1
|
Takeda S, Hoshiai R, Tanaka M, Izawa T, Yamate J, Kuramoto T, Kuwamura M. Myelin lesion in the aspartoacylase (Aspa) knockout rat, an animal model for Canavan disease. Exp Anim 2024; 73:347-356. [PMID: 38538326 PMCID: PMC11254489 DOI: 10.1538/expanim.23-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/18/2024] [Indexed: 07/12/2024] Open
Abstract
Canavan disease (CD) is a fatal hereditary neurological disorder caused by a mutation in the aspartoacylase (ASPA) gene and characterized by neurological signs and vacuolation in the central nervous system (CNS). The mutation inhibits the hydrolysis of N-acetyl-aspartate (NAA) resulting in accumulation of NAA in the CNS. A new Aspa-knockout rat was generated by transcription activator-like effector nuclease (TALEN) technology. Herein we describe the pathological and morphometrical findings in the brain and spinal cords of Aspa-knockout rats. Although Aspa-knockout rats did not show any neurological signs, vacuolation with swollen axons, hypomyelination, and activated swollen astrocytes were observed mainly in the brainstem reticular formation, ascending and descending motor neuron pathway, and in the olfactory tract. Morphometrical analysis revealed no obvious change in the number of neurons. These changes in the CNS are similar to human CD, suggesting that this animal model would be useful for further study of treatment and understanding the pathophysiology of human CD.
Collapse
Affiliation(s)
- Shuji Takeda
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Rika Hoshiai
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, 9 Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
2
|
Grønbæk-Thygesen M, Voutsinos V, Johansson KE, Schulze TK, Cagiada M, Pedersen L, Clausen L, Nariya S, Powell RL, Stein A, Fowler DM, Lindorff-Larsen K, Hartmann-Petersen R. Deep mutational scanning reveals a correlation between degradation and toxicity of thousands of aspartoacylase variants. Nat Commun 2024; 15:4026. [PMID: 38740822 DOI: 10.1038/s41467-024-48481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Unstable proteins are prone to form non-native interactions with other proteins and thereby may become toxic. To mitigate this, destabilized proteins are targeted by the protein quality control network. Here we present systematic studies of the cytosolic aspartoacylase, ASPA, where variants are linked to Canavan disease, a lethal neurological disorder. We determine the abundance of 6152 of the 6260 ( ~ 98%) possible single amino acid substitutions and nonsense ASPA variants in human cells. Most low abundance variants are degraded through the ubiquitin-proteasome pathway and become toxic upon prolonged expression. The data correlates with predicted changes in thermodynamic stability, evolutionary conservation, and separate disease-linked variants from benign variants. Mapping of degradation signals (degrons) shows that these are often buried and the C-terminal region functions as a degron. The data can be used to interpret Canavan disease variants and provide insight into the relationship between protein stability, degradation and cell fitness.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vasileios Voutsinos
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer E Johansson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thea K Schulze
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Cagiada
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Line Pedersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lene Clausen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Snehal Nariya
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rachel L Powell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Amelie Stein
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Mei R, Qiu W, Yang Y, Xu S, Rao Y, Li Q, Luo Y, Huang H, Yang A, Tao H, Qiu M, Zhao X. Evidence That DDR1 Promotes Oligodendrocyte Differentiation during Development and Myelin Repair after Injury. Int J Mol Sci 2023; 24:10318. [PMID: 37373466 DOI: 10.3390/ijms241210318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Oligodendrocytes generate myelin sheaths vital for the formation, health, and function of the central nervous system. Mounting evidence suggests that receptor tyrosine kinases (RTKs) are crucial for oligodendrocyte differentiation and myelination in the CNS. It was recently reported that discoidin domain receptor 1 (Ddr1), a collagen-activated RTK, is expressed in oligodendrocyte lineage. However, its specific expression stage and functional role in oligodendrocyte development in the CNS remain to be determined. In this study, we report that Ddr1 is selectively upregulated in newly differentiated oligodendrocytes in the early postnatal CNS and regulates oligodendrocyte differentiation and myelination. Ddr1 knock-out mice of both sexes displayed compromised axonal myelination and apparent motor dysfunction. Ddr1 deficiency alerted the ERK pathway, but not the AKT pathway in the CNS. In addition, Ddr1 function is important for myelin repair after lysolecithin-induced demyelination. Taken together, the current study described, for the first time, the role of Ddr1 in myelin development and repair in the CNS, providing a novel molecule target for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Ruyi Mei
