1
|
Kamińska K, Lenda T, Konieczny J, Lorenc-Koci E. Behavioral and neurochemical interactions of the tricyclic antidepressant drug desipramine with L-DOPA in 6-OHDA-lesioned rats. Implications for motor and psychiatric functions in Parkinson's disease. Psychopharmacology (Berl) 2022; 239:3633-3656. [PMID: 36178508 PMCID: PMC9584871 DOI: 10.1007/s00213-022-06238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
Abstract
RATIONALE The pharmacological effects of antidepressants in modulating noradrenergic transmission as compared to serotonergic transmission in a rat model of Parkinson's disease under chronic L-DOPA therapy are insufficiently explored. OBJECTIVES The aim of the present study was to investigate the effect of the tricyclic antidepressant desipramine administered chronically alone or jointly with L-DOPA, on motor behavior and monoamine metabolism in selected brain structures of rats with the unilateral 6-OHDA lesion. METHODS The antiparkinsonian activities of L-DOPA and desipramine were assessed behaviorally using a rotation test and biochemically based on changes in the tissue concentrations of noradrenaline, dopamine and serotonin and their metabolites, evaluated separately for the ipsi- and contralateral motor (striatum, substantia nigra) and limbic (prefrontal cortex, hippocampus) structures of rat brain by HPLC method. RESULTS Desipramine administered alone did not induce rotational behavior, but in combination with L-DOPA, it increased the number of contralateral rotations more strongly than L-DOPA alone. Both L-DOPA and desipramine + L-DOPA significantly increased DA levels in the ipsilateral striatum, substantia nigra, prefrontal cortex and the ipsi- and contralateral hippocampus. The combined treatment also significantly increased noradrenaline content in the ipsi- and contralateral striatum, while L-DOPA alone decreased serotonin level on both sides of the hippocampus. CONCLUSIONS The performed analysis of the level of monoamines and their metabolites in the selected brain structures suggests that co-modulation of noradrenergic and dopaminergic transmission in Parkinson's disease by the combined therapy with desipramine + L-DOPA may have some positive implications for motor and psychiatric functions but further research is needed to exclude potential negative effects.
Collapse
Affiliation(s)
- Kinga Kamińska
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Tomasz Lenda
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Jolanta Konieczny
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland.
| |
Collapse
|
2
|
Lai HJ, Deng CR, Wang RW, Lee LHN, Kuo CC. The genesis and functional consequences of cortico-subthalamic beta augmentation and excessive subthalamic burst discharges after dopaminergic deprivation. Exp Neurol 2022; 356:114153. [PMID: 35752209 DOI: 10.1016/j.expneurol.2022.114153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/19/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022]
Abstract
The cardinal electrophysiological signs in Parkinson's disease (PD) include augmented beta oscillations in the motor cortex-subthalamic nucleus (MC-STN) axis and excessive burst discharges in STN. We have shown that excessive STN burst discharges have a direct causal relation with the locomotor deficits in PD. To investigate the correlation between the two cardinal signs, we characterized the courses of development of the electrophysiological abnormalities in the hemiparkinsonian rat model. The loss of dopaminergic neurons develops fast, and is histologically completed within 4-7 days of the lesion. The increase in STN burst discharges is limited to the lesioned side, and follows a very similar course. In contrast, beta augmentation has a bilateral presentation, and requires 14-21 days for full development. Behaviorally, the gross locomotor deficits in open field test and limb akinesia in stepping test match the foregoing fast and slow time courses, respectively. A further look into the spike entrainment shows that the oscillations in local field potential (LFP) of the MC effectively entrain the multi-unit (MU) spikes of MC, STN and entopeduncular nucleus (EPN), a rat homolog of human globus pallidus interna (GPi), whereas the LFP of STN or EPN (GPi) cannot entrain the spikes in MC. We conclude that excessive STN burst discharges are a direct consequence, whereas beta augmentation is probably a secondary or adaptive changes in the cortico-subcortical re-entrant loops, to dopaminergic deprivation. Beta augmentation is therefore not so consistently present as excessive STN burst discharges, but could signal more delicate derangements at the level of cortical programming in PD.
