1
|
Rodrigues Martins D, Vandermeeren M, Van Kolen K, Brepoels E, Borgers M, Wintmolders C, Delay C, Bottelbergs A, Mercken M, Theunis C. Development and Characterization of Mouse-Specific Anti-Tau Monoclonal Antibodies: Relevance for Analysis of Murine Tau in Cerebrospinal Fluid. J Alzheimers Dis 2023; 93:151-167. [PMID: 36970909 DOI: 10.3233/jad-221266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Clearance of tau seeds by immunization with tau antibodies is currently evaluated as therapeutic strategy to block the spreading of tau pathology in Alzheimer's disease and other tauopathies. Preclinical evaluation of passive immunotherapy is performed in different cellular culture systems and in wild-type and human tau transgenic mouse models. Depending on the preclinical model used, tau seeds or induced aggregates can either be of mouse, human or mixed origin. OBJECTIVE We aimed to develop human and mouse tau-specific antibodies to discriminate between the endogenous tau and the introduced form in preclinical models. METHODS Using hybridoma technology, we developed human and mouse tau-specific antibodies that were then used to develop several assays to specifically detect mouse tau. RESULTS Four antibodies, mTau3, mTau5, mTau8, and mTau9, with a high degree of specificity for mouse tau were identified. Additionally, their potential application in highly sensitive immunoassays to measure tau in mouse brain homogenate and cerebrospinal fluid is illustrated, as well as their application for specific endogenous mouse tau aggregation detection. CONCLUSION The antibodies reported here can be very important tools to better interpret the results obtained from different model systems as well as to study the role of endogenous tau in tau aggregation and pathology observed in the diverse mouse models available.
Collapse
Affiliation(s)
- Dina Rodrigues Martins
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Vandermeeren
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Kristof Van Kolen
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Eddy Brepoels
- Biologics Research, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marianne Borgers
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Cindy Wintmolders
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Charlotte Delay
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Astrid Bottelbergs
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Mercken
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Clara Theunis
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
2
|
Müller-Thomsen L, Borgmann D, Morcinek K, Schröder S, Dengler B, Moser N, Neumaier F, Schneider T, Schröder H, Huggenberger S. Consequences of hyperphosphorylated tau on the morphology and excitability of hippocampal neurons in aged tau transgenic mice. Neurobiol Aging 2020; 93:109-123. [PMID: 32278495 DOI: 10.1016/j.neurobiolaging.2020.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
The intracellular accumulation of hyperphosphorylated tau characterizes many neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. A critical role for tau is supported by studies in transgenic mouse models expressing the P301L mutation with accumulation of hyperphosphorylated human tau in hippocampal pyramidal neurons of aged mice. Especially, the somatodendritic mislocalization of hyperphosphorylated tau seems to affect the neuronal network of the hippocampus. To show the consequences of aggregation of hyperphosphorylated tau within hippocampal neurons of aged mice, the CA1 pyramidal cells were analyzed morphologically and electrophysiologically. Here we demonstrate in the P301L pR5 mouse model that hyperphosphorylated tau leads to an increase in stubby spines and filopodia, as well as a decrease in total dendritic length of hippocampal pyramidal neurons due to a decrease in apical dendritic length and nodes. This atrophy is in line with the significant reduction in CA1 long-term potentiation. Furthermore, mutant tau induced a depolarized threshold for action potential initiation and an increased current of inward rectifying potassium channels, which should lead, together with the long-term potentiation decrease, to a decreased excitability of CA1 neurons.
Collapse
Affiliation(s)
| | - Diba Borgmann
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Kerstin Morcinek
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Sophia Schröder
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Brigitte Dengler
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Natasha Moser
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Stefan Huggenberger
- Department II of Anatomy, University of Cologne, Cologne, Germany; Institute of Anatomy and Clinical Morphology, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
3
|
Barron MR, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC. Increasing Tau 4R Tau Levels Exacerbates Hippocampal Tau Hyperphosphorylation in the hTau Model of Tauopathy but Also Tau Dephosphorylation Following Acute Systemic Inflammation. Front Immunol 2020; 11:293. [PMID: 32194553 PMCID: PMC7066213 DOI: 10.3389/fimmu.2020.00293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Inflammation is considered a mechanistic driver of Alzheimer's disease, thought to increase tau phosphorylation, the first step to the formation of neurofibrillary tangles (NFTs). To further understand how inflammation impacts the development of tau pathology, we used (hTau) mice, which express all six, non-mutated, human tau isoforms, but with an altered ratio of tau isoforms favoring 3R tau due to the concomitant loss of murine tau (mTau) that is predominantly 4R. Such an imbalance pattern has been related to susceptibility to NFTs formation, but whether or not this also affects susceptibility to systemic inflammation and related changes in tau phosphorylation is not known. To reduce the predominance of 3R tau by increasing 4R tau availability, we bred hTau mice on a heterozygous mTau background and compared the impact of systemic inflammation induced by lipopolysaccharide (LPS) in hTau mice hetero- or homozygous mTau knockout. Three-month-old male wild-type (Wt), mTau+/-, mTau-/-, hTau/mTau+/-, and hTau/mTau-/- mice were administered 100, 250, or 330 μg/kg of LPS or its vehicle phosphate buffer saline (PBS) [intravenously (i.v.), n = 8-9/group]. Sickness behavior, reflected by behavioral suppression in the spontaneous alternation task, hippocampal tau phosphorylation, measured by western immunoblotting, and circulating cytokine levels were quantified 4 h after LPS administration. The persistence of the LPS effects (250 μg/kg) on these measures, and food burrowing behavior, was assessed at 24 h post-inoculation in Wt, mTau+/-, and hTau/mTau+/- mice (n = 9-10/group). In the absence of immune stimulation, increasing 4R tau levels in hTau/mTau+/- exacerbated pS202 and pS396/404 tau phosphorylation, without altering total tau levels or worsening early behavioral perturbations characteristic of hTau/mTau-/- mice. We also show for the first time that modulating 4R tau levels in hTau mice affects the response to systemic inflammation. Behavior was suppressed in all genotypes 4 h following LPS administration, but hTau/mTau+/- exhibited more severe sickness behavior at the 100 μg/kg dose and a milder behavioral and cytokine response than hTau/mTau-/- mice at the 330 μg/kg dose. All LPS doses decreased tau phosphorylation at both epitopes in hTau/mTau+/- mice, but pS202 levels were selectively reduced at the 100 μg/kg dose in hTau/mTau-/- mice. Behavioral suppression and decreased tau phosphorylation persisted at 24 h following LPS administration in hTau/mTau+/- mice.
