1
|
Burtscher J, Strasser B, Pepe G, Burtscher M, Kopp M, Di Pardo A, Maglione V, Khamoui AV. Brain-Periphery Interactions in Huntington's Disease: Mediators and Lifestyle Interventions. Int J Mol Sci 2024; 25:4696. [PMID: 38731912 PMCID: PMC11083237 DOI: 10.3390/ijms25094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, 1100 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Giuseppe Pepe
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Alba Di Pardo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | | | - Andy V. Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33458, USA;
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Pérot JB, Brouillet E, Flament J. The contribution of preclinical magnetic resonance imaging and spectroscopy to Huntington's disease. Front Aging Neurosci 2024; 16:1306312. [PMID: 38414634 PMCID: PMC10896846 DOI: 10.3389/fnagi.2024.1306312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Huntington's disease is an inherited disorder characterized by psychiatric, cognitive, and motor symptoms due to degeneration of medium spiny neurons in the striatum. A prodromal phase precedes the onset, lasting decades. Current biomarkers include clinical score and striatal atrophy using Magnetic Resonance Imaging (MRI). These markers lack sensitivity for subtle cellular changes during the prodromal phase. MRI and MR spectroscopy offer different contrasts for assessing metabolic, microstructural, functional, or vascular alterations in the disease. They have been used in patients and mouse models. Mouse models can be of great interest to study a specific mechanism of the degenerative process, allow better understanding of the pathogenesis from the prodromal to the symptomatic phase, and to evaluate therapeutic efficacy. Mouse models can be divided into three different constructions: transgenic mice expressing exon-1 of human huntingtin (HTT), mice with an artificial chromosome expressing full-length human HTT, and knock-in mouse models with CAG expansion inserted in the murine htt gene. Several studies have used MRI/S to characterized these models. However, the multiplicity of modalities and mouse models available complicates the understanding of this rich corpus. The present review aims at giving an overview of results obtained using MRI/S for each mouse model of HD, to provide a useful resource for the conception of neuroimaging studies using mouse models of HD. Finally, despite difficulties in translating preclinical protocols to clinical applications, many biomarkers identified in preclinical models have already been evaluated in patients. This review also aims to cover this aspect to demonstrate the importance of MRI/S for studying HD.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Paris, France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Hanrahan J, Locke DP, Cahill LS. Magnetic Resonance Imaging to Detect Structural Brain Changes in Huntington's Disease: A Review of Data from Mouse Models. J Huntingtons Dis 2024; 13:279-299. [PMID: 39213087 PMCID: PMC11494634 DOI: 10.3233/jhd-240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 09/04/2024]
Abstract
Structural magnetic resonance imaging (MRI) is a powerful tool to visualize 3D neuroanatomy and assess pathology and disease progression in neurodegenerative disorders such as Huntington's disease (HD). The development of mouse models of HD that reproduce many of the psychiatric, motor and cognitive impairments observed in human HD has improved our understanding of the disease and provided opportunities for testing novel therapies. Similar to the clinical scenario, MRI of mouse models of HD demonstrates onset and progression of brain pathology. Here, we provided an overview of the articles that used structural MRI in mouse models of HD to date, highlighting the differences between studies and models and describing gaps in the current state of knowledge and recommendations for future studies.
Collapse
Affiliation(s)
- Jenna Hanrahan
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Drew P. Locke
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Discipline of Radiology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
4
|
Liu C, Zhu N, Sun H, Zhang J, Feng X, Gjerswold-Selleck S, Sikka D, Zhu X, Liu X, Nuriel T, Wei HJ, Wu CC, Vaughan JT, Laine AF, Provenzano FA, Small SA, Guo J. Deep learning of MRI contrast enhancement for mapping cerebral blood volume from single-modal non-contrast scans of aging and Alzheimer's disease brains. Front Aging Neurosci 2022; 14:923673. [PMID: 36034139 PMCID: PMC9407020 DOI: 10.3389/fnagi.2022.923673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
While MRI contrast agents such as those based on Gadolinium are needed for high-resolution mapping of brain metabolism, these contrast agents require intravenous administration, and there are rising concerns over their safety and invasiveness. Furthermore, non-contrast MRI scans are more commonly performed than those with contrast agents and are readily available for analysis in public databases such as the Alzheimer's Disease Neuroimaging Initiative (ADNI). In this article, we hypothesize that a deep learning model, trained using quantitative steady-state contrast-enhanced structural MRI datasets, in mice and humans, can generate contrast-equivalent information from a single non-contrast MRI scan. The model was first trained, optimized, and validated in mice, and was then transferred and adapted to humans. We observe that the model can substitute for Gadolinium-based contrast agents in approximating cerebral blood volume, a quantitative representation of brain activity, at sub-millimeter granularity. Furthermore, we validate the use of our deep-learned prediction maps to identify functional abnormalities in the aging brain using locally obtained MRI scans, and in the brain of patients with Alzheimer's disease using publicly available MRI scans from ADNI. Since it is derived from a commonly-acquired MRI protocol, this framework has the potential for broad clinical utility and can also be applied retrospectively to research scans across a host of neurological/functional diseases.
