1
|
Foster VS, Saez NJ, Gillespie ER, Jogia T, Reid C, Maljevic S, Jung W, Lao HW, Ruitenberg MJ, King GF. Genetic or Pharmacological Ablation of Acid-Sensing Ion Channel 1a (ASIC1a) Is Not Neuroprotective in a Mouse Model of Spinal Cord Injury. J Neurotrauma 2024; 41:1007-1019. [PMID: 36924276 DOI: 10.1089/neu.2022.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a proton-activated channel that is expressed ubiquitously throughout the central nervous system and in various types of immune cells. Its role in spinal cord injury (SCI) is controversial; inhibition of ASIC1a has been reported to improve SCI pathology in vivo, but conversely, gene ablation increased kainite-mediated excitotoxic cell death in vitro. Here, we re-examined the role of ASIC1a in a mouse model of SCI. First, we observed functional outcomes up to 42 days post-operation (DPO) in SCI mice with a selective genetic ablation of ASIC1a. Mice lacking ASIC1a had significantly worsened locomotor ability and increased lesion size compared with mice possessing the ASIC1a gene. Next, we explored pharmacological antagonism of this ion channel by administering the potent ASIC1a inhibitor, Hi1a. Consistent with a role for ASIC1a to attenuate excitotoxicity, accelerated neuronal cell loss was found at the lesion site in SCI mice treated with Hi1a, but there were no differences in locomotor recovery. Moreover, ASIC1a inhibition did not cause significant alterations to neutrophil migration, microglial density, or blood-spinal cord barrier integrity.
Collapse
Affiliation(s)
- Victoria S Foster
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Trisha Jogia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Chantelle Reid
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Woncheol Jung
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Hong W Lao
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
- Trauma, Critical Care, and Recovery, Brisbane Diamantina Health Partners, Brisbane, Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Center of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Perez JC, Poulen G, Cardoso M, Boukhaddaoui H, Gazard CM, Courtand G, Bertrand SS, Gerber YN, Perrin FE. CSF1R inhibition at chronic stage after spinal cord injury modulates microglia proliferation. Glia 2023; 71:2782-2798. [PMID: 37539655 DOI: 10.1002/glia.24451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Traumatic spinal cord injury (SCI) induces irreversible autonomic and sensory-motor impairments. A large number of patients exhibit chronic SCI and no curative treatment is currently available. Microglia are predominant immune players after SCI, they undergo highly dynamic processes, including proliferation and morphological modification. In a translational aim, we investigated whether microglia proliferation persists at chronic stage after spinal cord hemisection and whether a brief pharmacological treatment could modulate microglial responses. We first carried out a time course analysis of SCI-induced microglia proliferation associated with morphological analysis up to 84 days post-injury (dpi). Second, we analyzed outcomes on microglia of an oral administration of GW2580, a colony stimulating factor-1 receptor tyrosine kinase inhibitor reducing selectively microglia proliferation. After SCI, microglia proliferation remains elevated at 84 dpi. The percentage of proliferative microglia relative to proliferative cells increases over time reaching almost 50% at 84 dpi. Morphological modifications of microglia processes are observed up to 84 dpi and microglia cell body area is transiently increased up to 42 dpi. A transient post-injury GW2580-delivery at two chronic stages after SCI (42 and 84 dpi) reduces microglia proliferation and modifies microglial morphology evoking an overall limitation of secondary inflammation. Finally, transient GW2580-delivery at chronic stage after SCI modulates myelination processes. Together our study shows that there is a persistent microglia proliferation induced by SCI and that a pharmacological treatment at chronic stage after SCI modulates microglial responses. Thus, a transient oral GW2580-delivery at chronic stage after injury may provide a promising therapeutic strategy for chronic SCI patients.
Collapse
Affiliation(s)
| | - Gaetan Poulen
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
| | - Maida Cardoso
- UMR 5221, Univ. Montpellier, CNRS, Montpellier, France
| | | | | | | | | | | | - Florence Evelyne Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
3
|
Ma P, Huang N, Tang J, Zhou Z, Xu J, Chen Y, Zhang M, Huang Q, Cheng Y. The TRPM4 channel inhibitor 9-phenanthrol alleviates cerebral edema after traumatic brain injury in rats. Front Pharmacol 2023; 14:1098228. [PMID: 36865920 PMCID: PMC9971592 DOI: 10.3389/fphar.2023.1098228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cerebral edema (CE) exerts an important effect on brain injury after traumatic brain injury (TBI). Upregulation of transient receptor potential melastatin 4 (TRPM4) in vascular endothelial cells (ECs) results in damage to capillaries and the blood-brain barrier (BBB), which is critical for the development of CE. Many studies have shown that 9-phenanthrol (9-PH) effectively inhibits TRPM4. The current study aimed to investigate the effect of 9-PH on reducing CE after TBI. In this experiment, we observed that 9-PH markedly reduced brain water content, BBB disruption, proliferation of microglia and astrocytes, neutrophil infiltration, neuronal apoptosis and neurobehavioral deficits. At the molecular level, 9-PH significantly inhibited the protein expression of TRPM4 and MMP-9, alleviated the expression of apoptosis-related molecules and inflammatory cytokines, such as Bax, TNF-α and IL-6, near injured tissue, and diminished serum SUR1 and TRPM4 levels. Mechanistically, treatment with 9-PH inhibited activation of the PI3K/AKT/NF-kB signaling pathway, which was reported to be involved in the expression of MMP-9. Taken together, the results of this study indicate that 9-PH effectively reduces CE and alleviates secondary brain injury partly through the following possible mechanisms: ①9-PH inhibits TRPM4-mediated Na + influx and reduces cytotoxic CE; ②9-PH hinders the expression and activity of MMP-9 by inhibiting the TRPM4 channel and decreases disruption of the BBB, thereby preventing vasogenic cerebral edema. ③9-PH reduces further inflammatory and apoptotic damage to tissues.
