1
|
Hernández-Frausto M, Bilash OM, Masurkar AV, Basu J. Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease. Front Neural Circuits 2023; 17:1223891. [PMID: 37841892 PMCID: PMC10570439 DOI: 10.3389/fncir.2023.1223891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Olesia M. Bilash
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Arjun V. Masurkar
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
2
|
Lukiw WJ. MicroRNA (miRNA) Complexity in Alzheimer's Disease (AD). BIOLOGY 2023; 12:788. [PMID: 37372073 DOI: 10.3390/biology12060788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
AD is a complex, progressive, age-related neurodegenerative disorder representing the most common cause of senile dementia and neurological dysfunction in our elderly domestic population. The widely observed heterogeneity of AD is a reflection of the complexity of the AD process itself and the altered molecular-genetic mechanisms operating in the diseased human brain and CNS. One of the key players in this complex regulation of gene expression in human pathological neurobiology are microRNAs (miRNAs) that, through their actions, shape the transcriptome of brain cells that normally associate with very high rates of genetic activity, gene transcription and messenger RNA (mRNA) generation. The analysis of miRNA populations and the characterization of their abundance, speciation and complexity can further provide valuable clues to our molecular-genetic understanding of the AD process, especially in the sporadic forms of this common brain disorder. Current in-depth analyses of high-quality AD and age- and gender-matched control brain tissues are providing pathophysiological miRNA-based signatures of AD that can serve as a basis for expanding our mechanistic understanding of this disorder and the future design of miRNA- and related RNA-based therapeutics. This focused review will consolidate the findings from multiple laboratories as to which are the most abundant miRNA species, both free and exosome-bound in the human brain and CNS, which miRNA species appear to be the most prominently affected by the AD process and review recent developments and advancements in our understanding of the complexity of miRNA signaling in the hippocampal CA1 region of AD-affected brains.
Collapse
Affiliation(s)
- Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Xia L, Zhang F, Li Y, Mo Y, Zhang L, Li Q, Luo M, Hou X, Du Z, Deng J, Hao E. A new perspective on Alzheimer's disease: m6A modification. Front Genet 2023; 14:1166831. [PMID: 37255714 PMCID: PMC10225986 DOI: 10.3389/fgene.2023.1166831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
As a neurodegenerative disease, Alzheimer's disease (AD) is characterized by synaptic loss, extracellular plaques of amyloid accumulation, hyperphosphorylation of tau, and neuroinflammation. Various biological processes are affected by epitranscriptomic modifications, which regulate the metabolism of mRNA in cells and regulate the expression of genes. In response to changes in m6A modification levels, the nervous system becomes dysfunctional and plays a significant role in the development of Alzheimer's disease. As a result of recent research, this paper reviews advances in the understanding of the regulatory mechanisms of m6A modification in the occurrence and development of AD. In addition, the article discusses recent research techniques related to animal models of m6A and AD. Furthermore, it discusses the possibility of studying the pathogenesis of AD at the level of the epitranscriptome, identifying early diagnostic markers, and screening for effective treatment options.
Collapse
Affiliation(s)
- Lei Xia
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
| | - Fan Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi International Zhang Medicine Hospital Affiliated to Gungxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Yulu Li
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
| | - Yuemi Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
| | - Lingqiu Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
| | - Qianhua Li
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
| | - Minghuang Luo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
| | - Xiaotao Hou
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiagang Deng
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
4
|
Saura CA, Deprada A, Capilla-López MD, Parra-Damas A. Revealing cell vulnerability in Alzheimer's disease by single-cell transcriptomics. Semin Cell Dev Biol 2023; 139:73-83. [PMID: 35623983 DOI: 10.1016/j.semcdb.2022.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that by affecting specific brain cell types and regions cause severe pathological and functional changes in memory neural circuits. A comprehensive knowledge of the pathogenic mechanisms underlying AD requires a deeper understanding of the cell-specific pathological responses through integrative molecular analyses. Recent application of high-throughput single-cell transcriptomics to postmortem tissue has proved powerful to unravel cell susceptibility and biological networks responding to amyloid and tau pathologies. Here, we review single-cell transcriptomic studies successfully applied to decipher cell-specific gene expression programs and pathways in the brain of AD patients. Transcriptional information reveals both specific and common gene signatures affecting the major cerebral cell types, including astrocytes, endothelial cells, microglia, neurons, and oligodendrocytes. Cell type-specific transcriptomes associated with AD pathology and clinical symptoms are related to common biological networks affecting, among others pathways, synaptic function, inflammation, proteostasis, cell death, oxidative stress, and myelination. The general picture that emerges from systems-level single-cell transcriptomics is a spatiotemporal pattern of cell diversity and biological pathways, and novel cell subpopulations affected in AD brain. We argue that broader implementation of cell transcriptomics in larger AD human cohorts using standardized protocols is fundamental for reliable assessment of temporal and regional cell-type gene profiling. The possibility of applying this methodology for personalized medicine in clinics is still challenging but opens new roads for future diagnosis and treatment in dementia.
Collapse
Affiliation(s)
- Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Angel Deprada
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Maria Dolores Capilla-López
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
5
|
Kumari A, Rahaman A, Zeng XA, Farooq MA, Huang Y, Yao R, Ali M, Ishrat R, Ali R. Temporal Cortex Microarray Analysis Revealed Impaired Ribosomal Biogenesis and Hyperactivity of the Glutamatergic System: An Early Signature of Asymptomatic Alzheimer's Disease. Front Neurosci 2022; 16:966877. [PMID: 35958988 PMCID: PMC9359077 DOI: 10.3389/fnins.2022.966877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenic aging is regarded as asymptomatic AD when there is no cognitive deficit except for neuropathology consistent with Alzheimer's disease. These individuals are highly susceptible to developing AD. Braak and Braak's theory specific to tau pathology illustrates that the brain's temporal cortex region is an initiation site for early AD progression. So, the hub gene analysis of this region may reveal early altered biological cascades that may be helpful to alleviate AD in an early stage. Meanwhile, cognitive processing also drags its attention because cognitive impairment is the ultimate result of AD. Therefore, this study aimed to explore changes in gene expression of aged control, asymptomatic AD (AsymAD), and symptomatic AD (symAD) in the temporal cortex region. We used microarray data sets to identify differentially expressed genes (DEGs) with the help of the R programming interface. Further, we constructed the protein-protein interaction (PPI) network by performing the STRING plugin in Cytoscape and determined the hub genes via the CytoHubba plugin. Furthermore, we conducted Gene Ontology (GO) enrichment analysis via Bioconductor's cluster profile package. Resultant, the AsymAD transcriptome revealed the early-stage changes of glutamatergic hyperexcitability. Whereas the connectivity of major hub genes in this network indicates a shift from initially reduced rRNA biosynthesis in the AsymAD group to impaired protein synthesis in the symAD group. Both share the phenomenon of breaking tight junctions and others. In conclusion, this study offers new understandings of the early biological vicissitudes that occur in the brain before the manifestation of symAD and gives new promising therapeutic targets for early AD intervention.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- Abdul Rahaman
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- *Correspondence: Xin-An Zeng
| | - Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Yanyan Huang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Runyu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Murtaza Ali
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Romana Ishrat
| | - Rafat Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Evaluation of Class IIa Histone Deacetylases Expression and In Vivo Epigenetic Imaging in a Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168633. [PMID: 34445342 PMCID: PMC8395513 DOI: 10.3390/ijms22168633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetic regulation by histone deacetylase (HDAC) is associated with synaptic plasticity and memory formation, and its aberrant expression has been linked to cognitive disorders, including Alzheimer's disease (AD). This study aimed to investigate the role of class IIa HDAC expression in AD and monitor it in vivo using a novel radiotracer, 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]TFAHA). A human neural cell culture model with familial AD (FAD) mutations was established and used for in vitro assays. Positron emission tomography (PET) imaging with [18F]TFAHA was performed in a 3xTg AD mouse model for in vivo evaluation. The results showed a significant increase in HDAC4 expression in response to amyloid-β (Aβ) deposition in the cell model. Moreover, treatment with an HDAC4 selective inhibitor significantly upregulated the expression of neuronal memory-/synaptic plasticity-related genes. In [18F]TFAHA-PET imaging, whole brain or regional uptake was significantly higher in 3xTg AD mice compared with WT mice at 8 and 11 months of age. Our study demonstrated a correlation between class IIa HDACs and Aβs, the therapeutic benefit of a selective inhibitor, and the potential of using [18F]TFAHA as an epigenetic radiotracer for AD, which might facilitate the development of AD-related neuroimaging approaches and therapies.
Collapse
|
7
|
Leyton E, Matus D, Espinoza S, Benitez JM, Cortés BI, Gomez W, Arévalo NB, Murgas P, Manque P, Woehlbier U, Duran-Aniotz C, Hetz C, Behrens MI, SanMartín CD, Nassif M. DEF8 and Autophagy-Associated Genes Are Altered in Mild Cognitive Impairment, Probable Alzheimer’s Disease Patients, and a Transgenic Model of the Disease. J Alzheimers Dis 2021; 82:S163-S178. [DOI: 10.3233/jad-201264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Disturbances in the autophagy/endolysosomal systems are proposed as early signatures of Alzheimer’s disease (AD). However, few studies are available concerning autophagy gene expression in AD patients. Objective: To explore the differential expression of classical genes involved in the autophagy pathway, among them a less characterized one, DEF8 (Differentially expressed in FDCP 8), initially considered a Rubicon family member, in peripheral blood mononuclear cells (PBMCs) from individuals with mild cognitive impairment (MCI) and probable AD (pAD) and correlate the results with the expression of DEF8 in the brain of 5xFAD mice. Method: By real-time PCR and flow cytometry, we evaluated autophagy genes levels in PBMCs from MCI and pAD patients. We evaluated DEF8 levels and its localization in brain samples of the 5xFAD mice by real-time PCR, western blot, and immunofluorescence. Results: Transcriptional levels of DEF8 were significantly reduced in PBMCs of MCI and pAD patients compared with healthy donors, correlating with the MoCA and MoCA-MIS cognitive tests scores. DEF8 protein levels were increased in lymphocytes from MCI but not pAD, compared to controls. In the case of brain samples from 5xFAD mice, we observed a reduced mRNA expression and augmented protein levels in 5xFAD compared to age-matched wild-type mice. DEF8 presented a neuronal localization. Conclusion: DEF8, a protein proposed to act at the final step of the autophagy/endolysosomal pathway, is differentially expressed in PBMCs of MCI and pAD and neurons of 5xFAD mice. These results suggest a potential role for DEF8 in the pathophysiology of AD.