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wanwan Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yingying Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Siyu Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyu Rao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qingxin Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aifen Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huaping Tao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaofeng Zhao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Zheng RZ, Xing J, Huang Q, Yang XT, Zhao CY, Li XY. Integration of single-cell and bulk RNA sequencing data reveals key cell types and regulators in traumatic brain injury. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1201-1214. [PMID: 33757183 DOI: 10.3934/mbe.2021065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide, whose symptoms ranging from mild to severe, even life-threatening. However, specific cell types and key regulators involved in traumatic brain injury have not been well elucidated. In this study, utilizing single-cell RNA-seq (scRNA-seq) data from mice with TBI, we have successfully identified and characterized 13 cell populations including astrocytes, oligodendrocyte, newly formed oligodendrocytes, microglia, two types of endothelial cells, five types of excitatory and two types of inhibitory neurons. Differential expression analysis and gene set enrichment analysis (GSEA) revealed the upregulation of microglia and endothelial markers, along with the downregulation of markers of excitatory neurons in TBI. The cell-cell communication analysis revealed that microglia and endothelial cell might interact through the interaction of Icam1-Il2rg and C1qa-Cd93, and microglia might also communicate with each other via Icam1-Itagm. The autocrine ligand-receptor in microglia might result in activation of TYROBP causal network via Icam1-Itgam. The cell-cell contact between microglia and endothelial cell might activate integrin signaling pathways. Moreover, we also found that genes involved in microglia activation were highly downregulated in Tyrobp/Dap12-deficient microglia, indicating that the upregulation of Tyrobp and TYROBP causal network in microglia might be a candidate therapeutic target in TBI. In contrast, the excitatory neurons were involved in maintaining normal brain function, and their inactivation might cause dysfunction of nervous system in TBI patients. In conclusion, the present study has discerned major cell types such as microglia, endothelial cells and excitatory neurons, and revealed key regulator such as TYROBP, C1QA, and CD93 in TBI, which shall improve our understanding of the pathogenesis of TBI.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jin Xing
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Qiong Huang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xi-Tao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chang-Yi Zhao
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xin-Yuan Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
5
|
Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics, and Oncogenesis - Part 2: Acetate and ACSS2 in Health and Disease. Front Physiol 2020; 11:580171. [PMID: 33304273 PMCID: PMC7693462 DOI: 10.3389/fphys.2020.580171] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Acetate, the shortest chain fatty acid, has been implicated in providing health benefits whether it is derived from the diet or is generated from microbial fermentation of fiber in the gut. These health benefits range widely from improved cardiac function to enhanced red blood cell generation and memory formation. Understanding how acetate could influence so many disparate biological functions is now an area of intensive research. Protein acetylation is one of the most common post-translational modifications and increased systemic acetate strongly drives protein acetylation. By virtue of acetylation impacting the activity of virtually every class of protein, acetate driven alterations in signaling and gene transcription have been associated with several common human diseases, including cancer. In part 2 of this review, we will focus on some of the roles that acetate plays in health and human disease. The acetate-activating enzyme acyl-CoA short-chain synthetase family member 2 (ACSS2) will be a major part of that focus due to its role in targeted protein acetylation reactions that can regulate central metabolism and stress responses. ACSS2 is the only known enzyme that can recycle acetate derived from deacetylation reactions in the cytoplasm and nucleus of cells, including both protein and metabolite deacetylation reactions. As such, ACSS2 can recycle acetate derived from histone deacetylase reactions as well as protein deacetylation reactions mediated by sirtuins, among many others. Notably, ACSS2 can activate acetate released from acetylated metabolites including N-acetylaspartate (NAA), the most concentrated acetylated metabolite in the human brain. NAA has been associated with the metabolic reprograming of cancer cells, where ACSS2 also plays a role. Here, we discuss the context-specific roles that acetate can play in health and disease.
Collapse
Affiliation(s)
- John R. Moffett
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ranjini Vengilote
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diane M. Jaworski
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, United States
| | - Aryan M. Namboodiri
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
6
|
Walkley SU, Abbeduto L, Batshaw ML, Bhattacharyya A, Bookheimer SY, Christian BT, Constantino JN, de Vellis J, Doherty DA, Nelson DL, Piven J, Poduri A, Pomeroy SL, Samaco RC, Zoghbi HY, Guralnick MJ. Intellectual and developmental disabilities research centers: Fifty years of scientific accomplishments. Ann Neurol 2019; 86:332-343. [PMID: 31206741 PMCID: PMC8320680 DOI: 10.1002/ana.25531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Progress in addressing the origins of intellectual and developmental disabilities accelerated with the establishment 50 years ago of the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health and associated Intellectual and Developmental Disabilities Research Centers. Investigators at these Centers have made seminal contributions to understanding human brain and behavioral development and defining mechanisms and treatments of disorders of the developing brain. ANN NEUROL 2019;86:332-343.