Collapse
Affiliation(s)
- Ping Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zunjie Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maoxin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Qin Huang, ; Yuan Cheng,
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Qin Huang, ; Yuan Cheng,
| |
Collapse
|
4
|
Li XW, Wu P, Yao J, Zhang K, Jin GY. Genistein Protects against Spinal Cord Injury in Mice by Inhibiting Neuroinflammation via TLR4-Mediated Microglial Polarization. Appl Bionics Biomech 2022; 2022:4790344. [PMID: 35498148 PMCID: PMC9054478 DOI: 10.1155/2022/4790344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The present study was designed to study the effect of genistein on spinal cord injury (SCI) in mice and to explore its underlying mechanisms. Methods We established SCI mouse model, and genistein was administered for treatment. We used the Basso, Beattie, and Bresnahan (BBB) exercise rating scale to evaluate exercise recovery, and the detection of spinal cord edema was done using the wet/dry weight method. Apoptosis was determined by TUNEL staining, and inflammation was evaluated by measuring inflammatory factors by an ELISA kit. The expression of M1 and M2 macrophage markers was determined using flow cytometry, and the expression of proteins was detected using immunoblotting. Results Genistein treatment not only improved the BBB score but also reduced spinal cord edema in SCI mice. Genistein treatment reduced apoptosis by increasing Bcl2 protein expression and decreasing Bax and caspase 3 protein expression. It also reduced the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) in the SCI area of SCI mice. Flow cytometry analysis indicated that genistein treatment significantly decreased the ratio of M1 macrophages (CD45+/Gr-1-/CD11b+/iNOS+) and increased the ratio of M2 macrophages (CD45+/Gr-1-/CD11b+/Arginase 1+) in the SCI area of SCI mice on the 28th day after being treated with genistein. We also found that genistein treatment significantly decreased the expression of TLR4, MyD88, and TRAF6 protein in the SCI area of SCI mice on 28th day after being treated with genistein. Conclusion Our findings suggested that genistein exerted neuroprotective action by inhibiting neuroinflammation by promoting the activation of M2 macrophages, and its underlying mechanisms might be related to the inhibition of the TLR4-mediated MyD88-dependent signaling pathway.
Collapse
Affiliation(s)
- Xin-Wu Li
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Peng Wu
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Jian Yao
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Kai Zhang
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 200011 Shanghai, China
| | - Gen-Yang Jin
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| |
Collapse
|
5
|
Economopoulos V, Pannell M, Johanssen VA, Scott H, Andreou KE, Larkin JR, Sibson NR. Inhibition of Anti-Inflammatory Macrophage Phenotype Reduces Tumour Growth in Mouse Models of Brain Metastasis. Front Oncol 2022; 12:850656. [PMID: 35359423 PMCID: PMC8960618 DOI: 10.3389/fonc.2022.850656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer brain metastasis is a significant clinical problem and carries a poor prognosis. Although it is well-established that macrophages are a primary component of the brain metastasis microenvironment, the role of blood-derived macrophages (BDM) and brain-resident microglia in the progression of brain metastases remains uncertain. The aim of this study, therefore, was to determine the role, specifically, of pro- and anti-inflammatory BDM and microglial phenotypes on metastasis progression. Initial in vitro studies demonstrated decreased migration of EO771 metastatic breast cancer cells in the presence of pro-inflammatory, but not anti-inflammatory, stimulated RAW 264.7 macrophages. In vivo, suppression of the anti-inflammatory BDM phenotype, specifically, via myeloid knock out of Krüppel-like Factor 4 (KLF4) significantly reduced EO771 tumour growth in the brains of C57BL/6 mice. Further, pharmacological inhibition of the anti-inflammatory BDM and/or microglial phenotypes, via either Colony Stimulating Factor 1 Receptor (CSF-1R) or STAT6 pathways, significantly decreased tumour burden in two different syngeneic mouse models of breast cancer brain metastasis. These findings suggest that switching BDM and microglia towards a more pro-inflammatory phenotype may be an effective therapeutic strategy in brain metastasis.
Collapse
Affiliation(s)
- Vasiliki Economopoulos
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Maria Pannell
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Vanessa A Johanssen
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Helen Scott
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Kleopatra E Andreou
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - James R Larkin
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola R Sibson
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Preclinical model of multiple sclerosis: Focal, chemical or viral demyelination. Methods Cell Biol 2022; 168:87-102. [DOI: 10.1016/bs.mcb.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Chronic Low Dose Neutron Exposure Results in Altered Neurotransmission Properties of the Hippocampus-Prefrontal Cortex Axis in Both Mice and Rats. Int J Mol Sci 2021; 22:ijms22073668. [PMID: 33915974 PMCID: PMC8036585 DOI: 10.3390/ijms22073668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
The proposed deep space exploration to the moon and later to Mars will result in astronauts receiving significant chronic exposures to space radiation (SR). SR exposure results in multiple neurocognitive impairments. Recently, our cross-species (mouse/rat) studies reported impaired associative memory formation in both species following a chronic 6-month low dose exposure to a mixed field of neutrons (1 mGy/day for a total dose pf 18 cGy). In the present study, we report neutron exposure induced synaptic plasticity in the medial prefrontal cortex, accompanied by microglial activation and significant synaptic loss in the hippocampus. In a parallel study, neutron exposure was also found to alter fluorescence assisted single synaptosome LTP (FASS-LTP) in the hippocampus of rats, that may be related to a reduced ability to insert AMPAR into the post-synaptic membrane, which may arise from increased phosphorylation of the serine 845 residue of the GluA1 subunit. Thus, we demonstrate for the first time, that low dose chronic neutron irradiation impacts homeostatic synaptic plasticity in the hippocampal-cortical circuit in two rodent species, and that the ability to successfully encode associative recognition memory is a dynamic, multicircuit process, possibly involving compensatory changes in AMPAR density on the synaptic surface.