Collapse
Affiliation(s)
- Esteban Leyton
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Diego Matus
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Sandra Espinoza
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - José Matías Benitez
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I. Cortés
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Wileidy Gomez
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Nohela B. Arévalo
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Immunology Laboratory, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Patricio Manque
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Ute Woehlbier
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Claudia Duran-Aniotz
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibañez, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - María Isabel Behrens
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Psiquiatría, Clínica Alemana de Santiago
| | - Carol D. SanMartín
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Melissa Nassif
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
8
|
Chen YA, Lu CH, Ke CC, Chiu SJ, Jeng FS, Chang CW, Yang BH, Liu RS. Mesenchymal Stem Cell-Derived Exosomes Ameliorate Alzheimer's Disease Pathology and Improve Cognitive Deficits. Biomedicines 2021; 9:biomedicines9060594. [PMID: 34073900 PMCID: PMC8225157 DOI: 10.3390/biomedicines9060594] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
The accumulation of extracellular β-amyloid (Aβ) plaques within the brain is unique to Alzheimer’s disease (AD) and thought to induce synaptic deficits and neuronal loss. Optimal therapies should tackle the core AD pathophysiology and prevent the decline in memory and cognitive functions. This study aimed to evaluate the therapeutic performance of mesenchymal stem cell-derived exosomes (MSC-exosomes), which are secreted membranous elements encapsulating a variety of MSC factors, on AD. A human neural cell culture model with familial AD (FAD) mutations was established and co-cultured with purified MSC-exosomes. 2-[18F]Fluoro-2-deoxy-d-glucose ([18F]FDG) and novel object recognition (NOR) testing were performed before/after treatment to evaluate the therapeutic effect in vivo. The AD-related pathology and the expression of neuronal memory/synaptic plasticity-related genes were also evaluated. The results showed that MSC-exosomes reduced Aβ expression and restored the expression of neuronal memory/synaptic plasticity-related genes in the cell model. [18F]FDG-PET imaging and cognitive assessment revealed a significant improvement in brain glucose metabolism and cognitive function in AD transgenic mice. The phase of neurons and astrocytes in the brain of AD mice were also found to be regulated after treatment with MSC-exosomes. Our study demonstrates the therapeutic mechanism of MSC-exosomes and provides an alternative therapeutic strategy based on cell-free MSC-exosomes for the treatment of AD.
Collapse
Affiliation(s)
- Yi-An Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
| | - Cheng-Hsiu Lu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
- Industrial Ph.D Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Chih Ke
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (C.-C.K.); (R.-S.L.); Tel.: +886-7-3121101 (ext. 2250) (C.-C.K.); +886-2-28757301 (ext. 575) (R.-S.L.); Fax: +886-7-3113449 (C.-C.K.); +886-2-28749431(R.-S.L.)
| | - Sain-Jhih Chiu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
| | - Fong-Shya Jeng
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
| | - Chi-Wei Chang
- National PET and Cyclotron Center (NPCC), Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (C.-W.C.); (B.-H.Y.)
| | - Bang-Hung Yang
- National PET and Cyclotron Center (NPCC), Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (C.-W.C.); (B.-H.Y.)
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ren-Shyan Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan; (C.-H.L.); (S.-J.C.); (F.-S.J.)
- National PET and Cyclotron Center (NPCC), Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (C.-W.C.); (B.-H.Y.)
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan
- Correspondence: (C.-C.K.); (R.-S.L.); Tel.: +886-7-3121101 (ext. 2250) (C.-C.K.); +886-2-28757301 (ext. 575) (R.-S.L.); Fax: +886-7-3113449 (C.-C.K.); +886-2-28749431(R.-S.L.)
| |
Collapse
|
9
|
Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Itakura M, Moreno-Martínez AE, de la Ossa L, Molnár E, Fukazawa Y, Luján R. Age-Dependent Shift of AMPA Receptors From Synapses to Intracellular Compartments in Alzheimer's Disease: Immunocytochemical Analysis of the CA1 Hippocampal Region in APP/PS1 Transgenic Mouse Model. Front Aging Neurosci 2020; 12:577996. [PMID: 33132900 PMCID: PMC7572859 DOI: 10.3389/fnagi.2020.577996] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Synapse loss occurs early in Alzheimer’s disease (AD) patients and animal models. Alterations at synaptic level are a major morphological correlate of the memory deficits and related symptoms of AD. Given the predominant roles of synaptic AMPA receptors (AMPARs) in excitatory synaptic transmission in the brain, changes in their dynamic regulation are also implicated in the pathophysiology of AD. Here, we used immunolocalization techniques to analyze the expression and subcellular distribution of AMPARs in the hippocampal region of APP/PS1 mouse model of AD. Immunoblots and histoblots revealed that the total amount of AMPARs and their regional expression pattern in the hippocampus was similar in APP/PS1 mice and in age-matched wild type mice. At the ultrastructural level, two synapse populations were examined using SDS-digested freeze-fracture replica labeling in the stratum radiatum in mice: (i) on spines of CA1 pyramidal cells; and (ii) on randomly found dendritic shafts of CA1 interneurons. While 1- and 6-months-old APP/PS1 mice exhibited no change, we observed a significant reduction at 12 months in AMPAR density at synapses in both pyramidal cells and interneurons, compared to wild-type. This reduction of AMPARs in dendritic spines was accompanied by a significant increase in AMPAR subunit proteins identified in intracellular compartments. Our data demonstrate an age-dependent reduction of synaptic AMPARs in APP/PS1 mice, which may contribute to impaired learning and memory at later stages of AD.
Collapse
Affiliation(s)
- Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Rocío Alfaro-Ruíz
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara-shi, Japan
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, Bristol, United Kingdom
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, Life Science Innovation Center, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Rafael Luján
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
10
|
Circular RNAs: Promising Molecular Biomarkers of Human Aging-Related Diseases via Functioning as an miRNA Sponge. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:215-229. [PMID: 32637451 PMCID: PMC7326721 DOI: 10.1016/j.omtm.2020.05.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are a new class of noncoding single-stranded RNAs that differ from linear microRNAs (miRNAs), since they form covalently closed loop structures without free 3′ poly(A) tails or 5′ caps. circRNAs are the competitive endogenous RNAs (ceRNAs) by binding to miRNA through miRNA response elements (MREs) (i.e., “miRNA sponge”), thereby reducing the quantity of miRNA available to target mRNA, subsequently promoting mRNA stability or protein expression, which involves the initiation and progress of human diseases. Owing to these features of abundance, stability, conservative property, and tissue and stage specificity, widely distributing in the extracellular space and in various bodily fluids, circRNAs can be considered as potential biomarkers for various diseases. Here, we reviewed the promising circRNAs being disease biomarkers, focused on their regulatory function by acting as miRNA sponges, and described their roles in cancer, cardiovascular or neurodegenerative diseases, osteoarthritis, rheumatoid arthritis, diabetes, and other human aging-related diseases, which provide a new direction for pathogenesis, diagnosis, and treatment of human aging-related diseases.
Collapse
|
11
|
Early intraneuronal amyloid triggers neuron-derived inflammatory signaling in APP transgenic rats and human brain. Proc Natl Acad Sci U S A 2020; 117:6844-6854. [PMID: 32144141 PMCID: PMC7104377 DOI: 10.1073/pnas.1914593117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This work provides evidence that soluble and oligomeric amyloid protein stokes neuronal inflammation during the earliest stages of Alzheimer’s disease. Identifying neuron-derived factors that engage the brain’s immune system will provide insight into how vulnerable neurons might interact with other immune cells to propagate cytotoxic signaling cascades and cellular dysfunction during disease development. Chronic inflammation during Alzheimer’s disease (AD) is most often attributed to sustained microglial activation in response to amyloid-β (Aβ) plaque deposits and cell death. However, cytokine release and microgliosis are consistently observed in AD transgenic animal models devoid of such pathologies, bringing into question the underlying processes that may be at play during the earliest AD-related immune response. We propose that this plaque-independent inflammatory reaction originates from neurons burdened with increasing levels of soluble and oligomeric Aβ, which are known to be the most toxic amyloid species within the brain. Laser microdissected neurons extracted from preplaque amyloid precursor protein (APP) transgenic rats were found to produce a variety of potent immune factors, both at the transcript and protein levels. Neuron-derived cytokines correlated with the extent of microglial activation and mobilization, even in the absence of extracellular plaques and cell death. Importantly, we identified an inflammatory profile unique to Aβ-burdened neurons, since neighboring glial cells did not express similar molecules. Moreover, we demonstrate within disease-vulnerable regions of the human brain that a neuron-specific inflammatory response may precede insoluble Aβ plaque and tau tangle formation. Thus, we reveal the Aβ-burdened neuron as a primary proinflammatory agent, implicating the intraneuronal accumulation of Aβ as a significant immunological component in the AD pathogenesis.
Collapse
|
12
|
Ginsberg SD, Malek-Ahmadi MH, Alldred MJ, Chen Y, Chen K, Chao MV, Counts SE, Mufson EJ. Brain-derived neurotrophic factor (BDNF) and TrkB hippocampal gene expression are putative predictors of neuritic plaque and neurofibrillary tangle pathology. Neurobiol Dis 2019; 132:104540. [PMID: 31349032 PMCID: PMC6834890 DOI: 10.1016/j.nbd.2019.104540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Downregulation of brain-derived neurotrophic factor (BDNF) and its cognate neurotrophin receptor, TrkB, were observed during the progression of dementia, but whether the Alzheimer's disease (AD) pathological lesions diffuse plaques, (DPs), neuritic plaques (NPs), and neurofibrillary tangles (NFTs) are related to this alteration remains to be clarified. METHODS Negative binomial (NB) regressions were performed using gene expression data accrued from a single population of CA1 pyramidal neurons and regional hippocampal dissections obtained from participants in the Rush Religious Orders Study (RROS). RESULTS Downregulation of Bdnf is independently associated with increased entorhinal cortex NPs. Downregulation of TrkB is independently associated with increased entorhinal cortex NFTs and CA1 NPs during the progression of AD. DISCUSSION Results indicate that BDNF and TrkB dysregulation contribute to AD neuropathology, most notably hippocampal NPs and NFTs. These data suggest attenuating BDNF/TrkB signaling deficits either at the level of BDNF, TrkB, or downstream of TrkB signaling may abrogate NPs and/or NFTs.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States of America; Department of Psychiatry, New York University Langone Medical Center, New York, NY, United States of America; Department of Neuroscience & Physiology, New York University Langone Medical Center, New York, NY, United States of America; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States of America.
| | | | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States of America; Department of Psychiatry, New York University Langone Medical Center, New York, NY, United States of America
| | - Yinghua Chen
- Banner Alzheimer's Institute, Phoenix, AZ, United States of America
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, United States of America
| | - Moses V Chao
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, United States of America; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States of America; Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, NY, United States of America
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, United States of America; Department of Family Medicine, Michigan State University, East Lansing, MI, United States of America; Michigan Alzheimer's Disease Core Center, Ann Arbor, MI, United States of America; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, United States of America
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, United States of America
| |
Collapse
|
13
|
Peng KY, Pérez-González R, Alldred MJ, Goulbourne CN, Morales-Corraliza J, Saito M, Saito M, Ginsberg SD, Mathews PM, Levy E. Apolipoprotein E4 genotype compromises brain exosome production. Brain 2019; 142:163-175. [PMID: 30496349 PMCID: PMC6308312 DOI: 10.1093/brain/awy289] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
In addition to being the greatest genetic risk factor for Alzheimer's disease, expression of the ɛ4 allele of apolipoprotein E can lead to cognitive decline during ageing that is independent of Alzheimer's amyloid-β and tau pathology. In human post-mortem tissue and mouse models humanized for apolipoprotein E, we examined the impact of apolipoprotein E4 expression on brain exosomes, vesicles that are produced within and secreted from late-endocytic multivesicular bodies. Compared to humans or mice homozygous for the risk-neutral ɛ3 allele we show that the ɛ4 allele, whether homozygous or heterozygous with an ɛ3 allele, drives lower exosome levels in the brain extracellular space. In mice, we show that the apolipoprotein E4-driven change in brain exosome levels is age-dependent: while not present at age 6 months, it is detectable at 12 months of age. Expression levels of the exosome pathway regulators tumor susceptibility gene 101 (TSG101) and Ras-related protein Rab35 (RAB35) were found to be reduced in the brain at the protein and mRNA levels, arguing that apolipoprotein E4 genotype leads to a downregulation of exosome biosynthesis and release. Compromised exosome production is likely to have adverse effects, including diminishing a cell's ability to eliminate materials from the endosomal-lysosomal system. This reduction in brain exosome levels in 12-month-old apolipoprotein E4 mice occurs earlier than our previously reported brain endosomal pathway changes, arguing that an apolipoprotein E4-driven failure in exosome production plays a primary role in endosomal and lysosomal deficits that occur in apolipoprotein E4 mouse and human brains. Disruption of these interdependent endosomal-exosomal-lysosomal systems in apolipoprotein E4-expressing individuals may contribute to amyloidogenic amyloid-β precursor protein processing, compromise trophic signalling and synaptic function, and interfere with a neuron's ability to degrade material, all of which are events that lead to neuronal vulnerability and higher risk of Alzheimer's disease development. Together, these data suggest that exosome pathway dysfunction is a previously unappreciated component of the brain pathologies that occur as a result of apolipoprotein E4 expression.
Collapse
Affiliation(s)
- Katherine Y Peng
- Department of Neurology, New York University Langone Health, New York, NY, USA.,Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Rocío Pérez-González
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Health, New York, NY, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Jose Morales-Corraliza
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Health, New York, NY, USA
| | - Mariko Saito
- Department of Psychiatry, New York University Langone Health, New York, NY, USA.,Division of Neurochemistry, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Mitsuo Saito
- Department of Psychiatry, New York University Langone Health, New York, NY, USA.,Division of Analytical Psychopharmacology, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Health, New York, NY, USA.,NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.,Department of Neuroscience and Physiology, New York University Langone Health, New York, NY, USA
| | - Paul M Mathews
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Health, New York, NY, USA.,NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Health, New York, NY, USA.,NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
| |
Collapse
|
14
|
Yang J, Long Y, Xu DM, Zhu BL, Deng XJ, Yan Z, Sun F, Chen GJ. Age- and Nicotine-Associated Gene Expression Changes in the Hippocampus of APP/PS1 Mice. J Mol Neurosci 2019; 69:608-622. [PMID: 31399937 DOI: 10.1007/s12031-019-01389-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
The etiology of Alzheimer's disease (AD) has been intensively studied. However, little is known about the molecular alterations in early-stage and late-stage AD. Hence, we performed RNA sequencing and assessed differentially expressed genes (DEGs) in the hippocampus of 18-month and 7-month-old APP/PS1 mice. Moreover, the DEGs induced by treatment with nicotine, the nicotinic acetylcholine receptor agonist that is known to improve cognition in AD, were also analyzed in old and young APP/PS1 mice. When comparing old APP/PS1 mice with their younger littermates, we found an upregulation in genes associated with calcium overload, immune response, cancer, and synaptic function; the transcripts of 14 calcium ion channel subtypes were significantly increased in aged mice. In contrast, the downregulated genes in aged mice were associated with ribosomal components, mitochondrial respiratory chain complex, and metabolism. Through comparison with DEGs in normal aging from previous reports, we found that changes in calcium channel genes remained one of the prominent features in aged APP/PS1 mice. Nicotine treatment also induced changes in gene expression. Indeed, nicotine augmented glycerolipid metabolism, but inhibited PI3K and MAPK signaling in young mice. In contrast, nicotine affected genes associated with cell senescence and death in old mice. Our study suggests a potential network connection between calcium overload and cellular signaling, in which additional nicotinic activation might not be beneficial in late-stage AD.
Collapse
Affiliation(s)
- Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Yan Long
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - De-Mei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Bing-Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
15
|
Zhao Y, Sharfman NM, Jaber VR, Lukiw WJ. Down-Regulation of Essential Synaptic Components by GI-Tract Microbiome-Derived Lipopolysaccharide (LPS) in LPS-Treated Human Neuronal-Glial (HNG) Cells in Primary Culture: Relevance to Alzheimer's Disease (AD). Front Cell Neurosci 2019; 13:314. [PMID: 31354434 PMCID: PMC6635554 DOI: 10.3389/fncel.2019.00314] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
Trans-synaptic neurotransmission of both electrical and neurochemical information in the central nervous system (CNS) is achieved through a highly interactive network of neuron-specific synaptic proteins that include pre-synaptic and post-synaptic elements. These elements include a family of several well-characterized integral- and trans-membrane synaptic core proteins necessary for the efficient operation of this complex signaling network, and include the pre-synaptic proteins: (i) neurexin-1 (NRXN-1); (ii) the synaptosomal-associated phosphoprotein-25 (SNAP-25); (iii) the phosphoprotein synapsin-2 (SYN-2); and the post-synaptic elements: (iv) neuroligin (NLGN), a critical cell adhesion protein; and (v) the SH3-ankyrin repeat domain, proline-rich cytoskeletal scaffolding protein SHANK3. All five of these pre- and post-synaptic proteins have been found to be significantly down-regulated in primary human neuronal-glial (HNG) cell co-cultures after exposure to Bacteroides fragilis lipopolysaccharide (BF-LPS). Interestingly, LPS has also been reported to be abundant in Alzheimer's disease (AD) affected brain cells where there are significant deficits in this same family of synaptic components. This "Perspectives" paper will review current research progress and discuss the latest findings in this research area. Overall these experimental results provide evidence (i) that gastrointestinal (GI) tract-derived Gram-negative bacterial exudates such as BF-LPS express their neurotoxicity in the CNS in part through the directed down-regulation of neuron-specific neurofilaments and synaptic signaling proteins; and (ii) that this may explain the significant alterations in immune-responses and cognitive deficits observed after bacterial-derived LPS exposure to the human CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nathan M. Sharfman
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
16
|
Jaber VR, Zhao Y, Sharfman NM, Li W, Lukiw WJ. Addressing Alzheimer's Disease (AD) Neuropathology Using Anti-microRNA (AM) Strategies. Mol Neurobiol 2019; 56:8101-8108. [PMID: 31183807 DOI: 10.1007/s12035-019-1632-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
Disruptions in multiple neurobiological pathways and neuromolecular processes have been widely implicated in the etiopathology of Alzheimer's disease (AD), a complex, progressive, and ultimately lethal neurological disorder whose current incidence, both domestically and globally, is reaching epidemic proportions. While only a few percent of all AD cases appear to have a strong genetic or familial component, the major form of this disease, known as idiopathic or sporadic AD, displays a multi-factorial pathology and represents one of the most complex and perplexing neurological disorders known. More effective and innovative pharmacological strategies for the successful intervention and management of AD might be expected: (i) to arise from strategic-treatments that simultaneously address multiple interrelated AD targets that are directed at the initiation, development, and/or propagation of this disease and (ii) those that target the "neuropathological core" of the AD process at early or upstream stages of AD. This "Perspectives paper" will review current research involving microRNA (miRNA)-mediated, messenger RNA (mRNA)-targeted gene expression pathways in sporadic AD and address the potential implementation of evolving anti-microRNA (AM) strategies in the amelioration and clinical management of AD. This novel-therapeutic approach: (i) incorporates a system involving the restoration of multiple miRNA-regulated mRNA-targets via the use of selectively-stabilized AM species; and (ii) that via implementation of synthetic AMs, the abundance of only relatively small-families of miRNAs need be modulated or neutralized to re-establish neural-homeostasis in the AD-affected brain. In doing so, these strategic approaches will jointly and interactively address multiple AD-associated processes such as the disruption of synaptic communication, defects in amyloid peptide clearance and amyloidogenesis, tau pathology, deficits in neurotrophic support, alterations in the innate immune response, and the proliferation of neuroinflammatory signaling.
Collapse
Affiliation(s)
- Vivian R Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.,Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Nathan M Sharfman
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.,Department of Pharmacology, School of Pharmacy, Jiangxi University of TCM, Nanchang, 330004, Jiangxi, China
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
17
|
Duggan MR, Joshi S, Tan YF, Slifker M, Ross EA, Wimmer M, Parikh V. Transcriptomic changes in the prefrontal cortex of rats as a function of age and cognitive engagement. Neurobiol Learn Mem 2019; 163:107035. [PMID: 31185277 DOI: 10.1016/j.nlm.2019.107035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/05/2019] [Accepted: 06/08/2019] [Indexed: 01/19/2023]
Abstract
Although changes in cognitive functions including attention are well documented in aging, the neurobiological basis for such alterations is not fully understood. Increasing evidence points towards the contribution of genetic factors in age-related cognitive decline. However, genetic studies have remained inconsistent in characterizing specific genes that could predict functional decline in aging. Here we utilized next generation RNA sequencing (RNA-seq) to identify patterns of differentially expressed genes in the prefrontal cortex (PFC), a brain region implicated in attention, of young and aged animals that were either cognitively trained or had limited cognitive engagement. Consistent with previous investigations, aging alone was associated with increased expression of genes involved in multiple facets of innate and adaptive immune responses. On the contrary, the expression of immunity-related transcripts was reduced by cognitive engagement. In addition, transcripts across a wide range of cellular processes, including those associated with neuronal remodeling and plasticity, were upregulated by this behavioral manipulation. Surprisingly, aged subjects accounted for higher mean counts of upregulated transcripts and lower mean counts for downregulated transcripts as compared to the young subjects. Because aged rats exhibited lower attentional capacities, it is plausible that transcriptional changes associated with performance in these animals were reflective of compensatory changes that occurred to cope with the declining integrity of PFC functioning. Interestingly, the effects of both aging and cognitive engagement resulted in an upregulation of transcripts linked to extracellular exosomes, suggesting such extracellular vesicles may moderate a reciprocal gene by environment interaction in order to facilitate the reorganization of PFC circuitry and maintain functionality. Taken together, these findings provide novel insights into the capacities of both cognitive engagement as well as aging to alter gene expression in the PFC, and how the effects of such dynamic factors relate to variation in age-related cognitive abilities.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Surbhi Joshi
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Yin-Fei Tan
- Genetics Research Facilities, Fox Chase Cancer Center, Philadelphia, PA 19111, United States
| | - Michael Slifker
- Biostatisitics and Bionformatics Facilities, Fox Chase Cancer Center, Philadelphia, PA 19111, United States
| | - Eric A Ross
- Biostatisitics and Bionformatics Facilities, Fox Chase Cancer Center, Philadelphia, PA 19111, United States
| | - Mathieu Wimmer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
18
|
Akhter R. Circular RNA and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1087:239-243. [PMID: 30259371 DOI: 10.1007/978-981-13-1426-1_19] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Circular RNAs (circRNAs) represent a special group of noncoding single-stranded highly stable ribonucleic acid entities abundant in the eukaryotic transcriptome. These circular forms of RNAs are significantly enriched in human brain and retinal tissues. However, the biological evolution and function of these circRNAs are poorly understood. Recent reports showed circRNA to be an important player in the development of neurodegenerative diseases like Alzheimer's disease. With the progression of age, circRNA level increases in the brain and also in age-associated neurological disorder like Alzheimer's disease (AD), Parkinson's disease, inflammatory neuropathy, nervous system neoplasms, and prion diseases. One highly represented circRNA in the human brain and retina is a ciRS-7 (CDR1as) which acts as an endogenous, anticomplementary miRNA inhibitor or "sponge" to quench the normal functioning of miRNA-7. Low CDR1as level can lead to increase in miR-7 expression which downregulates the activity of ubiquitin protein ligase A (UBE2A), an important AD target, functionally involved in clearing toxic amyloid peptides from AD brain. This chapter focuses on the functional relationship of circRNA with AD and interplay of miRNA-mRNA-mediated genetic regulatory networks. Our conceptual understanding also suggests that circRNA can be considered as a potential biomarker and therapeutic target in AD diagnosis and treatment.