Collapse
Affiliation(s)
- Steven U. Walkley
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Bronx, NY
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, University of California, Davis Memory Impairments and Neurological Disorders Institute, Sacramento, CA
| | - Mark L. Batshaw
- Children’s Research Institute, Children’s National Medical Center, Washington, DC
| | - Anita Bhattacharyya
- Department of Cell and Regenerative Biology, Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Research Center, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - Bradley T. Christian
- Departments of Medical Physics and Psychiatry, Waisman Center, University of Wisconsin–Madison, Madison, WI
| | - John N. Constantino
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine, Washington University in St Louis Intellectual and Developmental Disabilities Research Center, St Louis, MO
| | - Jean de Vellis
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Research Center, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - Daniel A. Doherty
- Department of Pediatrics, Center on Human Development and Disability, University of Washington, Seattle, WA
| | - David L. Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine Intellectual and Developmental Disabilities Research Center, Houston, TX
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina, University of North Carolina Intellectual and Developmental Disabilities Research Center, Chapel Hill, NC
| | - Annapurna Poduri
- Department of Neurology, Harvard Medical School, Boston Children’s Hospital and Harvard Medical School Intellectual and Developmental Disabilities Research Center, Boston, MA
| | - Scott L. Pomeroy
- Department of Neurology, Harvard Medical School, Boston Children’s Hospital and Harvard Medical School Intellectual and Developmental Disabilities Research Center, Boston, MA
| | - Rodney C. Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine Intellectual and Developmental Disabilities Research Center, Houston, TX
| | - Huda Y. Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine Intellectual and Developmental Disabilities Research Center, Houston, TX
| | - Michael J. Guralnick
- Departments of Psychology and Pediatrics, Center on Human Development and Disability, University of Washington, Seattle, WA
| | | |
Collapse
|
7
|
Behavioral impairment in SHATI/NAT8L knockout mice via dysfunction of myelination development. Sci Rep 2017; 7:16872. [PMID: 29203794 PMCID: PMC5715020 DOI: 10.1038/s41598-017-17151-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/21/2017] [Indexed: 11/28/2022] Open
Abstract
We have identified SHATI/NAT8L in the brain of mice treated with methamphetamine. Recently, it has been reported that SHATI is N-acetyltransferase 8-like protein (NAT8L) that produces N-acetylaspatate (NAA) from aspartate and acetyl-CoA. We have generated SHATI/NAT8L knockout (Shati−/−) mouse which demonstrates behavioral deficits that are not rescued by single NAA supplementation, although the reason for which is still not clarified. It is possible that the developmental impairment results from deletion of SHATI/NAT8L in the mouse brain, because NAA is involved in myelination through lipid synthesis in oligodendrocytes. However, it remains unclear whether SHATI/NAT8L is involved in brain development. In this study, we found that the expression of Shati/Nat8l mRNA was increased with brain development in mice, while there was a reduction in the myelin basic protein (MBP) level in the prefrontal cortex of juvenile, but not adult, Shati−/− mice. Next, we found that deletion of SHATI/NAT8L induces several behavioral deficits in mice, and that glyceryltriacetate (GTA) treatment ameliorates the behavioral impairments and normalizes the reduced protein level of MBP in juvenile Shati−/− mice. These findings suggest that SHATI/NAT8L is involved in myelination in the juvenile mouse brain via supplementation of acetate derived from NAA. Thus, reduction of SHATI/NAT8L induces developmental neuronal dysfunction.
Collapse
|
8
|
Liu M, Xu P, Guan Z, Qian X, Dockery P, Fitzgerald U, O'Brien T, Shen S. Ulk4 deficiency leads to hypomyelination in mice. Glia 2017; 66:175-190. [PMID: 29034508 DOI: 10.1002/glia.23236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
Brain nerve fibers are insulated by myelin which is produced by oligodendrocytes. Defects in myelination are increasingly recognized as a common pathology underlying neuropsychiatric and neurodevelopmental disorders, which are associated with deletions of the Unc-51-like kinase 4 (ULK4) gene. Key transcription factors have been identified for oligodendrogenesis, but little is known about their associated regulators. Here we report that Ulk4 acts as a key regulator of myelination. Myelination is reduced by half in the Ulk4tm1a/tm1a hypomorph brain, whereas expression of axonal marker genes Tubb3, Nefh, Nefl and Nefm remains unaltered. Transcriptome analyses reveal that 8 (Gfap, Mbp, Mobp, Plp1, Slc1a2, Ttr, Cnp, Scd2) of the 10 most significantly altered genes in the Ulk4tm1a/tm1a brain are myelination-related. Ulk4 is co-expressed in Olig2+ (pan-oligodendrocyte marker) and CC1+ (mature myelinated oligodendrocyte marker) cells during postnatal development. Major oligodendrogeneic transcription factors, including Olig2, Olig1, Myrf, Sox10, Sox8, Sox6, Sox17, Nkx2-2, Nkx6-2 and Carhsp1, are significantly downregulated in the mutants. mRNA transcripts enriched in oligodendrocyte progenitor cells (OPCs), the newly formed oligodendrocytes (NFOs) and myelinating oligodendrocytes (MOs), are significantly attenuated. Expression of stage-specific oligodendrocyte factors including Cspg4, Sox17, Nfasc, Enpp6, Sirt2, Cnp, Plp1, Mbp, Ugt8, Mag and Mog are markedly decreased. Indirect effects of axon caliber and neuroinflammation may also contribute to the hypomyelination, as Ulk4 mutants display smaller axons and increased neuroinflammation. This is the first evidence demonstrating that ULK4 is a crucial regulator of myelination, and ULK4 may therefore become a novel therapeutic target for hypomyelination diseases.