Collapse
Affiliation(s)
- Hsing-Jung Lai
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; National Taiwan University Hospital, Jin-Shan Branch, New Taipei, Taiwan
| | - Chuan-Rou Deng
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ren-Wei Wang
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lan-Hsin Nancy Lee
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Chin Kuo
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan..
| |
Collapse
|
3
|
Bos MJ, Buhre W, Temel Y, Joosten EAJ, Absalom AR, Janssen MLF. Effect of Anesthesia on Microelectrode Recordings During Deep Brain Stimulation Surgery: A Narrative Review. J Neurosurg Anesthesiol 2021; 33:300-307. [PMID: 31913866 DOI: 10.1097/ana.0000000000000673] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
Abstract
Deep brain stimulation (DBS) is an effective surgical treatment for patients with various neurological and psychiatric disorders. Clinical improvements rely on careful patient selection and accurate electrode placement. A common method for target localization is intraoperative microelectrode recording (MER). To facilitate MER, DBS surgery is traditionally performed under local or regional anesthesia. However, sedation or general anesthesia is sometimes needed for patients who are unable to tolerate the procedure fully awake because of severe motor symptoms, psychological distress, pain, or other forms of discomfort. The effect of anesthetic drugs on MER is controversial but likely depends on the type and dose of a particular anesthetic agent, underlying disease, and surgical target. In this narrative review, we provide an overview of the current literature on the anesthetic drugs most often used for sedation and anesthesia during DBS surgery, with a focus on their effects on MERs.
Collapse
Affiliation(s)
- Michaël J Bos
- Departments of Anesthesiology and Pain Medicine
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| | | | - Yasin Temel
- Neurosurgery
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Elbert A J Joosten
- Departments of Anesthesiology and Pain Medicine
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcus L F Janssen
- Neurology
- Clinical Neurophysiology, Maastricht University Medical Center
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| |
Collapse
|
4
|
Bos MJ, Alzate Sanchez AM, Bancone R, Temel Y, de Greef BT, Absalom AR, Gommer ED, van Kranen-Mastenbroek VH, Buhre WF, Roberts MJ, Janssen ML. Influence of Anesthesia and Clinical Variables on the Firing Rate, Coefficient of Variation and Multi-Unit Activity of the Subthalamic Nucleus in Patients with Parkinson's Disease. J Clin Med 2020; 9:jcm9041229. [PMID: 32344572 PMCID: PMC7230272 DOI: 10.3390/jcm9041229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Microelectrode recordings (MER) are used to optimize lead placement during subthalamic nucleus deep brain stimulation (STN-DBS). To obtain reliable MER, surgery is usually performed while patients are awake. Procedural sedation and analgesia (PSA) is often desirable to improve patient comfort, anxiolysis and pain relief. The effect of these agents on MER are largely unknown. The objective of this study was to determine the effects of commonly used PSA agents, dexmedetomidine, clonidine and remifentanil and patient characteristics on MER during DBS surgery. Methods: Data from 78 patients with Parkinson’s disease (PD) who underwent STN-DBS surgery were retrospectively reviewed. The procedures were performed under local anesthesia or under PSA with dexmedetomidine, clonidine or remifentanil. In total, 4082 sites with multi-unit activity (MUA) and 588 with single units were acquired. Single unit firing rates and coefficient of variation (CV), and MUA total power were compared between patient groups. Results: We observed a significant reduction in MUA, an increase of the CV and a trend for reduced firing rate by dexmedetomidine. The effect of dexmedetomidine was dose-dependent for all measures. Remifentanil had no effect on the firing rate but was associated with a significant increase in CV and a decrease in MUA. Clonidine showed no significant effect on firing rate, CV or MUA. In addition to anesthetic effects, MUA and CV were also influenced by patient-dependent variables. Conclusion: Our results showed that PSA influenced neuronal properties in the STN and the dexmedetomidine (DEX) effect was dose-dependent. In addition, patient-dependent characteristics also influenced MER.