Collapse
Affiliation(s)
- Rumana Akhter
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
19
|
Vidal C, Daescu K, Fitzgerald KE, Starokadomska A, Bezprozvanny I, Zhang L. Amyloid β perturbs elevated heme flux induced with neuronal development. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:27-37. [PMID: 30723777 PMCID: PMC6352316 DOI: 10.1016/j.trci.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction Heme is a central molecule in mitochondrial respiration and ATP generation in neuronal cells. Thus, we assessed the importance of altered heme metabolism in Alzheimer's disease (AD) pathogenesis. Methods To investigate the role of altered heme metabolism in AD, we identified heme-related proteins whose expression is altered in AD patients and mouse models exhibiting amyloid pathology. We detected the levels of proteins involved in heme synthesis, uptake, degradation, and function during neuronal differentiation and characterized the effects of Aβ. Results We found that the expression levels of the rate-limiting heme synthetic enzyme ALAS1 and heme degradation enzyme HO-2 are selectively decreased in AD patients and mice. Aβ selectively reduces the levels of HO-2 and heme degradation, which are elevated to support neuronal functions in fully differentiated neuronal cells. Discussion Our data show that lowered heme metabolism, particularly the decreased levels of heme degradation and HO-2, is likely a very early event in AD pathogenesis.
Collapse
Affiliation(s)
- Chantal Vidal
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Kelly Daescu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Keely E Fitzgerald
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Anna Starokadomska
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ilya Bezprozvanny
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
20
|
Cell Type-Specific Laser Capture Microdissection for Gene Expression Profiling in the Human Brain. Methods Mol Biol 2019; 1723:203-221. [PMID: 29344862 DOI: 10.1007/978-1-4939-7558-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Cell type-specific laser microdissection technologies in combination with molecular techniques to determine gene expression profiles have become powerful tools to gain insight into the neurobiological basis of neural circuit disturbances in various neurologic or psychiatric diseases. To identify specific cell populations in human postmortem brain tissue, one can use the inherent properties of the cells, such as pigmentation and morphology or their structural composition through immunohistochemistry (IHC). Here, we describe the isolation of homogeneous neurons and oligodendrocytes and the extraction of high-quality RNA from these cells in human postmortem brain using a combination of rapid IHC, Nissl staining, or simple morphology with Laser Capture Microdissection (LCM), or Laser Microdissection (LMD).
Collapse
|
21
|
Tiernan CT, Ginsberg SD, He B, Ward SM, Guillozet-Bongaarts AL, Kanaan NM, Mufson EJ, Counts SE. Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease. Neurobiol Dis 2018; 117:125-136. [PMID: 29859871 PMCID: PMC6278831 DOI: 10.1016/j.nbd.2018.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/30/2018] [Indexed: 01/22/2023] Open
Abstract
Cholinergic basal forebrain neurons of the nucleus basalis of Meynert (nbM) regulate attentional and memory function and are exquisitely prone to tau pathology and neurofibrillary tangle (NFT) formation during the progression of Alzheimer's disease (AD). nbM neurons require the neurotrophin nerve growth factor (NGF), its cognate receptor TrkA, and the pan-neurotrophin receptor p75NTR for their maintenance and survival. Additionally, nbM neuronal activity and cholinergic tone are regulated by the expression of nicotinic (nAChR) and muscarinic (mAChR) acetylcholine receptors as well as receptors modulating glutamatergic and catecholaminergic afferent signaling. To date, the molecular and cellular relationships between the evolution of tau pathology and nbM neuronal survival remain unknown. To address this knowledge gap, we profiled cholinotrophic pathway genes within nbM neurons immunostained for pS422, a pretangle phosphorylation event preceding tau C-terminal truncation at D421, or dual-labeled for pS422 and TauC3, a later stage tau neo-epitope revealed by this same C-terminal truncation event, via single-population custom microarray analysis. nbM neurons were obtained from postmortem tissues from subjects who died with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild/moderate AD. Quantitative analysis revealed significant downregulation of mRNAs encoding TrkA as well as TrkB, TrkC, and the Trk-mediated downstream pro-survival kinase Akt in pS422+ compared to unlabeled, pS422-negative nbM neurons. In addition, pS422+ neurons displayed a downregulation of transcripts encoding NMDA receptor subunit 2B, metabotropic glutamate receptor 2, D2 dopamine receptor, and β1 adrenoceptor. By contrast, transcripts encoding p75NTR were downregulated in dual-labeled pS422+/TauC3+ neurons. Appearance of the TauC3 epitope was also associated with an upregulation of the α7 nAChR subunit and differential downregulation of the β2 nAChR subunit. Notably, we found that gene expression patterns for each cell phenotype did not differ with clinical diagnosis. However, linear regression revealed that global cognition and Braak stage were predictors of select transcript changes within both unlabeled and pS422+/TauC3- neurons. Taken together, these cell phenotype-specific gene expression profiling data suggest that dysregulation of neurotrophic and neurotransmitter signaling is an early pathogenic mechanism associated with NFT formation in vulnerable nbM neurons and cognitive decline in AD, which may be amenable to therapeutic intervention early in the disease process.
Collapse
Affiliation(s)
- Chelsea T Tiernan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA; Department of Physiology & Neuroscience, NYU Langone School of Medicine, New York, NY, USA; NYU Neuroscience Institute, NYU Langone School of Medicine, New York, NY, USA
| | - Bin He
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sarah M Ward
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA; Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA; Michigan Alzheimer's Disease Core Center, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Ntsapi C, Lumkwana D, Swart C, du Toit A, Loos B. New Insights Into Autophagy Dysfunction Related to Amyloid Beta Toxicity and Neuropathology in Alzheimer's Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:321-361. [DOI: 10.1016/bs.ircmb.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Yang D, Yang K, Yang M. Circular RNA in Aging and Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:17-35. [DOI: 10.1007/978-981-13-1117-8_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Sonntag KC, Woo TUW. Laser microdissection and gene expression profiling in the human postmortem brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:263-272. [PMID: 29496145 DOI: 10.1016/b978-0-444-63639-3.00018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Laser microdissection in combination with gene expression profiling using postmortem human brain tissue provides a powerful approach to interrogating cell type-specific pathologies within neural circuits that are known to be dysfunctional in neuropsychiatric disorders. The success of these experiments critically depends on a number of factors, such as the cellular purity of the sample, the quality of the RNA, the methodologies of data normalization and computational data analysis, and how data are interpreted. Data obtained from these experiments should be validated at the protein level. Furthermore, from the perspective of disease mechanism discovery, it would be ideal to investigate whether manipulation of the expression of genes identified as differentially expressed can rescue or ameliorate the neurobiologic or behavioral phenotypes associated with the specific disease. Thus, the ultimate value of this approach rests upon the fact that the generation of novel disease-related pathophysiologic hypotheses may lead to deeper understanding of disease mechanisms and possible development of effective targeted treatments.
Collapse
Affiliation(s)
- Kai-Christian Sonntag
- Laboratory for Translational Research on Neurodegeneration, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Tsung-Ung W Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
25
|
Burak K, Lamoureux L, Boese A, Majer A, Saba R, Niu Y, Frost K, Booth SA. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptomatic prion disease. Neurobiol Dis 2017; 112:1-13. [PMID: 29277556 DOI: 10.1016/j.nbd.2017.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/14/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
The mechanisms that lead to neuronal death in neurodegenerative diseases are poorly understood. Prion diseases, like many more common disorders such as Alzheimer's and Parkinson's diseases, are characterized by the progressive accumulation of misfolded disease-specific proteins. The earliest changes observed in brain tissue include a reduction in synaptic number and retraction of dendritic spines, followed by reduced length and branching of neurites. These pathologies are observable during presymptomatic stages of disease and are accompanied by altered expression of transcripts that include miRNAs. Here we report that miR-16 localized within hippocampal CA1 neurons is increased during early prion disease. Modulating miR-16 expression in mature murine hippocampal neurons by expression from a lentivirus, thus mimicking the modest increase seen in vivo, was found to induce neurodegeneration. This was characterized by retraction of neurites and reduced branching. We performed immunoprecipitation of the miR-16 enriched RISC complex, and identified associated transcripts from the co-immunoprecipitated RNA (Ago2 RIP-Chip). These transcripts were enriched with predicted binding sites for miR-16, including the validated miR-16 targets APP and BCL2, as well as numerous novel targets. In particular, genes within the neurotrophin receptor mediated MAPK/ERK pathway were potentially regulated by miR-16; including TrkB (NTRK2), MEK1 (MAP2K1) and c-Raf (RAF). Increased miR-16 expression in neurons during presymptomatic prion disease and reduction in proteins involved in MAPK/ERK signaling represents a possible mechanism by which neurite length and branching are decreased during early stages of disease.