Collapse
Affiliation(s)
- Min Liu
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Zhenlong Guan
- Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Una Fitzgerald
- National Centre for Biomedical Engineering Science, Galway Neuroscience Centre, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| |
Collapse
|
9
|
Jurdáková H, Górová R, Addová G, Behúlová D, Ostrovský I. The state of treatment approach and diagnostics in Canavan disease with focus on the determination of N-acetylasparic acid. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-016-0033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Singhal NK, Huang H, Li S, Clements R, Gadd J, Daniels A, Kooijman EE, Bannerman P, Burns T, Guo F, Pleasure D, Freeman E, Shriver L, McDonough J. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition. Exp Brain Res 2016; 235:279-292. [PMID: 27709268 DOI: 10.1007/s00221-016-4789-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/27/2016] [Indexed: 01/01/2023]
Abstract
The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L-/-) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L-/- mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination.
Collapse
Affiliation(s)
- N K Singhal
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - H Huang
- Department of Chemistry and Biology, University of Akron, Akron, OH, 44325, USA
| | - S Li
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - R Clements
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - J Gadd
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - A Daniels
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - E E Kooijman
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - P Bannerman
- Department of Cell Biology and Human Anatomy, UC Davis School of Medicine, Sacramento, CA, 95817, USA
| | - T Burns
- Department of Neurology, UC Davis School of Medicine, Sacramento, CA, 95817, USA
| | - F Guo
- Department of Neurology, UC Davis School of Medicine, Sacramento, CA, 95817, USA
| | - D Pleasure
- Department of Neurology, UC Davis School of Medicine, Sacramento, CA, 95817, USA
| | - E Freeman
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - L Shriver
- Department of Chemistry and Biology, University of Akron, Akron, OH, 44325, USA
| | - J McDonough
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
11
|
Yamazaki R, Ishibashi T, Baba H, Yamaguchi Y. Knockdown of Unconventional Myosin ID Expression Induced Morphological Change in Oligodendrocytes. ASN Neuro 2016; 8:1759091416669609. [PMID: 27655972 PMCID: PMC5036140 DOI: 10.1177/1759091416669609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022] Open
Abstract
Myelin is a special multilamellar structure involved in various functions in the nervous system. In the central nervous system, the oligodendrocyte (OL) produces myelin and has a unique morphology. OLs have a dynamic membrane sorting system associated with cytoskeletal organization, which aids in the production of myelin. Recently, it was reported that the assembly and disassembly of actin filaments is crucial for myelination. However, the partner myosin molecule which associates with actin filaments during the myelination process has not yet been identified. One candidate myosin is unconventional myosin ID (Myo1d) which is distributed throughout central nervous system myelin; however, its function is still unclear. We report here that Myo1d is expressed during later stages of OL differentiation, together with myelin proteolipid protein (PLP). In addition, Myo1d is distributed at the leading edge of the myelin-like membrane in cultured OL, colocalizing mainly with actin filaments, 2',3'-cyclic nucleotide phosphodiesterase and partially with PLP. Myo1d-knockdown with specific siRNA induces significant morphological changes such as the retraction of processes and degeneration of myelin-like membrane, and finally apoptosis. Furthermore, loss of Myo1d by siRNA results in the impairment of intracellular PLP transport. Together, these results suggest that Myo1d may contribute to membrane dynamics either in wrapping or transporting of myelin membrane proteins during formation and maintenance of myelin.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Tomoko Ishibashi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yoshihide Yamaguchi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
12
|
Hegan PS, Ostertag E, Geurts AM, Mooseker MS. Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells. Cytoskeleton (Hoboken) 2015; 72:503-16. [PMID: 26446290 DOI: 10.1002/cm.21259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/18/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