Collapse
Affiliation(s)
- Michael J. Bos
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Correspondence:
| | - Ana Maria Alzate Sanchez
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
| | - Raffaella Bancone
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
| | - Yasin Temel
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Bianca T.A. de Greef
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Neurology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Anthony R. Absalom
- Department of Anesthesiology, Groningen University, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Erik D. Gommer
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Vivianne H.J.M. van Kranen-Mastenbroek
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Wolfgang F. Buhre
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
| | - Mark J. Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Marcus L.F. Janssen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
5
|
Spay C, Albares M, Lio G, Thobois S, Broussolle E, Lau B, Ballanger B, Boulinguez P. Clonidine modulates the activity of the subthalamic-supplementary motor loop: evidence from a pharmacological study combining deep brain stimulation and electroencephalography recordings in Parkinsonian patients. J Neurochem 2019; 146:333-347. [PMID: 29675956 DOI: 10.1111/jnc.14447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022]
Abstract
Clonidine is an anti-hypertensive medication which acts as an alpha-adrenergic receptor agonist. As the noradrenergic system is likely to support cognitive functions including attention and executive control, other clinical uses of clonidine have recently gained popularity for the treatment of neuropsychiatric disorders like attention-deficit hyperactivity disorder or Tourette syndrome, but the mechanism of action is still unclear. Here, we test the hypothesis that the noradrenergic system regulates the activity of subthalamo-motor cortical loops, and that this influence can be modulated by clonidine. We used pharmacological manipulation of clonidine in a placebo-controlled study in combination with subthalamic nucleus-deep brain stimulation (STN-DBS) in 16 Parkinson's disease patients performing a reaction time task requiring to refrain from reacting (proactive inhibition). We recorded electroencephalographical activity of the whole cortex, and applied spectral analyses directly at the source level after advanced blind source separation. We found only one cortical source localized to the supplementary motor area (SMA) that supported an interaction of pharmacological and subthalamic stimulation. Under placebo, STN-DBS reduced proactive alpha power in the SMA, a marker of local inhibitory activity. This effect was associated with the speeding-up of movement initiation. Clonidine substantially increased proactive alpha power from the SMA source, and canceled out the benefits of STN-DBS on movement initiation. These results provide the first direct neural evidence in humans that the tonic inhibitory activity of the subthalamocortical loops underlying the control of movement initiation is coupled to the noradrenergic system, and that this activity can be targeted by pharmacological agents acting on alpha-adrenergic receptors.
Collapse
Affiliation(s)
- Charlotte Spay
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, France
| | - Marion Albares
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.,Sorbonne Universités, UPMC Université Pierre et Marie Curie Paris 06, UMR 7225, Paris, France.,INSERM UMR 1127, Institut du cerveau et de la moelle épinière, ICM, Paris, France.,CNRS, UMR 7225, Institut du cerveau et de la moelle épinière, ICM, Paris, France
| | - Guillaume Lio
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France
| | - Stephane Thobois
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.,Hospices civils de Lyon, hôpital neurologique Pierre Wertheimer, Bron, France
| | - Emmanuel Broussolle
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.,Hospices civils de Lyon, hôpital neurologique Pierre Wertheimer, Bron, France
| | - Brian Lau
- Sorbonne Universités, UPMC Université Pierre et Marie Curie Paris 06, UMR 7225, Paris, France.,INSERM UMR 1127, Institut du cerveau et de la moelle épinière, ICM, Paris, France.,CNRS, UMR 7225, Institut du cerveau et de la moelle épinière, ICM, Paris, France
| | - Benedicte Ballanger
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, France
| | - Philippe Boulinguez
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, France
| |
Collapse
|
6
|