Collapse
|
8
|
Macrophage migration inhibitory factor as a therapeutic target after traumatic spinal cord injury: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1474-1494. [PMID: 33486594 DOI: 10.1007/s00586-021-06718-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/25/2020] [Accepted: 01/01/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Macrophages play an important role in mediating damage after Spinal cord injury (SCI) by secreting macrophage migration inhibitory factor (MMIF) as a secondary injury mediator. We aimed to systematically review the role of MMIF as a therapeutic target after traumatic SCI. METHODS Our systematic review has been performed according to the PRISMA 2009 Checklist. A systematic search in the scientific databases was carried out for studies published before 20 February 2019 from major databases. Two researchers independently screened titles. The risk of bias of eligible articles was assessed, and data were extracted. Finally, we systematically analyzed and interpreted related data. RESULTS 785 papers were selected for the title and abstract screening. 12 papers were included for data extraction. Eight animal studies were of high quality and the remaining two were of medium quality. One of the two human studies was of poor quality and the other was of fair quality. MMIF as a pro-inflammatory mediator can cause increased susceptibility to glutamate-related neurotoxicity, increased nitrite production, increased ERK activation, and increased COX2/PGE2 signaling pathway activation and subsequent stimulation of CCL5-related chemotaxis. Two human studies and six animal studies demonstrated that MMIF level increases after SCI. MMIF inhibition might be a potential therapeutic target in SCI by multiple different mechanisms (6/12 studies). CONCLUSION Most animal studies demonstrate significant neurologic improvement after administration of MMIF inhibitors, but these inhibitors have not been studied in humans yet. Further clinical trials are need to further understand MMIF inhibitor utility in acute or chronic SCI. LEVEL OF EVIDENCE I Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
Collapse
|
9
|
NIMA-related kinase 7 amplifies NLRP3 inflammasome pro-inflammatory signaling in microglia/macrophages and mice models of spinal cord injury. Exp Cell Res 2020; 398:112418. [PMID: 33309808 DOI: 10.1016/j.yexcr.2020.112418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND NIMA-related kinase-7 (NEK7) is a serine/threonine kinase that drives cell-cycle dynamics by modulating mitotic spindle formation and cytokinesis. It is also a crucial modulator of the pro-inflammatory effects of NOD-like receptor 3 (NLRP3) inflammasome. However, the role of NEK7 in microglia/macrophages post-spinal cord injury (SCI) is not well defined. METHODS In this study, we performed both in vivo and in vitro experiments. Using an in vivo mouse SCI model, NEK7 siRNAs were administered intraspinally. For in vitro analysis, BV-2 microglia cells with NEK7-siRNA were stimulated with 1 μg/ml lipopolysaccharide (LPS) and 2 mM Adenosine triphosphate (ATP). RESULTS Here, we found that the mRNA and protein levels of NEK7 and NLRP3 inflammasomes were upregulated in spinal cord tissues of injured mice and BV-2 microglia cells exposed to Lipopolysaccharide (LPS) and Adenosine triphosphate (ATP). Further experiments established that NEK7 and NLRP3 interacted in BV-2 microglia cells, an effect that was eliminated following NEK7 ablation. Moreover, NEK7 ablation suppressed the activation of NLRP3 inflammasomes. Although NEK7 inhibition did not significantly improve motor function post-SCI in mice, it was found to attenuate local inflammatory response and inhibit the activation of NLRP3 inflammasome in microglia/macrophages of the injured spinal cord. CONCLUSION NEK7 amplifies NLRP3 inflammasome pro-inflammatory signaling in BV-2 microglia cells and mice models of SCI. Therefore, agents targeting the NEK7/NLRP3 signaling offers great promise in the treatment of inflammatory response post-SCI.
Collapse
|
10
|
Li M, Rong ZJ, Cao Y, Jiang LY, Zhong D, Li CJ, Sheng XL, Hu JZ, Lu HB. Utx Regulates the NF-κB Signaling Pathway of Natural Stem Cells to Modulate Macrophage Migration during Spinal Cord Injury. J Neurotrauma 2020; 38:353-364. [PMID: 32977735 DOI: 10.1089/neu.2020.7075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells (NSCs) play vital roles in the homeostasis of neurological function. Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX) is an important regulator of stem cell phenotypes. In our current study, we aimed to investigate whether the conditional knockout of UTX on neural stem cells alters macrophage assembly in response to spinal cord injury (SCI). Conditional knockout Utx of NSC (Utx-KO) mice was used to generate SCI models by the modified Allen method. We reported that neurological function and scar hyperplasia significantly improved in Utx-KO mice after SCI, accompanied by significantly reduced assembly of macrophages. With a 45-fold pathway array and Western blot, we found that Utx-KO could significantly inhibit NF-κB signaling activation and promote the synthesis and secretion of macrophage migration inhibitory factor (MIF) in NSCs. Administration of the selective NF-κB p65 activator betulinic acid and the selective MIF inhibitor ISO-1 confirmed that the activation of NF-κB p65 phosphorylation or inhibition of MIF could eliminate the benefits of Utx-KO in SCI, such as inhibition of macrophage aggregation and reduction in scar proliferation. This study confirmed that UTX in NSCs could alter macrophage migration and improve neurological function recovery after SCI in mice.
Collapse
Affiliation(s)
- Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Zi-Jie Rong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Li-Yuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Dong Zhong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Cheng-Jun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Xiao-Long Sheng
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Jian-Zhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Hong-Bin Lu
- Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
11
|
Akhmetzyanova E, Kletenkov K, Mukhamedshina Y, Rizvanov A. Different Approaches to Modulation of Microglia Phenotypes After Spinal Cord Injury. Front Syst Neurosci 2019; 13:37. [PMID: 31507384 PMCID: PMC6718713 DOI: 10.3389/fnsys.2019.00037] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023] Open
Abstract
Microglial cells, which are highly plastic, immediately respond to any change in the microenvironment by becoming activated and shifting the phenotype toward neurotoxicity or neuroprotection. The polarization of microglia/macrophages after spinal cord injury (SCI) seems to be a dynamic process and can change depending on the microenvironment, stage, course, and severity of the posttraumatic process. Effective methods to modulate microglia toward a neuroprotective phenotype in order to stimulate neuroregeneration are actively sought for. In this context, available approaches that can selectively impact the polarization of microglia/macrophages regulate synthesis of trophic factors and cytokines/chemokines in them, and their phagocytic function and effects on the course and outcome of SCI are discussed in this review.
Collapse
Affiliation(s)
- Elvira Akhmetzyanova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Konstantin Kletenkov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
12
|
Leclaire MD, Nettels-Hackert G, König J, Höhn A, Grune T, Uhlig CE, Hansen U, Eter N, Heiduschka P. Lipofuscin-dependent stimulation of microglial cells. Graefes Arch Clin Exp Ophthalmol 2019; 257:931-952. [PMID: 30693383 DOI: 10.1007/s00417-019-04253-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To examine the reaction of microglial cells (MG) when incubated with lipofuscin (LP) in vitro with emphasis on the immunological reaction of the MG toward LP and the suppression of this reaction by immunomodulatory agents. MG are involved in the pathogenesis of degenerative eye disorders such as age-related macular degeneration (AMD). LP is a heterogeneous waste material that accumulates in the retinal pigment epithelium (RPE) cells with advancing age. LP is known to have toxic effects on RPE cells and therefore an elevated LP-derived fundus autofluorescence is a risk factor for AMD development. MG in the subretinal space have been reported in eyes affected by AMD. Moreover, in senescent mice, subretinal MG were found, which display an autofluorescence that may be derived from LP uptake. METHODS In this study, we incubated MG (BV-2 cell line and primary cells from murine brain) in vitro with LP isolated from the human RPE. We observed phagocytosis, studied cell morphologies, and analyzed the cell culture supernatants. We also investigated the effect of the immunomodulatory agents hydrocortisone (HC), minocycline, and the tripeptide TKP. RESULTS The MG phagocytosed the LP quickly and completely. We detected highly elevated levels of pro-inflammatory cytokines (especially of IL-6, IL-23p19, TNF-α, KC, RANTES, and IL-1α) in the cell culture supernatants. Furthermore, levels of vascular endothelial growth factor (VEGF) were raised in BV-2 cells. Anti-inflammatory agents added to the cell cultures inhibited the inflammatory reaction, in particular hydrocortisone (HC). Minocycline and TKP had less impact on the cytokine release. CONCLUSION The interaction of MG and LP could play a role in the development of retinal degeneration by triggering an inflammatory reaction and angiogenesis.