In wild type (WT) tracheal epithelial cells, ciliary basal bodies are oriented such that all cilia on the cell surface beat in the same upward direction. This precise alignment of basal bodies and, as a result, the ciliary axoneme, is termed rotational planar cell polarity (PCP). Rotational PCP in the multi-ciliated epithelial cells of the trachea is perturbed in rats lacking myosin Id (Myo1d). Myo1d is localized in the F-actin and basal body rich subapical cortex of the ciliated tracheal epithelial cell. Scanning and transmission electron microscopy of Myo1d knock out (KO) trachea revealed that the unidirectional bending pattern is disrupted. Instead, cilia splay out in a disordered, often radial pattern. Measurement of the alignment axis of the central pair axonemal microtubules was much more variable in the KO, another indicator that rotational PCP is perturbed. The asymmetric localization of the PCP core protein Vangl1 is lost. Both the velocity and linearity of cilia-driven movement of beads above the tracheal mucosal surface was impaired in the Myo1d KO. Multi-ciliated brain ependymal epithelial cells exhibit a second form of PCP termed translational PCP in which basal bodies and attached cilia are clustered at the anterior side of the cell. The precise asymmetric clustering of cilia is disrupted in the ependymal cells of the Myo1d KO rat. While basal body clustering is maintained, left-right positioning of the clusters is lost.
Collapse
Affiliation(s)
- Peter S Hegan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Eric Ostertag
- Transposagen Biopharmaceudicals, Lexington, Kentucky
| | - Aron M Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark S Mooseker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Contreras L. Role of AGC1/aralar in the metabolic synergies between neuron and glia. Neurochem Int 2015; 88:38-46. [DOI: 10.1016/j.neuint.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
14
|
The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA. Nat Commun 2015; 6:6122. [PMID: 25607772 PMCID: PMC4302765 DOI: 10.1038/ncomms7122] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/14/2014] [Indexed: 01/17/2023] Open
Abstract
In the vertebrate central nervous system, myelinating oligodendrocytes are postmitotic and derive from proliferative oligodendrocyte precursor cells (OPCs). The molecular mechanisms that govern oligodendrocyte development are incompletely understood, but recent studies implicate the adhesion class of G protein-coupled receptors (aGPCRs) as important regulators of myelination. Here, we use zebrafish and mouse models to dissect the function of the aGPCR Gpr56 in oligodendrocyte development. We show that gpr56 is expressed during early stages of oligodendrocyte development. In addition, we observe a significant reduction of mature oligodendrocyte number and myelinated axons in gpr56 zebrafish mutants. This reduction results from decreased OPC proliferation, rather than increased cell death or altered neural precursor differentiation potential. Finally, we show that these functions are mediated by Gα12/13 proteins and Rho activation. Together, our data establish Gpr56 as a regulator of oligodendrocyte development.
Collapse
|
15
|
Cheli VT, Santiago González DA, Spreuer V, Paez PM. Voltage-gated Ca2+ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Exp Neurol 2014; 265:69-83. [PMID: 25542980 DOI: 10.1016/j.expneurol.2014.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/14/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022]
Abstract
We have previously shown that the expression of voltage-operated Ca(++) channels (VOCCs) is highly regulated in the oligodendroglial lineage and is essential for proper oligodendrocyte progenitor cell (OPC) migration. Here we assessed the role of VOCCs, in particular the L-type, in oligodendrocyte maturation. We used pharmacological treatments to activate or block voltage-gated Ca(++) uptake and siRNAs to specifically knock down the L-type VOCC in primary cultures of mouse OPCs. Activation of VOCCs by plasma membrane depolarization increased OPC morphological differentiation as well as the expression of mature oligodendrocyte markers. On the contrary, inhibition of L-type Ca(++) channels significantly delayed OPC development. OPCs transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents showed reduce Ca(++) influx by ~75% after plasma membrane depolarization, indicating that Cav1.2 is heavily involved in mediating voltage-operated Ca(++) entry in OPCs. Cav1.2 knockdown induced a decrease in the proportion of oligodendrocytes that expressed myelin proteins, and an increase in cells that retained immature oligodendrocyte markers. Moreover, OPC proliferation, but not cell viability, was negatively affected after L-type Ca(++) channel knockdown. Additionally, we have tested the ability of L-type VOCCs to facilitate axon-glial interaction during the first steps of myelin formation using an in vitro co-culture system of OPCs with cortical neurons. Unlike control OPCs, Cav1.2 deficient oligodendrocytes displayed a simple morphology, low levels of myelin proteins expression and appeared to be less capable of establishing contacts with neurites and axons. Together, this set of in vitro experiments characterizes the involvement of L-type VOCCs on OPC maturation as well as the role played by these Ca(++) channels during the early phases of myelination.