Blockade of α2-adrenergic receptors in prelimbic cortex: impact on cocaine self-administration in adult spontaneously hypertensive rats following adolescent atomoxetine treatment. Psychopharmacology (Berl) 2017; 234:2897-2909. [PMID: 28730282 PMCID: PMC5693724 DOI: 10.1007/s00213-017-4681-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/25/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Research with the spontaneously hypertensive rat (SHR) model of attention deficit/hyperactivity disorder demonstrated that chronic methylphenidate treatment during adolescence increased cocaine self-administration established during adulthood under a progressive ratio (PR) schedule. Compared to vehicle, chronic atomoxetine treatment during adolescence failed to increase cocaine self-administration under a PR schedule in adult SHR. OBJECTIVES We determined if enhanced noradrenergic transmission at α2-adrenergic receptors within prefrontal cortex contributes to this neutral effect of adolescent atomoxetine treatment in adult SHR. METHODS Following treatment from postnatal days 28-55 with atomoxetine (0.3 mg/kg) or vehicle, adult male SHR and control rats from Wistar-Kyoto (WKY) and Wistar (WIS) strains were trained to self-administer 0.3 mg/kg cocaine. Self-administration performance was evaluated under a PR schedule of cocaine delivery following infusion of the α2-adrenergic receptor antagonist idazoxan (0 and 10-56 μg/side) directly into prelimbic cortex. RESULTS Adult SHR attained higher PR break points and had greater numbers of active lever responses and infusions than WKY and WIS. Idazoxan dose-dependently increased PR break points and active lever responses in SHR following adolescent atomoxetine vs. vehicle treatment. Behavioral changes were negligible after idazoxan pretreatment in SHR following adolescent vehicle or in WKY and WIS following adolescent atomoxetine or vehicle. CONCLUSIONS α2-Adrenergic receptor blockade in prelimbic cortex of SHR masked the expected neutral effect of adolescent atomoxetine on adult cocaine self-administration behavior. Moreover, greater efficacy of acute idazoxan challenge in adult SHR after adolescent atomoxetine relative to vehicle is consistent with the idea that chronic atomoxetine may downregulate presynaptic α2A-adrenergic autoreceptors in SHR.
Collapse
|
7
|
|
8
|
Faggiani E, Benazzouz A. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: From history to the interaction with the monoaminergic systems. Prog Neurobiol 2017; 151:139-156. [DOI: 10.1016/j.pneurobio.2016.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/08/2016] [Indexed: 11/16/2022]
|
9
|
Zhang YF, Li QQ, Qu J, Sun CM, Wang Y. Alterations of motor cortical microcircuit in a depressive-like mouse model produced by light deprivation. Neuroscience 2017; 341:79-94. [DOI: 10.1016/j.neuroscience.2016.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023]
|
10
|
Bouabid S, Tinakoua A, Lakhdar-Ghazal N, Benazzouz A. Manganese neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J Neurochem 2015; 136:677-691. [PMID: 26608821 DOI: 10.1111/jnc.13442] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/24/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022]
Abstract
Manganese (Mn) is an essential element required for many physiological functions. While it is essential at physiological levels, excessive accumulation of Mn in the brain causes severe dysfunctions in the central nervous system known as manganism. Manganism is an extrapyramidal disorder characterized by motor disturbances associated with neuropsychiatric and cognitive disabilities similar to Parkinsonism. As the primary brain regions targeted by Mn are the basal ganglia, known to be involved in the pathophysiology of extrapyramidal disorders, this review will examine the impact of Mn exposure on the basal ganglia circuitry and neurotransmitters in relation to motor and non-motor disorders. The collected data from recent available studies in humans and experimental animal models provide new information about the mechanisms by which Mn affects behavior, neurotransmitters, and basal ganglia function observed in manganism. The effects of the alterations of metals on basal ganglia and neurochemical functioning are critical to develop effective modalities not only for the treatment of vulnerable populations (e.g., Mn-exposed workers) but also for understanding the etiology of neurodegenerative diseases where brain metal imbalances are involved, such as Parkinson's disease. We examine the impact of manganese (Mn) exposure on the basal ganglia circuitry and neurotransmitters in relation with motor and non-motor disorders. The collected data from available studies show that when accumulated in the globus pallidus, Mn influences the subthalamic (STN) and substantia nigra (SN) neurons, which are at the origin of changes in the thalamus and the cortex.