Collapse
Affiliation(s)
- Kristyn Burak
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lise Lamoureux
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Amrit Boese
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Majer
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Reuben Saba
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yulian Niu
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy Frost
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie A Booth
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
26
|
Zhao Y, Cong L, Lukiw WJ. Lipopolysaccharide (LPS) Accumulates in Neocortical Neurons of Alzheimer's Disease (AD) Brain and Impairs Transcription in Human Neuronal-Glial Primary Co-cultures. Front Aging Neurosci 2017; 9:407. [PMID: 29311897 PMCID: PMC5732913 DOI: 10.3389/fnagi.2017.00407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/24/2017] [Indexed: 11/26/2022] Open
Abstract
Several independent laboratories have recently reported the detection of bacterial nucleic acid sequences or bacterial-derived neurotoxins, such as highly inflammatory lipopolysaccharide (LPS), within Alzheimer’s disease (AD) affected brain tissues. Whether these bacterial neurotoxins originate from the gastrointestinal (GI) tract microbiome, a possible brain microbiome or some dormant pathological microbiome is currently not well understood. Previous studies indicate that the co-localization of pro-inflammatory LPS with AD-affected brain cell nuclei suggests that there may be a contribution of this neurotoxin to genotoxic events that support inflammatory neurodegeneration and failure in homeostatic gene expression. In this report we provide evidence that in sporadic AD, LPS progressively accumulates in neuronal parenchyma and appears to preferentially associate with the periphery of neuronal nuclei. Run-on transcription studies utilizing [α-32P]-uridine triphosphate incorporation into newly synthesized total RNA further indicates that human neuronal-glial (HNG) cells in primary co-culture incubated with LPS exhibit significantly reduced output of DNA transcription products. These studies suggest that in AD LPS may impair the efficient readout of neuronal genetic information normally required for the homeostatic operation of brain cell function and may contribute to a progressive disruption in the read-out of genetic information.
Collapse
Affiliation(s)
- Yuhai Zhao
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Departments of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lin Cong
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Walter J Lukiw
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China.,Department of Neurology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
27
|
Ginsberg SD, Malek-Ahmadi MH, Alldred MJ, Che S, Elarova I, Chen Y, Jeanneteau F, Kranz TM, Chao MV, Counts SE, Mufson EJ. Selective decline of neurotrophin and neurotrophin receptor genes within CA1 pyramidal neurons and hippocampus proper: Correlation with cognitive performance and neuropathology in mild cognitive impairment and Alzheimer's disease. Hippocampus 2017; 29:422-439. [PMID: 28888073 DOI: 10.1002/hipo.22802] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/02/2023]
Abstract
Hippocampal CA1 pyramidal neurons, a major component of the medial temporal lobe memory circuit, are selectively vulnerable during the progression of Alzheimer's disease (AD). The cellular mechanism(s) underlying degeneration of these neurons and the relationship to cognitive performance remains largely undefined. Here, we profiled neurotrophin and neurotrophin receptor gene expression within microdissected CA1 neurons along with regional hippocampal dissections from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD using laser capture microdissection (LCM), custom-designed microarray analysis, and qPCR of CA1 subregional dissections. Gene expression levels were correlated with cognitive test scores and AD neuropathology criteria. We found a significant downregulation of several neurotrophin genes (e.g., Gdnf, Ngfb, and Ntf4) in CA1 pyramidal neurons in MCI compared to NCI and AD subjects. In addition, the neurotrophin receptor transcripts TrkB and TrkC were decreased in MCI and AD compared to NCI. Regional hippocampal dissections also revealed select neurotrophic gene dysfunction providing evidence for vulnerability within the hippocampus proper during the progression of dementia. Downregulation of several neurotrophins of the NGF family and cognate neurotrophin receptor (TrkA, TrkB, and TrkC) genes correlated with antemortem cognitive measures including the Mini-Mental State Exam (MMSE), a composite global cognitive score (GCS), and Episodic, Semantic, and Working Memory, Perceptual Speed, and Visuospatial domains. Significant correlations were found between select neurotrophic expression downregulation and neuritic plaques (NPs) and neurofibrillary tangles (NFTs), but not diffuse plaques (DPs). These data suggest that dysfunction of neurotrophin signaling complexes have profound negative sequelae within vulnerable hippocampal cell types, which play a role in mnemonic and executive dysfunction during the progression of AD.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Medical Center, New York, New York.,Department of Neuroscience & Physiology, New York University Langone Medical Center, New York, New York.,Neuroscience Institute, New York University Langone Medical Center, New York, New York
| | | | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Medical Center, New York, New York
| | - Shaoli Che
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Medical Center, New York, New York
| | - Irina Elarova
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York
| | | | - Freddy Jeanneteau
- Inserm, U1191, Institute of Functional Genomics, Montpellier, F-34000, France.,CNRS, UMR-5203, Montpellier, F-34000, France.,Université de Montpellier, Montpellier, F-34000, France
| | - Thorsten M Kranz
- Department of Psychiatry, New York University Langone Medical Center, New York, New York.,Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York
| | - Moses V Chao
- Department of Psychiatry, New York University Langone Medical Center, New York, New York.,Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Family Medicine, Michigan State University, East Lansing, Michigan.,Michigan Alzheimer's Disease Core Center, Ann Arbor, Michigan.,Mercy Health Saint Mary's Hospital, Hauenstein Neurosciences Center, Grand Rapids, Michigan
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
28
|
Weisz HA, Boone DR, Sell SL, Hellmich HL. Stereotactic Atlas-Guided Laser Capture Microdissection of Brain Regions Affected by Traumatic Injury. J Vis Exp 2017:56134. [PMID: 28930995 PMCID: PMC5752209 DOI: 10.3791/56134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to isolate specific brain regions of interest can be impeded in tissue disassociation techniques that do not preserve their spatial distribution. Such techniques also potentially skew gene expression analysis because the process itself can alter expression patterns in individual cells. Here we describe a laser capture microdissection (LCM) method to selectively collect specific brain regions affected by traumatic brain injury (TBI) by using a modified Nissl (cresyl violet) staining protocol and the guidance of a rat brain atlas. LCM provides access to brain regions in their native positions and the ability to use anatomical landmarks for identification of each specific region. To this end, LCM has been used previously to examine brain region specific gene expression in TBI. This protocol allows examination of TBI-induced alterations in gene and microRNA expression in distinct brain areas within the same animal. The principles of this protocol can be amended and applied to a wide range of studies examining genomic expression in other disease and/or animal models.
Collapse
Affiliation(s)
- Harris A Weisz
- Department of Anesthesiology, University of Texas Medical Branch
| | - Deborah R Boone
- Department of Anesthesiology, University of Texas Medical Branch
| | - Stacy L Sell
- Department of Anesthesiology, University of Texas Medical Branch
| | - Helen L Hellmich
- Department of Anesthesiology, University of Texas Medical Branch;
| |
Collapse
|
29
|
George C, Gontier G, Lacube P, François JC, Holzenberger M, Aïd S. The Alzheimer's disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons. Brain 2017; 140:2012-2027. [PMID: 28595357 DOI: 10.1093/brain/awx132] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Seminal studies using post-mortem brains of patients with Alzheimer's disease evidenced aberrant insulin-like growth factor 1 receptor (IGF1R) signalling. Addressing causality, work in animal models recently demonstrated that long-term suppression of IGF1R signalling alleviates Alzheimer's disease progression and promotes neuroprotection. However, the underlying mechanisms remain largely elusive. Here, we showed that genetically ablating IGF1R in neurons of the ageing brain efficiently protects from neuroinflammation, anxiety and memory impairments induced by intracerebroventricular injection of amyloid-β oligomers. In our mutant mice, the suppression of IGF1R signalling also invariably led to small neuronal soma size, indicative of profound changes in cellular homeodynamics. To gain insight into transcriptional signatures leading to Alzheimer's disease-relevant neuronal defence, we performed genome-wide microarray analysis on laser-dissected hippocampal CA1 after neuronal IGF1R knockout, in the presence or absence of APP/PS1 transgenes. Functional analysis comparing neurons in early-stage Alzheimer's disease with IGF1R knockout neurons revealed strongly convergent transcriptomic signatures, notably involving neurite growth, cytoskeleton organization, cellular stress response and neurotransmission. Moreover, in Alzheimer's disease neurons, a high proportion of genes responding to Alzheimer's disease showed a reversed differential expression when IGF1R was deleted. One of the genes consistently highlighted in genome-wide comparison was the neurofilament medium polypeptide Nefm. We found that NEFM accumulated in hippocampus in the presence of amyloid pathology, and decreased to control levels under IGF1R deletion, suggesting that reorganized cytoskeleton likely plays a role in neuroprotection. These findings demonstrated that significant resistance of the brain to amyloid-β can be achieved lifelong by suppressing neuronal IGF1R and identified IGF-dependent molecular pathways that coordinate an intrinsic program for neuroprotection against proteotoxicity. Our data also indicate that neuronal defences against Alzheimer's disease rely on an endogenous gene expression profile similar to the neuroprotective response activated by genetic disruption of IGF1R signalling. This study highlights neuronal IGF1R signalling as a relevant target for developing Alzheimer's disease prevention strategies.
Collapse
Affiliation(s)
- Caroline George
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| | - Géraldine Gontier
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| | - Philippe Lacube
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| | - Jean-Christophe François
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| | - Martin Holzenberger
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| | - Saba Aïd
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| |
Collapse
|
30
|
Mezias C, LoCastro E, Xia C, Raj A. Connectivity, not region-intrinsic properties, predicts regional vulnerability to progressive tau pathology in mouse models of disease. Acta Neuropathol Commun 2017; 5:61. [PMID: 28807028 PMCID: PMC5556602 DOI: 10.1186/s40478-017-0459-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
Spatiotemporal tau pathology progression is regarded as highly stereotyped within each type of degenerative condition. For instance, AD has a progression of tau pathology consistently beginning in the entorhinal cortex, the locus coeruleus, and other nearby noradrenergic brainstem nuclei, before spreading to the rest of the limbic system as well as the cingulate and retrosplenial cortices. Proposed explanations for the consistent spatial patterns of tau pathology progression, as well as for why certain regions are selectively vulnerable to exhibiting pathology over the course of disease generally focus on transsynaptic spread proceeding via the brain's anatomic connectivity network in a cell-independent manner or on cell-intrinsic properties that might render some cell populations or regions uniquely vulnerable. We test connectivity based explanations of spatiotemporal tau pathology progression and regional vulnerability against cell-intrinsic explanation, using regional gene expression profiles as a proxy. We find that across both exogenously seeded and non-seeded tauopathic mouse models, the connectivity network provides a better explanation than regional gene expression profiles, even when such profiles are limited to specific sets of tau risk-related genes only. Our results suggest that, regardless of the location of pathology initiation, tau pathology progression is well characterized by a model positing entirely cell-type and molecular environment independent transsynaptic spread via the mouse brain's connectivity network. These results further suggest that regional vulnerability to tau pathology is mainly governed by connectivity with regions already exhibiting pathology, rather than by cell-intrinsic factors.
Collapse
Affiliation(s)
- Chris Mezias
- Department of Neuroscience, Weill Cornell Medicine of Cornell University, New York, USA.
| | - Eve LoCastro
- Department of Radiology, Weill Cornell Medicine of Cornell University, New York, USA
| | - Chuying Xia
- Department of Neuroscience, Weill Cornell Medicine of Cornell University, New York, USA
| | - Ashish Raj
- Department of Neuroscience, Weill Cornell Medicine of Cornell University, New York, USA.