Collapse
Affiliation(s)
- Martin Dominik Leclaire
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany
| | - Gerburg Nettels-Hackert
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany
| | - Jeannette König
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Annika Höhn
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Tilman Grune
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Constantin E Uhlig
- Cornea Bank Münster, Department of Ophthalmology, University Medical Center, Münster, Germany
| | - Uwe Hansen
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty, University of Münster, Münster, Germany
| | - Nicole Eter
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany
| | - Peter Heiduschka
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany.
| |
Collapse
|
13
|
Yao Y, Xu J, Yu T, Chen Z, Xiao Z, Wang J, Hu Y, Wu Y, Zhu D. Flufenamic acid inhibits secondary hemorrhage and BSCB disruption after spinal cord injury. Am J Cancer Res 2018; 8:4181-4198. [PMID: 30128046 PMCID: PMC6096396 DOI: 10.7150/thno.25707] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Acute spinal cord injury (SCI) induces secondary hemorrhage and initial blood-spinal cord barrier (BSCB) disruption. The transient receptor potential melastatin 4 (Trpm4) together with sulfonylurea receptor 1 (Sur1) forms the Sur1-Trpm4 channel complex. The up-regulation of Sur1-Trpm4 after injury plays a crucial role in secondary hemorrhage, which is the most destructive mechanism in secondary injuries of the central nervous system (CNS). The matrix metalloprotease (MMP)-mediated disruption of the BSCB leads to an inflammatory response, neurotoxin production and neuronal cell apoptosis. Thus, preventing secondary hemorrhage and BSCB disruption should be an important goal of therapeutic interventions in SCI. Methods: Using a moderate contusion injury model at T10 of the spinal cord, flufenamic acid (FFA) was injected intraperitoneally 1 h after SCI and then continuously once per day for one week. Results: Trpm4 expression is highly up-regulated in capillaries 1 d after SCI. Treatment with flufenamic acid (FFA) inhibited Trpm4 expression, secondary hemorrhage, and capillary fragmentation and promoted angiogenesis. In addition, FFA significantly inhibited the expression of MMP-2 and MMP-9 at 1 d after SCI and significantly attenuated BSCB disruption at 1 d and 3 d after injury. Furthermore, we found that FFA decreased the hemorrhage- and BSCB disruption-induced activation of microglia/macrophages and was associated with smaller lesions, decreased cavity formation, better myelin preservation and less reactive gliosis. Finally, FFA protected motor neurons and improved locomotor functions after SCI. Conclusion: This study indicates that FFA improves functional recovery, in part, due to the following reasons: (1) it inhibits the expression of Trpm4 to reduce the secondary hemorrhage; and (2) it inhibits the expression of MMP-2 and MMP-9 to block BSCB disruption. Thus, the results of our study suggest that FFA may represent a potential therapeutic agent for promoting functional recovery.
Collapse
|
14
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Caponegro MD, Torres LF, Rastegar C, Rath N, Anderson ME, Robinson JK, Tsirka SE. Pifithrin-μ modulates microglial activation and promotes histological recovery following spinal cord injury. CNS Neurosci Ther 2018; 25:200-214. [PMID: 29962076 DOI: 10.1111/cns.13000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Treatments immediately after spinal cord injury (SCI) are anticipated to decrease neuronal death, disruption of neuronal connections, demyelination, and inflammation, and to improve repair and functional recovery. Currently, little can be done to modify the acute phase, which extends to the first 48 hours post-injury. Efforts to intervene have focused on the subsequent phases - secondary (days to weeks) and chronic (months to years) - to both promote healing, prevent further damage, and support patients suffering from SCI. METHODS We used a contusion model of SCI in female mice, and delivered a small molecule reagent during the early phase of injury. Histological and behavioral outcomes were assessed and compared. RESULTS We find that the reagent Pifithrin-μ (PFT-μ) acts early and directly on microglia in vitro, attenuating their activation. When administered during the acute phase of SCI, PFT-μ resulted in reduced lesion size during the initial inflammatory phase, and reduced the numbers of pro-inflammatory microglia and macrophages. Treatment with PFT-μ during the early stage of injury maintained a stable anti-inflammatory environment. CONCLUSIONS Our results indicate that a small molecule reagent PFT-μ has sustained immunomodulatory effects following a single dose after injury.
Collapse
Affiliation(s)
- Michael D Caponegro
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Luisa F Torres
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Cyrus Rastegar
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Nisha Rath
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Maria E Anderson
- Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - John K Robinson
- Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
16
|
Zhang LQ, Zhang WM, Deng L, Xu ZX, Lan WB, Lin JH. Transplantation of a Peripheral Nerve with Neural Stem Cells Plus Lithium Chloride Injection Promote the Recovery of Rat Spinal Cord Injury. Cell Transplant 2018; 27:471-484. [PMID: 29756516 PMCID: PMC6038036 DOI: 10.1177/0963689717752945] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Transplantation of neural stem cells (NSCs) holds great potential for the treatment of spinal cord injury (SCI). However, transplanted NSCs poorly survive in the SCI environment. We injected NSCs into tibial nerve and transplanted tibial nerve into a hemisected spinal cord and investigated the effects of lithium chloride (LiCl) on the survival of spinal neurons, axonal regeneration, and functional recovery. Our results show that most of the transplanted NSCs expressed glial fibrillary acidic protein, while there was no obvious expression of nestin, neuronal nuclei, or acetyltransferase found in NSCs. LiCl treatment produced less macrosialin (ED1) expression and axonal degeneration in tibial nerve after NSC injection. Our results also show that a regimen of LiCl treatment promoted NSC differentiation into NF200-positive neurons with neurite extension into the host spinal cord. The combination of tibial nerve transplantation with NSCs and LiCl injection resulted in more host motoneurons surviving in the spinal cord, more regenerated axons in tibial nerve, less glial scar area, and decreased ED1 expression. We conclude that lithium may have therapeutic potential in cell replacement strategies for central nervous system injury due to its ability to promote survival and neuronal generation of grafted NSCs and reduced host immune reaction.