Collapse
Affiliation(s)
- Safa Bouabid
- University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Université Mohammed V, Faculté des Sciences, Equipe Rythmes Biologiques, Neurosciences et Environnement, Rabat, Morocco
| | - Anass Tinakoua
- University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Université Mohammed V, Faculté des Sciences, Equipe Rythmes Biologiques, Neurosciences et Environnement, Rabat, Morocco
| | - Nouria Lakhdar-Ghazal
- Université Mohammed V, Faculté des Sciences, Equipe Rythmes Biologiques, Neurosciences et Environnement, Rabat, Morocco
| | - Abdelhamid Benazzouz
- University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
11
|
Krishna V, Elias G, Sammartino F, Basha D, King NKK, Fasano A, Munhoz R, Kalia SK, Hodaie M, Venkatraghavan L, Lozano AM, Hutchison WD. The effect of dexmedetomidine on the firing properties of STN neurons in Parkinson's disease. Eur J Neurosci 2015; 42:2070-7. [DOI: 10.1111/ejn.13004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Vibhor Krishna
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Gavin Elias
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Francesco Sammartino
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Diellor Basha
- Department of Physiology; Toronto Western Hospital; University of Toronto; Toronto ON Canada
| | - Nicolas K. K. King
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease; Toronto Western Hospital; Toronto ON Canada
| | - Renato Munhoz
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease; Toronto Western Hospital; Toronto ON Canada
| | - Suneil K. Kalia
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Mojgan Hodaie
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesiology; Toronto Western Hospital; University of Toronto; Toronto ON Canada
| | - Andres M. Lozano
- Division of Neurosurgery; Toronto Western Hospital; University of Toronto; 399 Bathurst Street Toronto ON M5T2S8 Canada
| | - William D. Hutchison
- Department of Physiology; Toronto Western Hospital; University of Toronto; Toronto ON Canada
| |
Collapse
|
12
|
Faggiani E, Delaville C, Benazzouz A. The combined depletion of monoamines alters the effectiveness of subthalamic deep brain stimulation. Neurobiol Dis 2015. [PMID: 26206409 DOI: 10.1016/j.nbd.2015.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Non-motor symptoms of Parkinson's disease are under-studied and therefore not well treated. Here, we investigated the role of combined depletions of dopamine, norepinephrine and/or serotonin in the manifestation of motor and non-motor deficits in the rat. Then, we studied the impact of these depletions on the efficacy of deep brain stimulation of the subthalamic nucleus (STN-DBS). We performed selective depletions of dopamine, norepinephrine and serotonin, and the behavioral effects of different combined depletions were investigated using the open field, the elevated plus maze and the forced swim test. Bilateral dopamine depletion alone induced locomotor deficits associated with anxiety and mild "depressive-like" behaviors. Although additional depletions of norepinephrine and/or serotonin did not potentiate locomotor and anxiety disorders, combined depletions of the three monoamines dramatically exacerbated "depressive-like" behavior. STN-DBS markedly reversed locomotor deficits and anxiety behavior in animals with bilateral dopamine depletion alone. However, these improvements were reduced or lost by the additional depletion of norepinephrine and/or serotonin, indicating that the depletion of these monoamines may interfere with the antiparkinsonian efficacy of STN-DBS. Furthermore, our results showed that acute STN-DBS improved "depressive-like" disorder in animals with bilateral depletion of dopamine and also in animals with combined depletions of the three monoamines, which induced severe immobility in the forced swim test. Our data highlight the key role of monoamine depletions in the pathophysiology of anxiety and depressive-like disorders and provide the first evidence of their negative consequences on the efficacy of STN-DBS upon the motor and anxiety disorders in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Emilie Faggiani
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Claire Delaville
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Abdelhamid Benazzouz
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France.
| |
Collapse
|
13
|
Balasubramani PP, Chakravarthy VS, Ali M, Ravindran B, Moustafa AA. Identifying the Basal Ganglia network model markers for medication-induced impulsivity in Parkinson's disease patients. PLoS One 2015; 10:e0127542. [PMID: 26042675 PMCID: PMC4456385 DOI: 10.1371/journal.pone.0127542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/16/2015] [Indexed: 01/23/2023] Open
Abstract
Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson's disease (PD) patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD) or without ICD (PD-ON non-ICD), and OFF medication PD patients (PD-OFF). A neural network model of the Basal Ganglia (BG) that has the capacity to predict the dysfunction of both the dopaminergic (DA) and the serotonergic (5HT) neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs), with D1 receptor (R) alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT) compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning, and its impairment in PD. The results presented here not only show that computational modelling can be used as a valuable tool for understanding and interpreting clinical data, but they also show that computational modeling has the potential to become an invaluable tool to predict the onset of behavioral changes during disease progression.