- Department of Radiology, Weill Cornell Medicine of Cornell University, New York, USA.
| |
Collapse
|
31
|
Chen X, Long F, Cai B, Chen X, Chen G. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 5: a hint from chromosome 5 high density association screen. Am J Transl Res 2017; 9:2473-2491. [PMID: 28559998 PMCID: PMC5446530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
Familial clustering of schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD) was systematically reported (Aukes, M. F. Genet Med 2012, 14, 338-341) and any two or even three of these disorders could co-exist in some families. In addition, evidence from symptomatology and psychopharmacology also imply that there are intrinsic connections between these three major disorders. A total of 56,569 single nucleotide polymorphism (SNPs) on chromosome 5 were genotyped by Affymetrix Genome-Wide Human SNP array 6.0 on 119 SCZ, 253 BPD (type-I), 177 MDD patients and 1000 controls. Associated SNPs and flanking genes was screen out systematically, and cadherin pathway genes (CDH6, CDH9, CDH10, CDH12, and CDH18) belong to outstanding genes. Unexpectedly, nearly all flanking genes of the associated SNPs distinctive for BPD and MDD were replicated in an enlarged cohort of 986 SCZ patients (P ≤ 9.9E-8). Considering multiple bits of evidence, our chromosome 5 analyses implicated that bipolar and major depressive disorder might be subtypes of schizophrenia rather than two independent disease entities. Also, cadherin pathway genes play important roles in the pathogenesis of the three major mental disorders.
Collapse
Affiliation(s)
- Xing Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| | - Feng Long
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| | - Bin Cai
- Capital Bio Corporation18 Life Science Parkway, Changping District, Beijing 102206, People’s Republic of China
| | - Xiaohong Chen
- Capital Bio Corporation18 Life Science Parkway, Changping District, Beijing 102206, People’s Republic of China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| |
Collapse
|
32
|
Mitre M, Mariga A, Chao MV. Neurotrophin signalling: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2017; 131:13-23. [PMID: 27908981 PMCID: PMC5295469 DOI: 10.1042/cs20160044] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/18/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022]
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are prominent regulators of neuronal survival, growth and differentiation during development. While trophic factors are viewed as well-understood but not innovative molecules, there are many lines of evidence indicating that BDNF plays an important role in the pathophysiology of many neurodegenerative disorders, depression, anxiety and other psychiatric disorders. In particular, lower levels of BDNF are associated with the aetiology of Alzheimer's and Huntington's diseases. A major challenge is to explain how neurotrophins are able to induce plasticity, improve learning and memory and prevent age-dependent cognitive decline through receptor signalling. This article will review the mechanism of action of neurotrophins and how BDNF/tropomyosin receptor kinase B (TrkB) receptor signaling can dictate trophic responses and change brain plasticity through activity-dependent stimulation. Alternative approaches for modulating BDNF/TrkB signalling to deliver relevant clinical outcomes in neurodegenerative and neuropsychiatric disorders will also be described.
Collapse
Affiliation(s)
- Mariela Mitre
- Neuroscience and Physiology and Psychiatry, New York University School of Medicine, New York, NY 10016, U.S.A.
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, U.S.A
| | - Abigail Mariga
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, U.S.A
- Departments of Cell Biology, New York University School of Medicine, New York, NY 10016, U.S.A
| | - Moses V Chao
- Neuroscience and Physiology and Psychiatry, New York University School of Medicine, New York, NY 10016, U.S.A
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, U.S.A
- Departments of Cell Biology, New York University School of Medicine, New York, NY 10016, U.S.A
| |
Collapse
|
33
|
Mariga A, Mitre M, Chao MV. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease. Neurobiol Dis 2017; 97:73-79. [PMID: 27015693 PMCID: PMC5295364 DOI: 10.1016/j.nbd.2016.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/20/2016] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease.
Collapse
Affiliation(s)
- Abigail Mariga
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| | - Mariela Mitre
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| | - Moses V Chao
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| |
Collapse
|
34
|
Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ, Che S, Ginsberg SD, Nixon RA. Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 2016; 12:2467-2483. [PMID: 27813694 PMCID: PMC5173282 DOI: 10.1080/15548627.2016.1239003] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Defective autophagy contributes to Alzheimer disease (AD) pathogenesis although evidence is conflicting on whether multiple stages are impaired. Here, for the first time, we have comprehensively evaluated the entire autophagic process specifically in CA1 pyramidal neurons of hippocampus from early and late-stage AD subjects and nondemented controls. CA1 neurons aspirated by laser capture microdissection were analyzed using a custom-designed microarray comprising 578 neuropathology- and neuroscience-associated genes. Striking upregulation of autophagy-related genes, exceeding that of other gene ontology groups, reflected increases in autophagosome formation and lysosomal biogenesis beginning at early AD stages. Upregulated autophagosome formation was further indicated by elevated gene and protein expression levels for autophagosome components and increased LC3-positive puncta. Increased lysosomal biogenesis was evidenced by activation of MiTF/TFE family transcriptional regulators, particularly TFE3 (transcription factor binding to IGHM enhancer 3) and by elevated expression of their target genes and encoded proteins. Notably, TFEB (transcription factor EB) activation was associated more strongly with glia than neurons. These findings establish that autophagic sequestration is both competent and upregulated in AD. Autophagosome-lysosome fusion is not evidently altered. Despite this early disease response, however, autophagy flux is progressively impeded due to deficient substrate clearance, as reflected by autolysosomal accumulation of LC3-II and SQSTM1/p62 and expansion of autolysosomal size and total area. We propose that sustained induction of autophagy in the face of progressively declining lysosomal clearance of substrates explains the uncommonly robust autophagic pathology and neuritic dystrophy implicated in AD pathogenesis.
Collapse
Affiliation(s)
- Matteo Bordi
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA
| | - Martin J Berg
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA
| | - Panaiyur S Mohan
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA
| | | | - Melissa J Alldred
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA
| | - Shaoli Che
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA
| | - Stephen D Ginsberg
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA.,d Department of Neuroscience and Physiology , New York University Langone Medical Center , New York , NY , USA
| | - Ralph A Nixon
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA.,c Department of Cell Biology , New York University Langone Medical Center , New York , NY , USA
| |
Collapse
|
35
|
Mufson EJ, Ikonomovic MD, Counts SE, Perez SE, Malek-Ahmadi M, Scheff SW, Ginsberg SD. Molecular and cellular pathophysiology of preclinical Alzheimer's disease. Behav Brain Res 2016; 311:54-69. [PMID: 27185734 PMCID: PMC4931948 DOI: 10.1016/j.bbr.2016.05.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Although the two pathological hallmarks of Alzheimer's disease (AD), senile plaques composed of amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs) consisting of hyperphosphorylated tau, have been studied extensively in postmortem AD and relevant animal and cellular models, the pathogenesis of AD remains unknown, particularly in the early stages of the disease where therapies presumably would be most effective. We and others have demonstrated that Aβ plaques and NFTs are present in varying degrees before the onset and throughout the progression of dementia. In this regard, aged people with no cognitive impairment (NCI), mild cognitive impairment (MCI, a presumed prodromal AD transitional state, and AD all present at autopsy with varying levels of pathological hallmarks. Cognitive decline, a requisite for the clinical diagnosis of dementia associated with AD, generally correlates better with NFTs than Aβ plaques. However, correlations are even higher between cognitive decline and synaptic loss. In this review, we illustrate relevant clinical pathological research in preclinical AD and throughout the progression of dementia in several areas including Aβ and tau pathobiology, single population expression profiling of vulnerable hippocampal and basal forebrain neurons, neuroplasticity, neuroimaging, cerebrospinal fluid (CSF) biomarker studies and their correlation with antemortem cognitive endpoints. In each of these areas, we provide evidence for the importance of studying the pathological hallmarks of AD not in isolation, but rather in conjunction with other molecular, cellular, and imaging markers to provide a more systematic and comprehensive assessment of the multiple changes that occur during the transition from NCI to MCI to frank AD.
Collapse
Affiliation(s)
- Elliott J Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, United States.
| | - Milos D Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, and Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Department of Family Medicine, Hauenstien Neuroscience Institute, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, United States
| | - Sylvia E Perez
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - Stephen W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Department of Psychiatry, Department of Neuroscience & Physiology, New York University Langone Medical Center, Orangeburg, NY, United States
| |
Collapse
|
36
|
Zhao Y, Alexandrov PN, Lukiw WJ. Anti-microRNAs as Novel Therapeutic Agents in the Clinical Management of Alzheimer's Disease. Front Neurosci 2016; 10:59. [PMID: 26941600 PMCID: PMC4766517 DOI: 10.3389/fnins.2016.00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
Overview- One hundred and ten years since its first description Alzheimer's disease (AD) still retains its prominent status: (i) as the industrialized world's number one cause of age-related intellectual impairment and cognitive decline; (ii) as this country's most rapidly expanding socioeconomic and healthcare concern; and (iii) as an insidious, progressive and lethal neurological disorder of the human central nervous system (CNS) for which there is currently no adequate treatment or cure (Alzheimer, 1991; Alzheimer et al., 1991, 1995) [https://www.alz.org/facts/downloads/facts_figures_2015.pdf (2015)]. The concept of small non-coding RNAs (ncRNAs) as being involved in the etiopathogenesis of AD and age-related human neurodegenerative disease was first proposed about 25 years ago, however it was not until 2007 that specific microRNA (miRNA) abundance, speciation and localization to the hippocampal CA1 region (an anatomical area of the human CNS specifically targeted by the AD process) was shown to strongly associate with AD-type change when compared to age-matched controls (Lukiw et al., 1992; Lukiw, 2007; Schipper et al., 2007; Cogswell et al., 2008; Guerreiro et al., 2012). Currently about 400 reports address the potential link between disruptions in miRNA signaling and the development of various features associated with AD neuropathology (http://www.ncbi.nlm.nih.gov/pubmed/?term=micro+RNA+alzheimer's+disease). In this “Perspectives” paper we will highlight some of the most recent literature on anti-miRNA (AM; antagomir) therapeutic strategies and some very recent technological advances in the analysis and characterization of defective miRNA signaling pathways in AD compared to neurologically normal age-matched controls.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA; Department of Cell Biology and Anatomy, Louisiana State University Health Science CenterNew Orleans, LA, USA
| | | | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA; Department of Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA; Department Neurology, LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA
| |
Collapse
|
37
|
Saura CA, Parra-Damas A, Enriquez-Barreto L. Gene expression parallels synaptic excitability and plasticity changes in Alzheimer's disease. Front Cell Neurosci 2015; 9:318. [PMID: 26379494 PMCID: PMC4548151 DOI: 10.3389/fncel.2015.00318] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/03/2015] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by abnormal accumulation of β-amyloid and tau and synapse dysfunction in memory-related neural circuits. Pathological and functional changes in the medial temporal lobe, a region essential for explicit memory encoding, contribute to cognitive decline in AD. Surprisingly, functional imaging studies show increased activity of the hippocampus and associated cortical regions during memory tasks in presymptomatic and early AD stages, whereas brain activity declines as the disease progresses. These findings suggest an emerging scenario where early pathogenic events might increase neuronal excitability leading to enhanced brain activity before clinical manifestations of the disease, a stage that is followed by decreased brain activity as neurodegeneration progresses. The mechanisms linking pathology with synaptic excitability and plasticity changes leading to memory loss in AD remain largely unclear. Recent studies suggest that increased brain activity parallels enhanced expression of genes involved in synaptic transmission and plasticity in preclinical stages, whereas expression of synaptic and activity-dependent genes are reduced by the onset of pathological and cognitive symptoms. Here, we review recent evidences indicating a relationship between transcriptional deregulation of synaptic genes and neuronal activity and memory loss in AD and mouse models. These findings provide the basis for potential clinical applications of memory-related transcriptional programs and their regulatory mechanisms as novel biomarkers and therapeutic targets to restore brain function in AD and other cognitive disorders.