Collapse
Affiliation(s)
- Li-Qun Zhang
- 1 Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wen-Ming Zhang
- 1 Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lingxiao Deng
- 2 Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,3 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zi-Xing Xu
- 1 Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wen-Bin Lan
- 1 Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jian-Hua Lin
- 1 Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
17
|
Zhou Y, Li N, Zhu L, Lin Y, Cheng H. The microglial activation profile and associated factors after experimental spinal cord injury in rats. Neuropsychiatr Dis Treat 2018; 14:2401-2413. [PMID: 30275694 PMCID: PMC6157579 DOI: 10.2147/ndt.s169940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) has imposed a great impact on the quality of life of patients due to its relatively young age of onset. The pathophysiology of SCI has been proven to be complicated. Microglia plays an important role in neuroinflammation and second injuries after SCI. Different environment and other factors may determine the microglial activation profile and what role they play. However, neither accurate time-course profiles of microglial activation nor influence factors have been demonstrated in varied SCI models. METHODS A rat compressive SCI model was used. Microglial activation profile and contents of inflammatory factors including IL-1β, IL-6 and TNF-α were detected. Myelination status as well as levels of iron and glutamate concentration, adenosine triphosphate (ATP) and potassium are also assessed. RESULTS Our results showed that the activated microglia participating in immune-mediated responses peaked at day 7 post SCI and gradually decreased during the following 3 weeks. Contrarily, myelination and oligodendroglia showed an opposite trend, indicating that microglia may be a key factor partly through inflammatory reaction. Iron and glutamate concentration were found to be the highest at day 7 after SCI while both ATP and potassium reached a low valley at the same time. CONCLUSION These findings showed a microglial activation profile and the alterations of associated factors after experiment SCI model. Moreover, our data suggest that high iron and glutamate concentration may be released by damaged oligodendroglia and contribute to the activation of microglial after SCI.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, China,
| | - Ning Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Lin Zhu
- Department of Neurosurgery, Jinling Hospital, Jiangsu, China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Jiangsu, China
| | - Huilin Cheng
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, China,
| |
Collapse
|
18
|
Marcol W, Ślusarczyk W, Larysz-Brysz M, Łabuzek K, Kapustka B, Staszkiewicz R, Rosicka P, Kalita K, Węglarz W, Lewin-Kowalik J. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats. Exp Ther Med 2017; 14:4869-4877. [PMID: 29201191 PMCID: PMC5704303 DOI: 10.3892/etm.2017.5130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/28/2017] [Indexed: 11/05/2022] Open
Abstract
Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (P<0.05). MRI analysis demonstrated moderate improvement in water diffusion along the spinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (P<0.05). The number of brain stem and motor cortex FG-positive neurons in group M was significantly higher than in group C. The present study demonstrated that delivery of activated microglia directly into the injured spinal cord gives some positive effects for the regeneration of the white matter.
Collapse
Affiliation(s)
- Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Wojciech Ślusarczyk
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Magdalena Larysz-Brysz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Łabuzek
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Bartosz Kapustka
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Paulina Rosicka
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Katarzyna Kalita
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Władysław Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
19
|
The Effect of Glucocorticoid and Glucocorticoid Receptor Interactions on Brain, Spinal Cord, and Glial Cell Plasticity. Neural Plast 2017; 2017:8640970. [PMID: 28928988 PMCID: PMC5591892 DOI: 10.1155/2017/8640970] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/14/2017] [Indexed: 12/15/2022] Open
Abstract
Stress, injury, and disease trigger glucocorticoid (GC) elevation. Elevated GCs bind to the ubiquitously expressed glucocorticoid receptor (GR). While GRs are in every cell in the nervous system, the expression level varies, suggesting that diverse cell types react differently to GR activation. Stress/GCs induce structural plasticity in neurons, Schwann cells, microglia, oligodendrocytes, and astrocytes as well as affect neurotransmission by changing the release and reuptake of glutamate. While general nervous system plasticity is essential for adaptation and learning and memory, stress-induced plasticity is often maladaptive and contributes to neuropsychiatric disorders and neuropathic pain. In this brief review, we describe the evidence that stress/GCs activate GR to promote cell type-specific changes in cellular plasticity throughout the nervous system.
Collapse
|
20
|
Fang Y, Huang X, Wan Y, Tian H, Tian Y, Wang W, Zhu S, Xie M. Deficiency of TREK-1 potassium channel exacerbates secondary injury following spinal cord injury in mice. J Neurochem 2017; 141:236-246. [PMID: 28192611 DOI: 10.1111/jnc.13980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/09/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yongkang Fang
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiaojiang Huang
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yue Wan
- Department of Neurology; The Third People's Hospital of Hubei Province; Wuhan China
| | - Hao Tian
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yeye Tian
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Wei Wang
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Key Laboratory of Neurological Diseases of Chinese Ministry of Education; The School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Suiqiang Zhu
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Minjie Xie
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Key Laboratory of Neurological Diseases of Chinese Ministry of Education; The School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
21
|
Lewis CS, Torres L, Miyauchi JT, Rastegar C, Patete JM, Smith JM, Wong SS, Tsirka SE. Absence of Cytotoxicity towards Microglia of Iron Oxide (α-Fe 2O 3) Nanorhombohedra. Toxicol Res (Camb) 2016; 5:836-847. [PMID: 27274811 PMCID: PMC4890976 DOI: 10.1039/c5tx00421g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/04/2016] [Indexed: 12/11/2022] Open
Abstract
Understanding the nature of interactions between nanomaterials, such as commercially ubiquitous hematite (α-Fe2O3) Nanorhombohedra (N-Rhomb) and biological systems is of critical importance for gaining insight into the practical applicability of nanomaterials. Microglia represent the first line of defense in the central nervous system (CNS) during severe injury or disease such as Parkinson's and Alzheimer's disease as illustrative examples. Hence, to analyze the potential cytotoxic effect of nanorhombohedra exposure in the presence of microglia, we have synthesized Rhodamine B (RhB) labeled-α-Fe2O3 N-Rhomb, with lengths of 47 ± 10 nm and widths of 35 ± 8 nm. Internalization of RhB labeled-α-Fe2O3 N-Rhomb by microglia in the mouse brain was observed, and a dose-dependent increase in the cellular iron content as probed by cellular fluorescence was detected in cultured microglia after nanoparticle exposure. The cells maintained clear functional viability, exhibiting little to no cytotoxic effects after 24 and 48 hours at acceptable, physiological concentrations. Importantly, the nanoparticle exposure did not induce microglial cells to produce either tumor necrosis factor alpha (TNFα) or interleukin 1-beta (IL1β), two pro-inflammatory cytokines, nor did exposure induce the production of nitrites and reactive oxygen species (ROS), which are common indicators for the onset of inflammation. Finally, we propose that under the conditions of our experiments, i.e. in the presence of RhB labeled-α-Fe2O3 N-Rhomb maintaining concentrations of up to 100 µg/mL after 48 hours of incubation, the in vitro and in vivo internalization of RhB labeled-α-Fe2O3 N-Rhomb are likely to be clathrin-dependent, which represents a conventional mechanistic uptake route for most cells. Given the crucial role that microglia play in many neurological disorders, understanding the potential cytotoxic effects of these nanostructures is of fundamental importance if they are to be used in a therapeutic setting.