Collapse
Affiliation(s)
- V T Cheli
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - D A Santiago González
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - V Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - P M Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA.
| |
Collapse
|
16
|
Krauspe BM, Dreher W, Beyer C, Baumgartner W, Denecke B, Janssen K, Langhans CD, Clarner T, Kipp M. Short-term cuprizone feeding verifies N-acetylaspartate quantification as a marker of neurodegeneration. J Mol Neurosci 2014; 55:733-48. [PMID: 25189319 DOI: 10.1007/s12031-014-0412-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/20/2014] [Indexed: 01/27/2023]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is a quantitative MR imaging technique often used to complement conventional MR imaging with specific metabolic information. A key metabolite is the amino acid derivative N-Acetylaspartate (NAA) which is an accepted marker to measure the extent of neurodegeneration in multiple sclerosis (MS) patients. NAA is catabolized by the enzyme aspartoacylase (ASPA) which is predominantly expressed in oligodendrocytes. Since the formation of MS lesions is paralleled by oligodendrocyte loss, NAA might accumulate in the brain, and therefore, the extent of neurodegeneration might be underestimated. In the present study, we used the well-characterized cuprizone model. There, the loss of oligodendrocytes is paralleled by a reduction in ASPA expression and activity as demonstrated by genome-wide gene expression analysis and enzymatic activity assays. Notably, brain levels of NAA were not increased as determined by gas chromatography-mass spectrometry and 1H-MRS. These important findings underpin the reliability of NAA quantification as a valid marker for the paraclinical determination of the extent of neurodegeneration, even under conditions of oligodendrocyte loss in which impaired metabolization of NAA is expected. Future studies have to reveal whether other enzymes are able to metabolize NAA or whether an excess of NAA is cleared by other mechanisms rather than enzymatic metabolism.
Collapse
Affiliation(s)
- Barbara Maria Krauspe
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hoshino H, Kubota M. Canavan disease: clinical features and recent advances in research. Pediatr Int 2014; 56:477-83. [PMID: 24977939 DOI: 10.1111/ped.12422] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 12/19/2022]
Abstract
Canavan disease (CD) is a genetic neurodegenerative leukodystrophy that results in the spongy degeneration of white matter in the brain. CD is characterized by mutations in the gene encoding aspartoacylase (ASPA), the substrate enzyme that hydrolyzes N-acetylaspartic acid (NAA) to acetate and aspartate. Elevated NAA and subsequent deficiency in acetate associated with this disease cause progressive neurological symptoms, such as macrocephaly, visuocognitive dysfunction, and psychomotor delay. The prevalence of CD is higher among Ashkenazi Jewish people, and several types of mutations have been reported in the gene coding ASPA. Highly elevated NAA is more specific to CD than other leukodystrophies, and an examination of urinary NAA concentration is useful for diagnosing CD. Many researchers are now examining the mechanisms responsible for white matter degeneration or dysmyelination in CD using mouse models, and several persuasive hypotheses have been suggested for the pathophysiology of CD. One is that NAA serves as a water pump; consequently, a disorder in NAA catabolism leads to astrocytic edema. Another hypothesis is that the hydrolyzation of NAA in oligodendrocytes is essential for myelin synthesis through the supply of acetate. Although there is currently no curative therapy for CD, dietary supplements are candidates that may retard the progression of the symptoms associated with CD. Furthermore, gene therapies using viral vectors have been investigated using rat models. These therapies have been found to be tolerable with no severe long-term adverse effects, reduce the elevated NAA in the brain, and may be applied to humans in the future.