Collapse
Affiliation(s)
- Carlos A. Saura
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de BarcelonaBarcelona, Spain
| | | | | |
Collapse
|
38
|
Ginsberg SD, Che S. Methods and compositions for amplification and detection of microRNAs (miRNAs) and noncoding RNAs (ncRNAs) using the signature sequence amplification method (SSAM). ACTA ACUST UNITED AC 2015; 8:2-9. [PMID: 25564022 DOI: 10.2174/2352092208666141001154206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/17/2022]
Abstract
The signature sequence amplification method (SSAM) described herein is an approach for amplifying noncoding RNA (ncRNA), microRNA (miRNA), and small polynucleotide sequences. A key point of the SSAM technology is the generation of signature sequences. The signature sequences include target sequences (miRNA, ncRNA, and/or any small polynucleotide sequence) flanked by two DNA fragments. Target sequences can be amplified through DNA synthesis, RNA synthesis, or the combination of DNA and RNA synthesis. The amplification of signature sequences provides an efficient and reproducible mechanism to determine the presence or absence of the target miRNAs/ncRNAs, to analyze the quantities of the miRNAs in biological samples, and for miRNA/ncRNA profiling.
Collapse
Affiliation(s)
| | - Shaoli Che
- Center for Dementia Research, Nathan Kline Institute, NYU Langone Medical Center, 140 Old Orangeburg Road, Orangeburg, NY 10962, 845-398-2170, USA.
| |
Collapse
|
39
|
Schafer MJ, Alldred MJ, Lee SH, Calhoun ME, Petkova E, Mathews PM, Ginsberg SD. Reduction of β-amyloid and γ-secretase by calorie restriction in female Tg2576 mice. Neurobiol Aging 2014; 36:1293-302. [PMID: 25556162 DOI: 10.1016/j.neurobiolaging.2014.10.043] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/22/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022]
Abstract
Research indicates that female risk of developing Alzheimer's disease (AD) is greater than that of males. Moderate reduction of calorie intake, known as calorie restriction (CR), reduces pathology in AD mouse models and is a potentially translatable prevention measure for individuals at-risk for AD, as well as an important tool for understanding how the brain endogenously attenuates age-related pathology. Whether sex influences the response to CR remains unknown. In this study, we assessed the effect of CR on beta-amyloid peptide (Aβ) pathology and hippocampal CA1 neuron specific gene expression in the Tg2576 mouse model of cerebral amyloidosis. Relative to ad libitum (AL) feeding, CR feeding significantly reduced hippocampal Aβ burden in 15-month-old female, but not age-matched male, Tg2576 mice. Sustained CR also significantly reduced expression of presenilin enhancer 2 (Psenen) and presenilin 1, components of the γ-secretase complex, in Tg2576 females. These results indicate that long-term CR significantly reduces age-dependent female Tg2576 Aβ pathology, which is likely to involve CR-mediated reductions in γ-secretase-dependent amyloid precursor protein (APP) metabolism.
Collapse
Affiliation(s)
- Marissa J Schafer
- Cell and Molecular Biology Program, New York University Langone Medical Center, New York, NY, USA; Department of Cell Biology, New York University Langone Medical Center, New York, NY, USA; Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Sang Han Lee
- Division of Medical Physics, Nathan Kline Institute, Orangeburg, NY, USA
| | | | - Eva Petkova
- Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY, USA; Division of Child Psychiatry, Nathan Kline Institute, Orangeburg, NY, USA
| | - Paul M Mathews
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Stephen D Ginsberg
- Cell and Molecular Biology Program, New York University Langone Medical Center, New York, NY, USA; Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA; Department of Physiology & Neuroscience, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
40
|
Hill JM, Dua P, Clement C, Lukiw WJ. An evaluation of progressive amyloidogenic and pro-inflammatory change in the primary visual cortex and retina in Alzheimer's disease (AD). Front Neurosci 2014; 8:347. [PMID: 25429256 PMCID: PMC4228830 DOI: 10.3389/fnins.2014.00347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/11/2014] [Indexed: 01/02/2023] Open
Affiliation(s)
- James M Hill
- Louisiana State University Neuroscience Center and Departments of Ophthalmology and Pharmacology, Louisiana State University Health Science Center New Orleans, LA, USA
| | - Prerna Dua
- Department of Health Information Management, Louisiana State University Ruston, LA, USA
| | - Christian Clement
- Department of Natural Sciences, Infectious Diseases, Experimental Therapeutics and Human Toxicology Lab, Southern University at New Orleans New Orleans, LA, USA
| | - Walter J Lukiw
- Louisiana State University Neuroscience Center and Departments of Ophthalmology and Pharmacology, Louisiana State University Health Science Center New Orleans, LA, USA ; Department of Neurology, Louisiana State University Health Science Center New Orleans, LA, USA
| |
Collapse
|
41
|
Alexandrov PN, Dua P, Lukiw WJ. Up-Regulation of miRNA-146a in Progressive, Age-Related Inflammatory Neurodegenerative Disorders of the Human CNS. Front Neurol 2014; 5:181. [PMID: 25324823 PMCID: PMC4179622 DOI: 10.3389/fneur.2014.00181] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Prerna Dua
- Department of Health Information Management, Louisiana State University , Ruston, LA , USA
| | - Walter J Lukiw
- Department of Neurology, Louisiana State University Health Science Center , New Orleans, LA , USA ; LSU Neuroscience Center and Department of Ophthalmology, Louisiana State University Health Science Center , New Orleans, LA , USA
| |
Collapse
|
42
|
Gonzalez-Zuñiga M, Contreras PS, Estrada LD, Chamorro D, Villagra A, Zanlungo S, Seto E, Alvarez AR. c-Abl stabilizes HDAC2 levels by tyrosine phosphorylation repressing neuronal gene expression in Alzheimer's disease. Mol Cell 2014; 56:163-73. [PMID: 25219501 DOI: 10.1016/j.molcel.2014.08.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/02/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
In Alzheimer's disease (AD), there is a decrease in neuronal gene expression induced by HDAC2 increase; however, the mechanisms involved are not fully elucidated. Here, we described how the tyrosine kinase c-Abl increases HDAC2 levels, inducing transcriptional repression of synaptic genes. Our data demonstrate that (1) in neurons, c-Abl inhibition with Imatinib prevents the AβO-induced increase in HDAC2 levels; (2) c-Abl knockdown cells show a decrease in HDAC2 levels, while c-Abl overexpression increases them; (3) c-Abl inhibition reduces HDAC2-dependent repression activity and HDAC2 recruitment to the promoter of several synaptic genes, increasing their expression; (4) c-Abl induces tyrosine phosphorylation of HDAC2, a posttranslational modification, affecting both its stability and repression activity; and (5) treatment with Imatinib decreases HDAC2 levels in a transgenic mice model of AD. Our results support the participation of the c-Abl/HDAC2 signaling pathway in the epigenetic blockade of gene expression in AD pathology.
Collapse
Affiliation(s)
- Marcelo Gonzalez-Zuñiga
- Department of Cell & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; Biological and Chemistry Sciences Department, Universidad Bernardo O'Higgins, Santiago 8370993, Chile
| | - Pablo S Contreras
- Department of Cell & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; Department of Gastroenterology, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Lisbell D Estrada
- Department of Cell & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; Biological and Chemistry Sciences Department, Universidad Bernardo O'Higgins, Santiago 8370993, Chile
| | - David Chamorro
- Department of Cell & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Alejandro Villagra
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Silvana Zanlungo
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Edward Seto
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alejandra R Alvarez
- Department of Cell & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| |
Collapse
|
43
|
Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribbs DH, Cotman CW. Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease. Neurobiol Aging 2014; 35:1961-72. [PMID: 24786631 PMCID: PMC4067010 DOI: 10.1016/j.neurobiolaging.2014.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
Mild cognitive impairment (MCI) represents a cognitive state intermediate between normal aging and early Alzheimer's disease (AD). To investigate if the molecular signature of MCI parallels the clinical picture, we use microarrays to extensively profile gene expression in 4 cortical brain regions (entorhinal cortex, hippocampus, superior frontal gyrus, post-central gyrus) using the postmortem tissue from cognitively normal aged controls, MCI, and AD cases. Our data reveal that gene expression patterns in MCI are not an extension of aging, and for the most part, are not intermediate between aged controls and AD. Functional enrichment analysis of significant genes revealed prominent upregulation in MCI brains of genes associated with anabolic and biosynthetic pathways (notably transcription, protein biosynthesis, protein trafficking, and turnover) as well as mitochondrial energy generation. In addition, many synaptic genes showed altered expression in MCI, predominantly upregulation, including genes for central components of the vesicle fusion machinery at the synapse, synaptic vesicle trafficking, neurotransmitter receptors, and synaptic structure and stabilization. These data suggest that there is a rebalancing of synaptic transmission in the MCI brain. To investigate if synaptic gene expression levels in MCI were related to cognitive function, Pearson correlation coefficient between the Mini Mental State Examination (MMSE) and region-specific messenger RNA expression were computed for MCI cases. A number of synaptic genes showed strong significant correlations (r > 0.8, p < 0.01) most notably in the entorhinal cortex, with fewer in the hippocampus, and very few in neocortical regions. The synaptic genes with highly significant correlations were predominantly related to synaptic transmission and plasticity, and myelin composition. Unexpectedly, we found that gene expression changes that facilitate synaptic excitability and plasticity were overwhelmingly associated with poorer MMSE, and conversely that gene expression changes that inhibit plasticity were positively associated with MMSE. These data suggest that there are excessive excitability and apparent plasticity in limbic brain regions in MCI, that is associated with impaired synaptic and cognitive function. Such changes would be predicted to contribute to increased excitability, in turn leading to greater metabolic demand and ultimately progressive degeneration and AD, if not controlled.