Collapse
Affiliation(s)
- Crystal S. Lewis
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Luisa Torres
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Jeremy T. Miyauchi
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Cyrus Rastegar
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Jonathan M. Patete
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Jacqueline M. Smith
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Stanislaus S. Wong
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
- Condensed Matter Physics and Materials Science Department
, Building 480
, Brookhaven National Laboratory
,
Upton
, New York 11973
, USA
| | - Stella E. Tsirka
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| |
Collapse
|
22
|
Hayakawa K, Pham LDD, Seo JH, Miyamoto N, Maki T, Terasaki Y, Sakadžić S, Boas D, van Leyen K, Waeber C, Kim KW, Arai K, Lo EH. CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation. J Cereb Blood Flow Metab 2016; 36:781-93. [PMID: 26661156 PMCID: PMC4821018 DOI: 10.1177/0271678x15606148] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/28/2015] [Indexed: 01/06/2023]
Abstract
There are numerous barriers to white matter repair after central nervous system injury and the underlying mechanisms remain to be fully understood. In this study, we propose the hypothesis that inflammatory macrophages in damaged white matter attack oligodendrocyte precursor cells via toll-like receptor 4 signaling thus interfering with this endogenous progenitor recovery mechanism. Primary cell culture experiments demonstrate that peritoneal macrophages can attack and digest oligodendrocyte precursor cells via toll-like receptor 4 signaling, and this phagocytosis of oligodendrocyte precursor cells can be inhibited by using CD200-Fc to downregulate toll-like receptor 4. In an in vivo model of white matter ischemia induced by endothelin-1, treatment with CD200-Fc suppressed toll-like receptor 4 expression in peripherally circulating macrophages, thus restraining macrophage phagocytosis of oligodendrocyte precursor cells and leading to improved myelination. Taken together, these findings suggest that deleterious macrophage effects may occur after white matter ischemia, whereby macrophages attack oligodendrocyte precursor cells and interfere with endogenous recovery responses. Targeting this pathway with CD200 may offer a novel therapeutic approach to amplify endogenous oligodendrocyte precursor cell-mediated repair of white matter damage in mammalian brain.
Collapse
Affiliation(s)
- Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Loc-Duyen D Pham
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Ji Hae Seo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Yasukazu Terasaki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Sava Sakadžić
- Optics Division, MHG/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - David Boas
- Optics Division, MHG/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Christian Waeber
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| | - Kyu-Won Kim
- NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| |
Collapse
|
23
|
Gene silencing of MCP-1 prevents microglial activation and inflammatory injury after intracerebral hemorrhage. Int Immunopharmacol 2016; 33:18-23. [PMID: 26851629 DOI: 10.1016/j.intimp.2016.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 12/27/2022]
Abstract
Microglia are activated after intracerebral hemorrhage and induce neuron death by releasing proinflammatory cytokines and chemokines. However, the related mechanism of microglia activation in such conditions remains elusive. MCP-1, the ligand of CCR2 expressed in the central nervous system, could promote microglia proliferation, survival and cytokine secretion. According to the previous findings, we make a hypothesis that whether alternation of MCP-1 level could attenuate microglia activation and toxicity to neuron in intracerebral hemorrhage. To identify that, we interfere with the MCP-1 expression of microglia by RNAi technology, and coculture the microglia and neuron in ICH. The results demonstrated that MCP-1 RNAi inhibited TNF-α, IL-1β and IL-6 expression in microglia and attenuated neuron injury. In conclusion, the present study suggests that MCP-1 might promote ICH induced microglia activation and toxicity to neuron, and MCP-1 RNAi might provide promising therapeutical strategy for ICH.
Collapse
|
24
|
18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination. Sci Rep 2015; 5:13713. [PMID: 26329786 PMCID: PMC4557075 DOI: 10.1038/srep13713] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/06/2015] [Indexed: 01/09/2023] Open
Abstract
Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.
Collapse
|
25
|
Hayakawa K, Lo EH. Brain-peripheral cell crosstalk in white matter damage and repair. Biochim Biophys Acta Mol Basis Dis 2015; 1862:901-8. [PMID: 26277436 DOI: 10.1016/j.bbadis.2015.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/05/2015] [Indexed: 12/11/2022]
Abstract
White matter damage is an important part of cerebrovascular disease and may be a significant contributing factor in vascular mechanisms of cognitive dysfunction and dementia. It is well accepted that white matter homeostasis involves multifactorial interactions between all cells in the axon-glia-vascular unit. But more recently, it has been proposed that beyond cell-cell signaling within the brain per se, dynamic crosstalk between brain and systemic responses such as circulating immune cells and stem/progenitor cells may also be important. In this review, we explore the hypothesis that peripheral cells contribute to damage and repair after white matter damage. Depending on timing, phenotype and context, monocyte/macrophage can possess both detrimental and beneficial effects on oligodendrogenesis and white matter remodeling. Endothelial progenitor cells (EPCs) can be activated after CNS injury and the response may also influence white matter repair process. These emerging findings support the hypothesis that peripheral-derived cells can be both detrimental or beneficial in white matter pathology in cerebrovascular disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
26
|
Li L, Eter N, Heiduschka P. The microglia in healthy and diseased retina. Exp Eye Res 2015; 136:116-30. [PMID: 25952657 DOI: 10.1016/j.exer.2015.04.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Abstract
The microglia are the immune cells of the central nervous system and, also the retina. They fulfil several tasks of surveillance in the healthy retina. In case of an injury or disease, microglia become activated and tries to repair the damage. However, in a lot of cases it does not work, and microglia deteriorate the situation by releasing toxic and pro-inflammatory compounds. Moreover, they further promote degenerative processes by attacking and phagocytosing damaged neurones and photoreceptors that otherwise would possibly have the chance to survive. Such deleterious action of the microglia has been observed in degeneration of retinal ganglion cells and photoreceptors, and it takes place in hereditary diseases, infections as well as in case of traumatic or light injuries. Therefore, a number of attempts has been undertaken so far to inhibit the microglia, with varying success. The task remains to study behaviour of the microglia and their interaction with other retinal cell populations in more detail with respect to released factors and expressed receptors including the time points of the corresponding events. The goal has to be to find a better balance between helpful and detrimental actions of the microglia.