Collapse
Affiliation(s)
- Chen Liu
- Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Nanyan Zhu
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Haoran Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Junhao Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xinyang Feng
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Dipika Sikka
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xuemin Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Xueqing Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Tal Nuriel
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - J. Thomas Vaughan
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew F. Laine
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Scott A. Small
- Department of Neurology, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY, United States
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- *Correspondence: Jia Guo
| |
Collapse
|
5
|
Virtuoso A, Colangelo AM, Maggio N, Fennig U, Weinberg N, Papa M, De Luca C. The Spatiotemporal Coupling: Regional Energy Failure and Aberrant Proteins in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:11304. [PMID: 34768733 PMCID: PMC8583302 DOI: 10.3390/ijms222111304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
The spatial and temporal coordination of each element is a pivotal characteristic of systems, and the central nervous system (CNS) is not an exception. Glial elements and the vascular interface have been considered more recently, together with the extracellular matrix and the immune system. However, the knowledge of the single-element configuration is not sufficient to predict physiological or pathological long-lasting changes. Ionic currents, complex molecular cascades, genomic rearrangement, and the regional energy demand can be different even in neighboring cells of the same phenotype, and their differential expression could explain the region-specific progression of the most studied neurodegenerative diseases. We here reviewed the main nodes and edges of the system, which could be studied to develop a comprehensive knowledge of CNS plasticity from the neurovascular unit to the synaptic cleft. The future goal is to redefine the modeling of synaptic plasticity and achieve a better understanding of neurological diseases, pointing out cellular, subcellular, and molecular components that couple in specific neuroanatomical and functional regions.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
| | - Anna Maria Colangelo
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy;
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Nicola Maggio
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Uri Fennig
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Nitai Weinberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Ciro De Luca
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
| |
Collapse
|
6
|
Heikkinen T, Bragge T, Kuosmanen J, Parkkari T, Gustafsson S, Kwan M, Beltran J, Ghavami A, Subramaniam S, Shahani N, Ramírez-Jarquín UN, Park L, Muñoz-Sanjuán I, Marchionini DM. Global Rhes knockout in the Q175 Huntington's disease mouse model. PLoS One 2021; 16:e0258486. [PMID: 34648564 PMCID: PMC8516231 DOI: 10.1371/journal.pone.0258486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
Huntington's disease (HD) results from an expansion mutation in the polyglutamine tract in huntingtin. Although huntingtin is ubiquitously expressed in the body, the striatum suffers the most severe pathology. Rhes is a Ras-related small GTP-binding protein highly expressed in the striatum that has been reported to modulate mTOR and sumoylation of mutant huntingtin to alter HD mouse model pathogenesis. Reports have varied on whether Rhes reduction is desirable for HD. Here we characterize multiple behavioral and molecular endpoints in the Q175 HD mouse model with genetic Rhes knockout (KO). Genetic RhesKO in the Q175 female mouse resulted in both subtle attenuation of Q175 phenotypic features, and detrimental effects on other kinematic features. The Q175 females exhibited measurable pathogenic deficits, as measured by MRI, MRS and DARPP32, however, RhesKO had no effect on these readouts. Additionally, RhesKO in Q175 mixed gender mice deficits did not affect mTOR signaling, autophagy or mutant huntingtin levels. We conclude that global RhesKO does not substantially ameliorate or exacerbate HD mouse phenotypes in Q175 mice.
