review recent data on the pharmacological effects of nicotinic acid and discuss how they might be harnessed to treat other inflammatory diseases such as multiple sclerosis or psoriasis.
Collapse
|