Collapse
Affiliation(s)
- Lu Li
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Nicole Eter
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Peter Heiduschka
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany.
| |
Collapse
|
27
|
Saxena T, Loomis KH, Pai SB, Karumbaiah L, Gaupp E, Patil K, Patkar R, Bellamkonda RV. Nanocarrier-mediated inhibition of macrophage migration inhibitory factor attenuates secondary injury after spinal cord injury. ACS NANO 2015; 9:1492-505. [PMID: 25587936 DOI: 10.1021/nn505980z] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Spinal cord injury (SCI) can lead to permanent motor and sensory deficits. Following the initial traumatic insult, secondary injury mechanisms characterized by persistent heightened inflammation are initiated and lead to continued and pervasive cell death and tissue damage. Anti-inflammatory drugs such as methylprednisolone (MP) used clinically have ambiguous benefits with debilitating side effects. Typically, these drugs are administered systemically at high doses, resulting in toxicity and paradoxically increased inflammation. Furthermore, these drugs have a small time window postinjury (few hours) during which they need to be infused to be effective. As an alternative to MP, we investigated the effect of a small molecule inhibitor (Chicago sky blue, CSB) of macrophage migration inhibitory factor (MIF) for treating SCI. The pleiotropic cytokine MIF is known to contribute to upregulation of several pro-inflammatory cytokines in various disease and injury states. In vitro, CSB administration alleviated endotoxin-mediated inflammation in primary microglia and macrophages. Nanocarriers such as liposomes can potentially alleviate systemic side effects of high-dose therapy by enabling site-specific drug delivery to the spinal cord. However, the therapeutic window of 100 nm scale nanoparticle localization to the spinal cord after contusion injury is not fully known. Thus, we first investigated the ability of nanocarriers of different sizes to localize to the injured spinal cord up to 2 weeks postinjury. Results from the study showed that nanocarriers as large as 200 nm in diameter could extravasate into the injured spinal cord up to 96 h postinjury. We then formulated nanocarriers (liposomes) encapsulating CSB and administered them intravenously 48 h postinjury, within the previously determined 96 h therapeutic window. In vivo, in this clinically relevant contusion injury model in rats, CSB administration led to preservation of vascular and white matter integrity, improved wound healing, and an increase in levels of arginase and other transcripts indicative of a resolution phase of wound healing. This study demonstrates the potential of MIF inhibition in SCI and the utility of nanocarrier-mediated drug delivery selectively to the injured cord.
Collapse
Affiliation(s)
- Tarun Saxena
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine , Atlanta, Georgia 30332, United States
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang H, Liu S, Tian Y, Wu X, He Y, Li C, Namaka M, Kong J, Li H, Xiao L. Quetiapine Inhibits Microglial Activation by Neutralizing Abnormal STIM1-Mediated Intercellular Calcium Homeostasis and Promotes Myelin Repair in a Cuprizone-Induced Mouse Model of Demyelination. Front Cell Neurosci 2015; 9:492. [PMID: 26732345 PMCID: PMC4685920 DOI: 10.3389/fncel.2015.00492] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/07/2015] [Indexed: 02/05/2023] Open
Abstract
Microglial activation has been considered as a crucial process in the pathogenesis of neuroinflammation and psychiatric disorders. Several antipsychotic drugs (APDs) have been shown to display inhibitory effects on microglial activation in vitro, possibly through the suppression of elevated intracellular calcium (Ca(2+)) concentration. However, the exact underlying mechanisms still remain elusive. In this study, we aimed to investigate the inhibitory effects of quetiapine (Que), an atypical APD, on microglial activation. We utilized a chronic cuprizone (CPZ)-induced demyelination mouse model to determine the direct effect of Que on microglial activation. Our results showed that treatment with Que significantly reduced recruitment and activation of microglia/macrophage in the lesion of corpus callosum and promoted remyelination after CPZ withdrawal. Our in vitro studies also confirmed the direct effect of Que on lipopolysaccharide (LPS)-induced activation of microglial N9 cells, whereby Que significantly inhibited the release of nitric oxide (NO) and tumor necrosis factor α (TNF-α). Moreover, we demonstrated that pretreatment with Que, neutralized the up-regulation of STIM1 induced by LPS and declined both LPS and thapsigargin (Tg)-induced store-operated Ca(2+) entry (SOCE). Finally, we found that pretreatment with Que significantly reduced the translocation of nuclear factor kappa B (NF-κB) p65 subunit from cytoplasm to nuclei in LPS-activated primary microglial cells. Overall, our data suggested that Que may inhibit microglial activation by neutralization of the LPS-induced abnormal STIM1-mediated intercellular calcium homeostasis.
Collapse
Affiliation(s)
- Hanzhi Wang
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Shubao Liu
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Yanping Tian
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Xiyan Wu
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Yangtao He
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Chengren Li
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Michael Namaka
- College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jiming Kong
- College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hongli Li
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- *Correspondence: Hongli Li, ; Lan Xiao,
| | - Lan Xiao
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- *Correspondence: Hongli Li, ; Lan Xiao,
| |
Collapse
|
29
|
Abrogation of β-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury. J Neurosci 2014; 34:10285-97. [PMID: 25080590 DOI: 10.1523/jneurosci.4915-13.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
When the brain or spinal cord is injured, glial cells in the damaged area undergo complex morphological and physiological changes resulting in the formation of the glial scar. This scar contains reactive astrocytes, activated microglia, macrophages and other myeloid cells, meningeal cells, proliferating oligodendrocyte precursor cells (OPCs), and a dense extracellular matrix. Whether the scar is beneficial or detrimental to recovery remains controversial. In the acute phase of recovery, scar-forming astrocytes limit the invasion of leukocytes and macrophages, but in the subacute and chronic phases of injury the glial scar is a physical and biochemical barrier to axonal regrowth. The signals that initiate the formation of the glial scar are unknown. Both canonical and noncanonical signaling Wnts are increased after spinal cord injury (SCI). Because Wnts are important regulators of OPC and oligodendrocyte development, we examined the role of canonical Wnt signaling in the glial reactions to CNS injury. In adult female mice carrying an OPC-specific conditionally deleted β-catenin gene, there is reduced proliferation of OPCs after SCI, reduced accumulation of activated microglia/macrophages, and reduced astrocyte hypertrophy. Using an infraorbital optic nerve crush injury, we show that reducing β-catenin-dependent signaling in OPCs creates an environment that is permissive to axonal regeneration. Viral-induced expression of Wnt3a in the normal adult mouse spinal cord induces an injury-like response in glia. Thus canonical Wnt signaling is both necessary and sufficient to induce injury responses among glial cells. These data suggest that targeting Wnt expression after SCI may have therapeutic potential in promoting axon regeneration.