Collapse
Affiliation(s)
| | - Timo Bragge
- Charles River Discovery Services, Kuopio, Finland
| | | | | | | | - Mei Kwan
- Psychogenics, Paramus, New Jersey, United States of America
| | - Jose Beltran
- Psychogenics, Paramus, New Jersey, United States of America
| | - Afshin Ghavami
- Psychogenics, Paramus, New Jersey, United States of America
| | - Srinivasa Subramaniam
- The Scripps Research Institute, Department of Neuroscience, Jupiter, Florida, United States of America
| | - Neelam Shahani
- The Scripps Research Institute, Department of Neuroscience, Jupiter, Florida, United States of America
| | | | - Larry Park
- CHDI Management/CHDI Foundation, New York, New York, United States of America
| | | | | |
Collapse
|
7
|
Eshraghi M, Karunadharma PP, Blin J, Shahani N, Ricci EP, Michel A, Urban NT, Galli N, Sharma M, Ramírez-Jarquín UN, Florescu K, Hernandez J, Subramaniam S. Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nat Commun 2021; 12:1461. [PMID: 33674575 PMCID: PMC7935949 DOI: 10.1038/s41467-021-21637-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5' and 3' end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Pabalu P. Karunadharma
- grid.214007.00000000122199231The Scripps Research Institute, Genomic Core, Jupiter, FL USA
| | - Juliana Blin
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | - Neelam Shahani
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Emiliano P. Ricci
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | | | | | - Nicole Galli
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Manish Sharma
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Katie Florescu
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Jennifer Hernandez
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Srinivasa Subramaniam
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| |
Collapse
|
8
|
Lontay B, Kiss A, Virág L, Tar K. How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124282. [PMID: 32560122 PMCID: PMC7349273 DOI: 10.3390/ijms21124282] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder characterized by the loss of motor control and cognitive ability, which eventually leads to death. The mutant huntingtin protein (HTT) exhibits an expansion of a polyglutamine repeat. The mechanism of pathogenesis is still not fully characterized; however, evidence suggests that post-translational modifications (PTMs) of HTT and upstream and downstream proteins of neuronal signaling pathways are involved. The determination and characterization of PTMs are essential to understand the mechanisms at work in HD, to define possible therapeutic targets better, and to challenge the scientific community to develop new approaches and methods. The discovery and characterization of a panoply of PTMs in HTT aggregation and cellular events in HD will bring us closer to understanding how the expression of mutant polyglutamine-containing HTT affects cellular homeostasis that leads to the perturbation of cell functions, neurotoxicity, and finally, cell death. Hence, here we review the current knowledge on recently identified PTMs of HD-related proteins and their pathophysiological relevance in the formation of abnormal protein aggregates, proteolytic dysfunction, and alterations of mitochondrial and metabolic pathways, neuroinflammatory regulation, excitotoxicity, and abnormal regulation of gene expression.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- Correspondence: ; Tel.: +36-52-412345
| |
Collapse
|
9
|
Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition. Proc Natl Acad Sci U S A 2018; 115:E8765-E8774. [PMID: 30150378 PMCID: PMC6140493 DOI: 10.1073/pnas.1807962115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In Huntington disease (HD) gene carriers the disease-causing mutant Huntingtin (mHTT) is already present during early developmental stages, but, surprisingly, HD patients develop clinical symptoms only many years later. While a developmental role of Huntingtin has been described, so far new therapeutic approaches targeting those early neurodevelopmental processes are lacking. Here, we show that behavioral, cellular, and molecular changes associated with mHTT in the postnatal period of genetic animal models of HD can be reverted using low-dose treatment with a histone deacetylation inhibitor. Our findings support a neurodevelopmental basis for HD and provide proof of concept that pre-HD symptoms, including aberrant neuronal differentiation, are reversible by early therapeutic intervention in vivo. Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene (HTT). Although mutant HTT is expressed during embryonic development and throughout life, clinical HD usually manifests later in adulthood. A number of studies document neurodevelopmental changes associated with mutant HTT, but whether these are reversible under therapy remains unclear. Here, we identify very early behavioral, molecular, and cellular changes in preweaning transgenic HD rats and mice. Reduced ultrasonic vocalization, loss of prepulse inhibition, and increased risk taking are accompanied by disturbances of dopaminergic regulation in vivo, reduced neuronal differentiation capacity in subventricular zone stem/progenitor cells, and impaired neuronal and oligodendrocyte differentiation of mouse embryo-derived neural stem cells in vitro. Interventional treatment of this early phenotype with the histone deacetylase inhibitor (HDACi) LBH589 led to significant improvement in behavioral changes and markers of dopaminergic neurotransmission and complete reversal of aberrant neuronal differentiation in vitro and in vivo. Our data support the notion that neurodevelopmental changes contribute to the prodromal phase of HD and that early, presymptomatic intervention using HDACi may represent a promising novel treatment approach for HD.