Collapse
Affiliation(s)
- Hideki Hoshino
- Department of Pediatrics, University of Tokyo, Tokyo, Japan; Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
18
|
Nordengen K, Heuser C, Rinholm JE, Matalon R, Gundersen V. Localisation of N-acetylaspartate in oligodendrocytes/myelin. Brain Struct Funct 2013; 220:899-917. [PMID: 24379086 DOI: 10.1007/s00429-013-0691-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/14/2013] [Indexed: 11/29/2022]
Abstract
The role of N-acetylaspartate in the brain is unclear. Here we used specific antibodies against N-acetylaspartate and immunocytochemistry of carbodiimide-fixed adult rodent brain to show that, besides staining of neuronal cell bodies in the grey matter, N-acetylaspartate labelling was present in oligodendrocytes/myelin in white matter tracts. Immunoelectron microscopy of the rat hippocampus showed that N-acetylaspartate was concentrated in the myelin. Also neuronal cell bodies and axons contained significant amounts of N-acetylaspartate, while synaptic elements and astrocytes were low in N-acetylaspartate. Mitochondria in axons and neuronal cell bodies contained higher levels of N-acetylaspartate compared to the cytosol, compatible with synthesis of N-acetylaspartate in mitochondria. In aspartoacylase knockout mice, in which catabolism of N-acetylaspartate is blocked, the levels of N-acetylaspartate were largely increased in oligodendrocytes/myelin. In these mice, the highest myelin concentration of N-acetylaspartate was found in the cerebellum, a region showing overt dysmyelination. In organotypic cortical slice cultures there was no evidence for N-acetylaspartate-induced myelin toxicity, supporting the notion that myelin damage is induced by the lack of N-acetylaspartate for lipid production. Our findings also implicate that N-acetylaspartate signals on magnetic resonance spectroscopy reflect not only vital neurons but also vital oligodendrocytes/myelin.
Collapse
Affiliation(s)
- Kaja Nordengen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, PO Box 1105, 0317, Oslo, Norway
| | | | | | | | | |
Collapse
|
19
|
Long PM, Tighe SW, Driscoll HE, Moffett JR, Namboodiri AMA, Viapiano MS, Lawler SE, Jaworski DM. Acetate supplementation induces growth arrest of NG2/PDGFRα-positive oligodendroglioma-derived tumor-initiating cells. PLoS One 2013; 8:e80714. [PMID: 24278309 PMCID: PMC3835562 DOI: 10.1371/journal.pone.0080714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/07/2013] [Indexed: 12/28/2022] Open
Abstract
Cancer is associated with globally hypoacetylated chromatin and considerable attention has recently been focused on epigenetic therapies. N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate and ultimately acetyl-Coenzyme A for histone acetylation, are reduced in oligodendroglioma. The short chain triglyceride glyceryl triacetate (GTA), which increases histone acetylation and inhibits histone deacetylase expression, has been safely used for acetate supplementation in Canavan disease, a leukodystrophy due to ASPA mutation. We demonstrate that GTA induces cytostatic G0 growth arrest of oligodendroglioma-derived cells in vitro, without affecting normal cells. Sodium acetate, at doses comparable to that generated by complete GTA catalysis, but not glycerol also promoted growth arrest, whereas long chain triglycerides promoted cell growth. To begin to elucidate its mechanism of action, the effects of GTA on ASPA and acetyl-CoA synthetase protein levels and differentiation of established human oligodendroglioma cells (HOG and Hs683) and primary tumor-derived oligodendroglioma cells that exhibit some features of cancer stem cells (grade II OG33 and grade III OG35) relative to an oligodendrocyte progenitor line (Oli-Neu) were examined. The nuclear localization of ASPA and acetyl-CoA synthetase-1 in untreated cells was regulated during the cell cycle. GTA-mediated growth arrest was not associated with apoptosis or differentiation, but increased expression of acetylated proteins. Thus, GTA-mediated acetate supplementation may provide a safe, novel epigenetic therapy to reduce the growth of oligodendroglioma cells without affecting normal neural stem or oligodendrocyte progenitor cell proliferation or differentiation.
Collapse
Affiliation(s)
- Patrick M. Long
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Scott W. Tighe
- Vermont Cancer Center, Burlington, Vermont, United States of America
| | - Heather E. Driscoll
- Vermont Genetics Network, Norwich University, Northfield, Vermont, United States of America
| | - John R. Moffett
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aryan M. A. Namboodiri
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Mariano S. Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Diane M. Jaworski
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
20
|
Long PM, Moffett JR, Namboodiri AMA, Viapiano MS, Lawler SE, Jaworski DM. N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) promote growth and inhibit differentiation of glioma stem-like cells. J Biol Chem 2013; 288:26188-26200. [PMID: 23884408 DOI: 10.1074/jbc.m113.487553] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required.
Collapse
Affiliation(s)
- Patrick M Long
- From the Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - John R Moffett
- the Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Aryan M A Namboodiri
- the Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Mariano S Viapiano
- the Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts 02215
| | - Sean E Lawler
- the Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts 02215
| | - Diane M Jaworski
- From the Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405,.
| |
Collapse
|
21
|
Abstract
The inherited leukodystrophy Canavan disease arises due to a loss of the ability to catabolize N-acetylaspartic acid (NAA) in the brain and constitutes a major point of focus for efforts to define NAA function. Accumulation of noncatabolized NAA is diagnostic for Canavan disease, but contrasts with the abnormally low NAA associated with compromised neuronal integrity in a broad spectrum of other clinical conditions. Experimental evidence for NAA function supports a role in white matter lipid synthesis, but does not explain how both elevated and lowered NAA can be associated with pathology in the brain. We have undertaken a systematic analysis of postnatal development in a mouse model of Canavan disease that delineates development and pathology by identifying markers of oxidative stress preceding oligodendrocyte loss and dysmyelination. These data suggest a role for NAA in the maintenance of metabolic integrity in oligodendrocytes that may be of relevance to the strong association between NAA and neuronal viability. N-acetylaspartic acid is proposed here to support lipid synthesis and energy metabolism via the provision of substrate for both cellular processes during early postnatal development.