Collapse
|
30
|
Microglia: an active player in the regulation of synaptic activity. Neural Plast 2013; 2013:627325. [PMID: 24303218 PMCID: PMC3835777 DOI: 10.1155/2013/627325] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 12/18/2022] Open
Abstract
Synaptic plasticity is critical for elaboration and adaptation in the developing and developed brain. It is well established that astrocytes play an important role in the maintenance of what has been dubbed “the tripartite synapse”. Increasing evidence shows that a fourth cell type, microglia, is critical to this maintenance as well. Microglia are the resident macrophages of the central nervous system (CNS). Because of their well-characterized inflammatory functions, research has primarily focused on their innate immune properties. The role of microglia in the maintenance of synapses in development and in homeostasis is not as well defined. A number of significant findings have shed light on the critical role of microglia at the synapse. It is becoming increasingly clear that microglia play a seminal role in proper synaptic development and elimination.
Collapse
|
31
|
Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun 2013; 34:11-6. [PMID: 23597431 DOI: 10.1016/j.bbi.2013.04.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 12/17/2022] Open
Abstract
Adaptive immunity was repeatedly shown to play a role in maintaining lifelong brain function. Under physiological conditions, this activity was associated with CD4+ T cells specific for brain self-antigens. Nevertheless, direct interactions of T cells with the healthy neuronal parenchyma are hardly detectable. Recent studies have identified the brain's choroid plexus (CP) as an active neuro-immunological interface, enriched with CNS-specific CD4+ T cells. Strategically positioned for receiving signals from both the central nervous system (CNS) through the cerebrospinal fluid (CSF), and from the circulation through epithelium-immune cell interactions, the CP has recently been recognized as an important immunological compartment in maintaining and restoring brain homeostasis/allostasis. Here, we propose that CNS-specific T cells shape brain function via the CP, and suggest this immunological control to be lost as part of aging, in general, and immune senescence, in particular. Accordingly, the CP may serve as a novel target for immunomodulation to restore brain equilibrium.
Collapse
Affiliation(s)
- Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
32
|
Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, Schwartz M. IFN-γ-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair. Brain 2013; 136:3427-40. [PMID: 24088808 DOI: 10.1093/brain/awt259] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Infiltrating T cells and monocyte-derived macrophages support central nervous system repair. Although infiltration of leucocytes to the injured central nervous system has recently been shown to be orchestrated by the brain's choroid plexus, the immunological mechanism that maintains this barrier and regulates its activity as a selective gate is poorly understood. Here, we hypothesized that CD4(+) effector memory T cells, recently shown to reside at the choroid plexus stroma, regulate leucocyte trafficking through this portal through their interactions with the choroid plexus epithelium. We found that the naïve choroid plexus is populated by T helper 1, T helper 2 and regulatory T cells, but not by encephalitogenic T cells. In vitro findings revealed that the expression of immune cell trafficking determinants by the choroid plexus epithelium is specifically induced by interferon-γ. Tumour necrosis factor-α and interferon-γ reciprocally controlled the expression of their receptors by the choroid plexus epithelium, and had a synergistic effect in inducing the epithelial expression of trafficking molecules. In vivo, interferon-γ-dependent signalling controlled trafficking through the choroid plexus; interferon-γ receptor knockout mice exhibited reduced levels of T cells and monocyte entry to the cerebrospinal fluid and impaired recovery following spinal cord injury. Moreover, reduced expression of trafficking molecules by the choroid plexus was correlated with reduced CD4(+) T cells in the choroid plexus and cerebrospinal fluid of interferon-γ receptor knockout mice. Similar effect on the expression of trafficking molecules by the choroid plexus was found in bone-marrow chimeric mice lacking interferon-γ receptor in the central nervous system, or reciprocally, lacking interferon-γ in the circulation. Collectively, our findings attribute a novel immunological plasticity to the choroid plexus epithelium, allowing it to serve, through interferon-γ signalling, as a tightly regulated entry gate into the central nervous system for circulating leucocytes immune surveillance under physiological conditions, and for repair following acute injury.
Collapse
Affiliation(s)
- Gilad Kunis
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
33
|
Renno WM, Al-Khaledi G, Mousa A, Karam SM, Abul H, Asfar S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology 2013; 77:100-19. [PMID: 24071567 DOI: 10.1016/j.neuropharm.2013.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait.
| | - Ghanim Al-Khaledi
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Alyaa Mousa
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait
| | - Shaima M Karam
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Habib Abul
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Sami Asfar
- Department of Surgery, Kuwait University, Faculty of Medicine, Kuwait
| |
Collapse
|
34
|
Bronstein R, Torres L, Nissen JC, Tsirka SE. Culturing microglia from the neonatal and adult central nervous system. J Vis Exp 2013:50647. [PMID: 23962915 DOI: 10.3791/50647] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Microglia are the resident macrophage-like cells of the central nervous system (CNS) and, as such, have critically important roles in physiological and pathological processes such as CNS maturation in development, multiple sclerosis, and spinal cord injury. Microglia can be activated and recruited to action by neuronal injury or stimulation, such as axonal damage seen in MS or ischemic brain trauma resulting from stroke. These immunocompetent members of the CNS are also thought to have roles in synaptic plasticity under non-pathological conditions. We employ protocols for culturing microglia from the neonatal and adult tissues that are aimed to maximize the viable cell numbers while minimizing confounding variables, such as the presence of other CNS cell types and cell culture debris. We utilize large and easily discernable CNS components (e.g. cortex, spinal cord segments), which makes the entire process feasible and reproducible. The use of adult cells is a suitable alternative to the use of neonatal brain microglia, as many pathologies studied mainly affect the postnatal spinal cord. These culture systems are also useful for directly testing the effect of compounds that may either inhibit or promote microglial activation. Since microglial activation can shape the outcomes of disease in the adult CNS, there is a need for in vitro systems in which neonatal and adult microglia can be cultured and studied.
Collapse
Affiliation(s)
- Robert Bronstein
- Program in Neuroscience, Stony Brook University.,Department of Pharmacological Sciences, Stony Brook University
| | - Luisa Torres
- Department of Pharmacological Sciences, Stony Brook University.,Program in Molecular and Cellular Pharmacology, Stony Brook University
| | - Jillian C Nissen
- Department of Pharmacological Sciences, Stony Brook University.,Program in Molecular and Cellular Pharmacology, Stony Brook University
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University
| |
Collapse
|