Collapse
Affiliation(s)
| | | | - Manal Ali
- School of Medicine, Ain Shams University, Cairo, Egypt
| | - Balaraman Ravindran
- Department of Computer Science and Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Ahmed A. Moustafa
- Marcs Institute for Brain and Behaviour & School of Social Sciences and Psychology, University of Western Sydney, Penrith, Australia
| |
Collapse
|
14
|
Mamad O, Delaville C, Benjelloun W, Benazzouz A. Dopaminergic control of the globus pallidus through activation of D2 receptors and its impact on the electrical activity of subthalamic nucleus and substantia nigra reticulata neurons. PLoS One 2015; 10:e0119152. [PMID: 25742005 PMCID: PMC4350999 DOI: 10.1371/journal.pone.0119152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
The globus pallidus (GP) receives dopaminergic afferents from the pars compacta of substantia nigra and several studies suggested that dopamine exerts its action in the GP through presynaptic D2 receptors (D2Rs). However, the impact of dopamine in GP on the pallido-subthalamic and pallido-nigral neurotransmission is not known. Here, we investigated the role of dopamine, through activation of D2Rs, in the modulation of GP neuronal activity and its impact on the electrical activity of subthalamic nucleus (STN) and substantia nigra reticulata (SNr) neurons. Extracellular recordings combined with local intracerebral microinjection of drugs were done in male Sprague-Dawley rats under urethane anesthesia. We showed that dopamine, when injected locally, increased the firing rate of the majority of neurons in the GP. This increase of the firing rate was mimicked by quinpirole, a D2R agonist, and prevented by sulpiride, a D2R antagonist. In parallel, the injection of dopamine, as well as quinpirole, in the GP reduced the firing rate of majority of STN and SNr neurons. However, neither dopamine nor quinpirole changed the tonic discharge pattern of GP, STN and SNr neurons. Our results are the first to demonstrate that dopamine through activation of D2Rs located in the GP plays an important role in the modulation of GP-STN and GP-SNr neurotransmission and consequently controls STN and SNr neuronal firing. Moreover, we provide evidence that dopamine modulate the firing rate but not the pattern of GP neurons, which in turn control the firing rate, but not the pattern of STN and SNr neurons.
Collapse
Affiliation(s)
- Omar Mamad
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
- Université Mohamed V-Agdal, Faculté des Sciences, Equipe Rythmes Biologiques, Neurosciences et Environnement, 10000, Rabat, Morocco
| | - Claire Delaville
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
| | - Wail Benjelloun
- Université Mohamed V-Agdal, Faculté des Sciences, Equipe Rythmes Biologiques, Neurosciences et Environnement, 10000, Rabat, Morocco
| | - Abdelhamid Benazzouz
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
| |
Collapse
|
15
|
Wang Y, Chen X, Wang T, Sun YN, Han LN, Li LB, Zhang L, Wu ZH, Huang C, Liu J. Additional noradrenergic depletion aggravates forelimb akinesia and abnormal subthalamic nucleus activity in a rat model of Parkinson's disease. Life Sci 2014; 119:18-27. [PMID: 25445222 DOI: 10.1016/j.lfs.2014.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 11/25/2022]
Abstract
AIMS This study aims to identify the contribution of additional noradrenergic depletion to forelimb akinesia and abnormal subthalamic nucleus (STN) firing activity in Parkinson's disease (PD). MAIN METHODS Forelimb akinesia behaviors were tested in awake rats with noradrenergic N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) lesions, unilateral 6-hydroxydopamine (6-OHDA) lesions in the substantia nigra pars compacta (SNc) and with combined 6-OHDA and DSP-4 lesions. STN extracellular single-unit and local field potential (LFP) activities were examined in the animals that were anesthetized with urethane. KEY FINDINGS The adjusting steps and the contralateral touches of rats in the forelimb akinesia behavior tests were markedly inhibited by a further noradrenergic lesion with DSP-4 in 6-OHDA+DSP-4-lesioned group when compared with those of 6-OHDA-lesioned animals (P<0.05 for all comparisons). Meanwhile, the neuronal firing pattern of STN also changed significantly towards more bursty in 6-OHDA + DSP-4-lesioned group (P <0 .05). Compared with 6-OHDA-lesioned animals, an additional noradrenergic lesion increased the 0.3-2.5 Hz oscillatory activity and the spike power of STN neurons (P < 0.01 for both comparisons), and strengthened the synchronized oscillation between subthalamic neuronal firing and LFP activity in 6-OHDA + DSP-4-lesioned group (P < 0.01). SIGNIFICANCE The results provide evidence to support the correlation between noradrenergic depletion and the further exaggerated dysfunction of STN electrical activity in PD and suggest that an aberrant noradrenergic system might play a specific role in the motor deficits of PD.