Collapse
|
22
|
Early effects of lipopolysaccharide-induced inflammation on foetal brain development in rat. ASN Neuro 2011; 3:AN20110027. [PMID: 22007738 PMCID: PMC3218569 DOI: 10.1042/an20110027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Studies in humans and animal models link maternal infection and imbalanced levels of inflammatory mediators in the foetal brain to the aetiology of neuropsychiatric disorders. In a number of animal models, it was shown that exposure to viral or bacterial agents during a period that corresponds to the second trimester in human gestation triggers brain and behavioural abnormalities in the offspring. However, little is known about the early cellular and molecular events elicited by inflammation in the foetal brain shortly after maternal infection has occurred. In this study, maternal infection was mimicked by two consecutive intraperitoneal injections of 200 μg of LPS (lipopolysaccharide)/kg to timed-pregnant rats at GD15 (gestational day 15) and GD16. Increased thickness of the CP (cortical plate) and hippocampus together with abnormal distribution of immature neuronal markers and decreased expression of markers for neural progenitors were observed in the LPS-exposed foetal forebrains at GD18. Such effects were accompanied by decreased levels of reelin and the radial glial marker GLAST (glial glutamate transporter), and elevated levels of pro-inflammatory cytokines in maternal serum and foetal forebrains. Foetal inflammation elicited by maternal injections of LPS has discrete detrimental effects on brain development. The early biochemical and morphological changes described in this work begin to explain the sequelae of early events that underlie the neurobehavioural deficits reported in humans and animals exposed to prenatal insults.
Collapse
|
23
|
Francis JS, Strande L, Pu A, Leone P. Endogenous aspartoacylase expression is responsive to glutamatergic activity in vitro and in vivo. Glia 2011; 59:1435-46. [DOI: 10.1002/glia.21187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 04/20/2011] [Indexed: 11/10/2022]
|
24
|
Ramos M, Pardo B, Llorente-Folch I, Saheki T, del Arco A, Satrústegui J. Deficiency of the mitochondrial transporter of aspartate/glutamate aralar/AGC1 causes hypomyelination and neuronal defects unrelated to myelin deficits in mouse brain. J Neurosci Res 2011; 89:2008-17. [DOI: 10.1002/jnr.22639] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/31/2011] [Accepted: 02/08/2011] [Indexed: 12/24/2022]
|
25
|
Bajo-Grañeras R, Sanchez D, Gutierrez G, González C, Do Carmo S, Rassart E, Ganfornina MD. Apolipoprotein D alters the early transcriptional response to oxidative stress in the adult cerebellum. J Neurochem 2011; 117:949-60. [PMID: 21463325 DOI: 10.1111/j.1471-4159.2011.07266.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lipocalin Apolipoprotein D (ApoD), known to protect the nervous system against oxidative stress (OS) in model organisms, is up-regulated early in the mouse brain in response to the ROS generator paraquat. However, the processes triggered by this up-regulation have not been explored. We present here a study of the effect of ApoD on the early transcriptional changes upon OS in the mouse cerebellum using microarray profiling. ApoD-KO and transgenic mice over-expressing ApoD in neurons are compared to wild-type controls. In control conditions, ApoD affects the transcriptional profile of neuron and oligodendrocyte-specific genes involved in neuronal excitability, synaptic function, and myelin homeostasis. When challenged with paraquat, the absence of ApoD modifies the response of genes mainly related to OS management and myelination. Interestingly, the over-expression of ApoD in neurons almost completely abolishes the early transcriptional response to OS. We independently evaluate the expression of protein kinase Cδ, a gene up-regulated by OS only in the ApoD-KO cerebellum, and find it over-expressed in cultured ApoD-KO primary astrocytes, which points to a role for ApoD in astrocyte-microglia signaling. Our results support the hypothesis that ApoD is necessary for a proper response of the nervous system against physiological and pathological OS.
Collapse
Affiliation(s)
- Raquel Bajo-Grañeras
- Departamento de Bioquímica y Biología Molecular y Fisiología-IBGM, Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|