Collapse
Affiliation(s)
- Nicole C Berchtold
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA.
| | | | | | - Ronald C Kim
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - David H Cribbs
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA; Departments of Neurology and Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Carl W Cotman
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA; Departments of Neurology and Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
44
|
Alldred MJ, Lee SH, Petkova E, Ginsberg SD. Expression profile analysis of vulnerable CA1 pyramidal neurons in young-Middle-Aged Ts65Dn mice. J Comp Neurol 2014; 523:61-74. [PMID: 25131634 DOI: 10.1002/cne.23663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
Down syndrome (DS) is the most prevalent cause of intellectual disability (ID). Individuals with DS show a variety of cognitive deficits, most notably in hippocampal learning and memory, and display pathological hallmarks of Alzheimer's disease (AD), with neurodegeneration of cholinergic basal forebrain (CBF) neurons. Elucidation of the molecular and cellular underpinnings of neuropathology has been assessed via gene expression analysis in a relevant animal model, termed the Ts65Dn mouse. The Ts65Dn mouse is a segmental trisomy model of DS that mimics DS/AD pathology, notably age-related cognitive dysfunction and degeneration of basal forebrain cholinergic neurons (BFCNs). To determine expression level changes, molecular fingerprinting of cornu ammonis 1 (CA1) pyramidal neurons was performed in adult (4-9 month-old) Ts65Dn mice, at the initiation of BFCN degeneration. To quantitate transcriptomic changes during this early time period, laser capture microdissection (LCM), terminal continuation (TC) RNA amplification, custom-designed microarray analysis, and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting was performed. The results indicate significant alterations within CA1 pyramidal neurons of Ts65Dn mice compared with normal disomic (2N) littermates, notably in the downregulation of neurotrophins and their cognate neurotrophin receptors among other classes of transcripts relevant to neurodegeneration. The results of this single-population gene expression analysis at the time of septohippocampal deficits in a trisomic mouse model shed light on a vulnerable circuit that may cause the AD-like pathology invariably seen in DS that could help to identify mechanisms of degeneration, and provide novel gene targets for therapeutic interventions. J. Comp. Neurol. 523:61-74, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, 10962; Department of Psychiatry, New York University Langone Medical Center, New York, New York, 10016
| | | | | | | |
Collapse
|
45
|
Mariga A, Zavadil J, Ginsberg SD, Chao MV. Withdrawal of BDNF from hippocampal cultures leads to changes in genes involved in synaptic function. Dev Neurobiol 2014; 75:173-92. [PMID: 25059794 DOI: 10.1002/dneu.22216] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/26/2014] [Accepted: 07/23/2014] [Indexed: 11/07/2022]
Abstract
Neurotrophins play a crucial role in mediating neuronal survival and synaptic plasticity. A lack of trophic factor support in the peripheral nervous system (PNS) is associated with a transcription-dependent programmed cell death process in developing sympathetic neurons. While most of the attention has been on events culminating in cell death in the PNS, the earliest events that occur after trophic factor withdrawal in the central nervous system (CNS) have not been investigated. In the CNS, brain-derived neurotrophic factor (BDNF) is widely expressed and is released in an activity-dependent manner to shape the structure and function of neuronal populations. Reduced neurotrophic factor support has been proposed as a mechanism to account for changes in synaptic plasticity during neurodevelopment to aging and neurodegenerative disorders. To this end, we performed transcriptional profiling in cultured rat hippocampal neurons. We used a TrkB ligand scavenger (TrkB-FC ) to sequester endogenous neurotrophic factor activity from hippocampal neurons in culture. Using a high-density microarray platform, we identified a significant decrease in genes that are associated with vesicular trafficking and synaptic function, as well as selective increases in MAP kinase phosphatases. A comparison of these changes with recent studies of Alzheimer's disease and cognitive impairment in postmortem brain tissue revealed striking similarities in gene expression changes for genes involved in synaptic function. These changes are relevant to a wide number of conditions in which levels of BDNF are compromised.
Collapse
Affiliation(s)
- Abigail Mariga
- Cell and Molecular Biology Program, New York University Langone Medical Center, New York, New York, 10016
| | | | | | | |
Collapse
|
46
|
Zhao Y, Bhattacharjee S, Jones BM, Hill J, Dua P, Lukiw WJ. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer's disease (AD) and in primary human neuronal-glial (HNG) cells. Mol Neurobiol 2014; 50:97-106. [PMID: 24293102 PMCID: PMC4038663 DOI: 10.1007/s12035-013-8595-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022]
Abstract
Inducible microRNAs (miRNAs) perform critical regulatory roles in central nervous system (CNS) development, aging, health, and disease. Using miRNA arrays, RNA sequencing, enhanced Northern dot blot hybridization technologies, Western immunoblot, and bioinformatics analysis, we have studied miRNA abundance and complexity in Alzheimer's disease (AD) brain tissues compared to age-matched controls. In both short post-mortem AD and in stressed primary human neuronal-glial (HNG) cells, we observe a consistent up-regulation of several brain-enriched miRNAs that are under transcriptional control by the pro-inflammatory transcription factor NF-kB. These include miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155. Of the inducible miRNAs in this subfamily, miRNA-125b is among the most abundant and significantly induced miRNA species in human brain cells and tissues. Bioinformatics analysis indicated that an up-regulated miRNA-125b could potentially target the 3'untranslated region (3'-UTR) of the messenger RNA (mRNA) encoding (a) a 15-lipoxygenase (15-LOX; ALOX15; chr 17p13.3), utilized in the conversion of docosahexaneoic acid into neuroprotectin D1 (NPD1), and (b) the vitamin D3 receptor (VDR; VD3R; chr12q13.11) of the nuclear hormone receptor superfamily. 15-LOX and VDR are key neuromolecular factors essential in lipid-mediated signaling, neurotrophic support, defense against reactive oxygen and nitrogen species (reactive oxygen and nitrogen species), and neuroprotection in the CNS. Pathogenic effects appear to be mediated via specific interaction of miRNA-125b with the 3'-UTR region of the 15-LOX and VDR messenger RNAs (mRNAs). In AD hippocampal CA1 and in stressed HNG cells, 15-LOX and VDR down-regulation and a deficiency in neurotrophic support may therefore be explained by the actions of a single inducible, pro-inflammatory miRNA-125b. We will review the recent data on the pathogenic actions of this up-regulated miRNA-125b in AD and discuss potential therapeutic approaches using either anti-NF-kB or anti-miRNA-125b strategies. These may be of clinical relevance in the restoration of 15-LOX and VDR expression back to control levels and the re-establishment of homeostatic neurotrophic signaling in the CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| | - Surjyadipta Bhattacharjee
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| | - Brandon M. Jones
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| | - Jim Hill
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| | - Prerna Dua
- Department of Health Information Management, Louisiana State University, Ruston, LA 71272 USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| |
Collapse
|
47
|
Alldred MJ, Lee SH, Petkova E, Ginsberg SD. Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer's disease (AD). Brain Struct Funct 2014; 220:2983-96. [PMID: 25031177 DOI: 10.1007/s00429-014-0839-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/02/2014] [Indexed: 11/29/2022]
Abstract
Down syndrome (DS) is caused by the triplication of human chromosome 21 (HSA21) and is the most common genetic cause of intellectual disability, with individuals having deficits in cognitive function including hippocampal learning and memory and neurodegeneration of cholinergic basal forebrain neurons, a pathological hallmark of Alzheimer's disease (AD). To date, the molecular underpinnings driving this pathology have not been elucidated. The Ts65Dn mouse is a segmental trisomy model of DS and like DS/AD pathology, displays age-related cognitive dysfunction and basal forebrain cholinergic neuron (BFCN) degeneration. To determine molecular and cellular changes important for elucidating mechanisms of neurodegeneration in DS/AD pathology, expression profiling studies were performed. Molecular fingerprinting of homogeneous populations of Cornu Ammonis 1 (CA1) pyramidal neurons was performed via laser capture microdissection followed by Terminal Continuation RNA amplification combined with custom-designed microarray analysis and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting. Significant alterations were observed within CA1 pyramidal neurons of aged Ts65Dn mice compared to normal disomic (2N) littermates, notably in excitatory and inhibitory neurotransmission receptor families and neurotrophins, including brain-derived neurotrophic factor as well as several cognate neurotrophin receptors. Examining gene and protein expression levels after the onset of BFCN degeneration elucidated transcriptional and translational changes in neurons within a vulnerable circuit that may cause the AD-like pathology seen in DS as these individuals age, and provide rational targets for therapeutic interventions.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | | | | | | |
Collapse
|
48
|
Bhattacharjee S, Zhao Y, Hill JM, Percy ME, Lukiw WJ. Aluminum and its potential contribution to Alzheimer's disease (AD). Front Aging Neurosci 2014; 6:62. [PMID: 24782759 PMCID: PMC3986683 DOI: 10.3389/fnagi.2014.00062] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/21/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Surjyadipta Bhattacharjee
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA
| | - James M Hill
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Microbiology, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA
| | - Maire E Percy
- Departments of Physiology and Obstetrics and Gynaecology, University of Toronto Toronto, ON, Canada ; Neurogenetics Laboratory, Surrey Place Centre Toronto, ON, Canada
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
49
|
Pogue AI, Hill JM, Lukiw WJ. MicroRNA (miRNA): sequence and stability, viroid-like properties, and disease association in the CNS. Brain Res 2014; 1584:73-9. [PMID: 24709119 DOI: 10.1016/j.brainres.2014.03.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/06/2014] [Accepted: 03/28/2014] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) constitute a relatively recently-discovered class of small non-coding RNAs (sncRNAs) that are gaining considerable attention in the molecular-genetic regulatory mechanisms that contribute to human health and disease. As highly soluble and mobile entities, emerging evidence indicates that miRNAs posess a highly selected ribonucleotide sequence structure, are part of an evolutionary ancient genetic signaling system, resemble the plant pathogens known as viroids in their structure, mode of generation and function, and are very abundant in the physiological fluids that surround cells and tissues. Persistence and altered abundance of miRNAs in the extracellular fluid (ECF) or cerebrospinal fluid (CSF) may play a role in the intercellular spreading of disease systemically, and throughout functionally-linked cellular and tissue systems such as the central nervous system (CNS). This short communication will review some of the more fascinating features of these highly structured single stranded RNAs (ssRNAs) with emphasis on their presence and function in the human CNS, with particular reference to Alzheimer׳s disease (AD) wherever possible.
Collapse
Affiliation(s)
| | - James M Hill
- Departments of Neurology, Neuroscience and Ophthalmology, LSU Neuroscience Center, School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
| | - Walter J Lukiw
- Alchem Biotek, Toronto, ON, Canada, M5S 1A8; Departments of Neurology, Neuroscience and Ophthalmology, LSU Neuroscience Center, School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA.
| |
Collapse
|
50
|
Pogue AI, Clement C, Hill JM, Lukiw WJ. Evolution of microRNA (miRNA) Structure and Function in Plants and Animals: Relevance to Aging and Disease. ACTA ACUST UNITED AC 2014; 2. [PMID: 26146648 PMCID: PMC4489142 DOI: 10.4172/2329-8847.1000119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - James M Hill
- Departments of Ophthalmology, LSU Neuroscience Center, USA ; Departments of Microbiology, LSU Neuroscience Center, USA ; Departments of Pharmacology, LSU Neuroscience Center, USA ; Departments of Neurology, LSU Neuroscience Center, USA
| | - Walter J Lukiw
- Alchem Biotek, Toronto ON, M5S 1A8, Canada ; Departments of Ophthalmology, LSU Neuroscience Center, USA ; Departments of Neurology, LSU Neuroscience Center, USA
| |
Collapse
|