Collapse
Affiliation(s)
- Yong Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiang Chen
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Na Sun
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ling Na Han
- The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China
| | - Li Bo Li
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhong Heng Wu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chen Huang
- The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
16
|
Is elevated norepinephrine an etiological factor in some cases of Parkinson’s disease? Med Hypotheses 2014; 82:462-9. [DOI: 10.1016/j.mehy.2014.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/12/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022]
|
17
|
De Fusco M, Vago R, Striano P, Di Bonaventura C, Zara F, Mei D, Kim MS, Muallem S, Chen Y, Wang Q, Guerrini R, Casari G. The α2B-adrenergic receptor is mutant in cortical myoclonus and epilepsy. Ann Neurol 2014; 75:77-87. [PMID: 24114805 PMCID: PMC3932827 DOI: 10.1002/ana.24028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Autosomal dominant cortical myoclonus and epilepsy (ADCME) is characterized by distal, fairly rhythmic myoclonus and epilepsy with variable severity. We have previously mapped the disease locus on chromosome 2p11.1-q12.2 by genome-wide linkage analysis. Additional pedigrees affected by similar forms of epilepsy have been associated with chromosomes 8q, 5p, and 3q, but none of the causing genes has been identified. We aim to identify the mutant gene responsible for this form of epilepsy. METHODS Genes included in the ADCME critical region were directly sequenced. Coimmunoprecipitation, immunofluorescent, and electrophysiologic approaches to transfected human cells have been utilized for testing the functional significance of the identified mutation. RESULTS Here we show that mutation in the α2 -adrenergic receptor subtype B (α2B -AR) is associated with ADCME by identifying a novel in-frame insertion/deletion in 2 Italian families. The mutation alters several conserved residues of the third intracellular loop, hampering neither the α2B -AR plasma membrane localization nor the arrestin-mediated internalization capacity, but altering the binding with the scaffolding protein spinophilin upon neurotransmitter activation. Spinophilin, in turn, regulates interaction of G protein coupled receptors with regulator of G protein signaling proteins. Accordingly, the mutant α2B -AR increases the epinephrine-stimulated calcium signaling. INTERPRETATION The identified mutation is responsible for ADCME, as the loss of α2B -AR/spinophilin interaction causes a gain of function effect. This work implicates for the first time the α-adrenergic system in human epilepsy and opens new ways of understanding the molecular pathway of epileptogenesis, widening the spectrum of possible therapeutic targets.
Collapse
Affiliation(s)
- Maurizio De Fusco
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Milan, Italy
| | - Riccardo Vago
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Milan, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genoa, “G. Gaslini” Institute, Genova, Italy
| | | | - Federico Zara
- Laboratory of Neurogenetics, Department of Neurosciences, “G. Gaslini” Institute, Genova, Italy
| | - Davide Mei
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence
| | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda MD, 20892
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence
- IRCCS Stella Maris, Pisa, Italy
| | - Giorgio Casari
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
18
|
Marin C, Bonastre M, Mengod G, Cortés R, Rodríguez-Oroz MC, Obeso JA. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease. Exp Neurol 2013; 250:304-12. [PMID: 24140562 DOI: 10.1016/j.expneurol.2013.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 01/09/2023]
Abstract
The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group.
Collapse
Affiliation(s)
- C Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CELLEX), Barcelona, Spain; Centro de Investigación en Redes sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | | | | | | | | | | |
Collapse
|