Collapse
|
10
|
Tan H, Wu C, Jin L. A Possible Role for Long Interspersed Nuclear Elements-1 (LINE-1) in Huntington's Disease Progression. Med Sci Monit 2018; 24:3644-3652. [PMID: 29851926 PMCID: PMC6007493 DOI: 10.12659/msm.907328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recent studies have shown that increased mobilization of Long Interspersed Nuclear Elements-1 (L1) can promote the pathophysiology of multiple neurological diseases. However, its role in Huntington's disease (HD) remains unknown. MATERIAL AND METHODS R6/2 mice - a common mouse model of HD - were used to evaluate changes in L1 mobilization. Pyrosequencing was used to evaluate methylation content changes. L1-ORF1 and L1-ORF2 expression analysis were evaluated by RT-PCR and immunoblotting. Changes in pro-survival signaling were evaluated by L1-ORF overexpression studies and validated in the mouse model by immunohistochemistry and immunoblotting. RESULTS We found an increased mobilization of L1 elements in the caudate genome of R6/2 mice (p<0.05) - a common mouse model of HD - but not in wild-type mice. Subsequent pyrosequencing and expression analysis showed that the L1 elements were hypomethylated and their respective ORFs were overexpressed in the affected tissues. In addition, a significant decrease in the pro-survival proteins such as the phosphoproteins of AKT target proteins, mTORC1 activity, and AMPK alpha levels was observed with the increase in the expression L1-ORF2. CONCLUSIONS These findings indicate that hyperactive retrotransposition of L1 triggers a downstream signaling pathway affecting the neuronal survival pathways via downregulation of mTORC1 activity and AMPKalpha and increasing apoptosis in neurons.
Collapse
Affiliation(s)
- Huiping Tan
- Reproductive Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chunlin Wu
- Reproductive Medicine Center, Wuhan No. 1 Hospital, Wuhan, Hubei, P.R. China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
11
|
Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component. Brain Imaging Behav 2017; 12:1160-1196. [PMID: 29075922 DOI: 10.1007/s11682-017-9770-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurodegenerative disorders are very complicated and multifactorial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very difficult to be interpretated and often useless. Mouse models could be condiderated a 'pathway models', rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high field Magnetic resonance, Optical Imaging scanners and of highly specific contrast agents. Behavioral test are useful tool to characterize different animal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the different neurodegenerative disorders. Aim of this review is to focus on the different existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases.
Collapse
|
12
|
Llavero Hurtado M, Fuller HR, Wong AMS, Eaton SL, Gillingwater TH, Pennetta G, Cooper JD, Wishart TM. Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in vivo. Sci Rep 2017; 7:12412. [PMID: 28963550 PMCID: PMC5622084 DOI: 10.1038/s41598-017-12603-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Synapses are an early pathological target in many neurodegenerative diseases ranging from well-known adult onset conditions such as Alzheimer and Parkinson disease to neurodegenerative conditions of childhood such as spinal muscular atrophy (SMA) and neuronal ceroid lipofuscinosis (NCLs). However, the reasons why synapses are particularly vulnerable to such a broad range of neurodegeneration inducing stimuli remains unknown. To identify molecular modulators of synaptic stability and degeneration, we have used the Cln3−/− mouse model of a juvenile form of NCL. We profiled and compared the molecular composition of anatomically-distinct, differentially-affected pre-synaptic populations from the Cln3−/− mouse brain using proteomics followed by bioinformatic analyses. Identified protein candidates were then tested using a Drosophila CLN3 model to study their ability to modify the CLN3-neurodegenerative phenotype in vivo. We identified differential perturbations in a range of molecular cascades correlating with synaptic vulnerability, including valine catabolism and rho signalling pathways. Genetic and pharmacological targeting of key ‘hub’ proteins in such pathways was sufficient to modulate phenotypic presentation in a Drosophila CLN3 model. We propose that such a workflow provides a target rich method for the identification of novel disease regulators which could be applicable to the study of other conditions where appropriate models exist.
Collapse
Affiliation(s)
- Maica Llavero Hurtado
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Heidi R Fuller
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, Keele, ST5 5BG, UK
| | - Andrew M S Wong
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Samantha L Eaton
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Giuseppa Pennetta
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Jonathan D Cooper
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RX, UK.,Los Angeles Biomedical Research Institute, and David Geffen School of Medicine, University of California Los Angeles, Torrance, CA, 90502, USA
| | - Thomas M Wishart
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Febo M, Foster TC. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline. Front Aging Neurosci 2016; 8:158. [PMID: 27468264 PMCID: PMC4942756 DOI: 10.3389/fnagi.2016.00158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023] Open
Abstract
Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
14
|
Evidence of functional brain reorganization on the basis of blood flow changes in the CAG140 knock-in mouse model of Huntington’s disease. Neuroreport 2016; 27:632-9. [DOI: 10.1097/wnr.0000000000000587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Liu W, Yang J, Chen K, Luo C, Burgunder J, Gong Q, Shang H. Resting-state fMRI reveals potential neural correlates of impaired cognition in Huntington's disease. Parkinsonism Relat Disord 2016; 27:41-6. [PMID: 27117563 DOI: 10.1016/j.parkreldis.2016.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Huntington's Disease (HD) is characterized by motor, cognitive and psychiatric dysfunction. Functional MRI (fMRI) provides new insight into the pathologic mechanism underlying the cognitive symptoms. Previous fMRI studies of HD focused on functional synchronization of various brain areas by measuring functional connectivity, a method that is unable to identify regional intrinsic neural activity changes in the brain. To fill in this gap, we utilized amplitude of low frequency fluctuations (ALFF). OBJECTIVE To investigate alterations in regional brain activity and their association with clinical characteristics in the early stages of HD. METHODS Ten early stage HD patients and 20 age- and sex-matched healthy controls were scanned to obtain imaging data. HD patients were assessed with the Unified Huntington's Disease Rating Scale, Mini-Mental State Exam (MMSE), Stroop test, Symbol Digit Modalities Test (SDMT), Verbal Fluency Test and Beck Depression Index. RESULTS Gray matter volume (GMV) reduction was detected in bilateral striatum and left calcarine cortex in the HD group. After correcting for GMV, HD patients demonstrated significantly decreased ALFF in the right precuneus and angular gyrus, and increased ALFF in bilateral inferior temporal gyrus (ITG) and left superior frontal gyrus. Increased mean values of ALFF in the left ITG were correlated with worse performance in SDMT, and decreased mean values of ALFF in the precuneus were correlated with worse performance in the Stroop test and SDMT. CONCLUSIONS Our results suggest that intrinsic brain activity alterations in the precuneus and cortico-striatal circuit may be the mechanism underlying impaired cognition in early HD.
Collapse
Affiliation(s)
- Wanglin Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - ChunYan Luo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - QiYong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Jonckers E, Shah D, Hamaide J, Verhoye M, Van der Linden A. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front Pharmacol 2015; 6:231. [PMID: 26539115 PMCID: PMC4612660 DOI: 10.3389/fphar.2015.00231] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations.
Collapse
Affiliation(s)
- Elisabeth Jonckers
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Disha Shah
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| |
Collapse
|
17
|
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM. Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015; 41:109-34. [PMID: 25319671 PMCID: PMC4329338 DOI: 10.1111/nan.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Collapse
Affiliation(s)
- M J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J E Dodd
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - M J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - S R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - G M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
18
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
19
|
Kocerha J, Liu Y, Willoughby D, Chidamparam K, Benito J, Nelson K, Xu Y, Chi T, Engelhardt H, Moran S, Yang SH, Li SH, Li XJ, Larkin K, Neumann A, Banta H, Yang JJ, Chan AWS. Longitudinal transcriptomic dysregulation in the peripheral blood of transgenic Huntington's disease monkeys. BMC Neurosci 2013; 14:88. [PMID: 23957861 PMCID: PMC3751855 DOI: 10.1186/1471-2202-14-88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/14/2013] [Indexed: 12/30/2022] Open
Abstract
Background Huntington’s Disease (HD) is a progressive neurodegenerative disorder caused by an expansion in the polyglutamine (polyQ) region of the Huntingtin (HTT) gene. The clinical features of HD are characterized by cognitive, psychological, and motor deficits. Molecular instability, a core component in neurological disease progression, can be comprehensively evaluated through longitudinal transcriptomic profiling. Development of animal models amenable to longitudinal examination enables distinct disease-associated mechanisms to be identified. Results Here we report the first longitudinal study of transgenic monkeys with genomic integration of various lengths of the human HTT gene and a range of polyQ repeats. With this unique group of transgenic HD nonhuman primates (HD monkeys), we profiled over 47,000 transcripts from peripheral blood collected over a 2 year timespan from HD monkeys and age-matched wild-type control monkeys. Conclusions Messenger RNAs with expression patterns which diverged with disease progression in the HD monkeys considerably facilitated our search for transcripts with diagnostic or therapeutic potential in the blood of human HD patients, opening up a new avenue for clinical investigation.
Collapse
|