Collapse
Affiliation(s)
- Matthew R Barron
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Medical School, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jane Gartlon
- EMEA Knowledge Centre, Eisai Ltd., Hatfield, United Kingdom
| | | | | | - Marie-Christine Pardon
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Medical School, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Forner S, Martini AC, Prieto GA, Dang CT, Rodriguez-Ortiz CJ, Reyes-Ruiz JM, Trujillo-Estrada L, da Cunha C, Andrews EJ, Phan J, Vu Ha J, Chang AVZD, Levites Y, Cruz PE, Ager R, Medeiros R, Kitazawa M, Glabe CG, Cotman CW, Golde T, Baglietto-Vargas D, LaFerla FM. Intra- and extracellular β-amyloid overexpression via adeno-associated virus-mediated gene transfer impairs memory and synaptic plasticity in the hippocampus. Sci Rep 2019; 9:15936. [PMID: 31685865 PMCID: PMC6828807 DOI: 10.1038/s41598-019-52324-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD), the most common age-related neurodegenerative disorder, is currently conceptualized as a disease of synaptic failure. Synaptic impairments are robust within the AD brain and better correlate with dementia severity when compared with other pathological features of the disease. Nevertheless, the series of events that promote synaptic failure still remain under debate, as potential triggers such as β-amyloid (Aβ) can vary in size, configuration and cellular location, challenging data interpretation in causation studies. Here we present data obtained using adeno-associated viral (AAV) constructs that drive the expression of oligomeric Aβ either intra or extracellularly. We observed that expression of Aβ in both cellular compartments affect learning and memory, reduce the number of synapses and the expression of synaptic-related proteins, and disrupt chemical long-term potentiation (cLTP). Together, these findings indicate that during the progression AD the early accumulation of Aβ inside neurons is sufficient to promote morphological and functional cellular toxicity, a phenomenon that can be exacerbated by the buildup of Aβ in the brain parenchyma. Moreover, our AAV constructs represent a valuable tool in the investigation of the pathological properties of Aβ oligomers both in vivo and in vitro.
Collapse
Affiliation(s)
- Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Alessandra C Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Cindy T Dang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | | | - Jorge Mauricio Reyes-Ruiz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Celia da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Elizabeth J Andrews
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Jimmy Phan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Jordan Vu Ha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Allissa V Z D Chang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Yona Levites
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Pedro E Cruz
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Rahasson Ager
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Rodrigo Medeiros
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Masashi Kitazawa
- Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Charles G Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Todd Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Amadoro G, Latina V, Corsetti V, Calissano P. N-terminal tau truncation in the pathogenesis of Alzheimer's disease (AD): Developing a novel diagnostic and therapeutic approach. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165584. [PMID: 31676377 DOI: 10.1016/j.bbadis.2019.165584] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023]
Abstract
Tau truncation occurs at early stages during the development of human Alzheimer's disease (AD) and other tauopathy dementias. Tau cleavage, particularly in its N-terminal projection domain, is able to drive per se neurodegeneration, regardless of its pro-aggregative pathway(s) and in fragment(s)-dependent way. In this short review, we highlight the pathological relevance of the 20-22 kDa NH2-truncated tau fragment which is endowed with potent neurotoxic "gain-of-function" action(s), both in vitro and in vivo. An extensive comment on its clinical value as novel progression/diagnostic biomarker and potential therapeutic target in the context of tau-mediated neurodegeneration is also provided.
Collapse
Affiliation(s)
- G Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - V Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - V Corsetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| |
Collapse
|
6
|
Rodriguez L, Mdzomba JB, Joly S, Boudreau-Laprise M, Planel E, Pernet V. Human Tau Expression Does Not Induce Mouse Retina Neurodegeneration, Suggesting Differential Toxicity of Tau in Brain vs. Retinal Neurons. Front Mol Neurosci 2018; 11:293. [PMID: 30197586 PMCID: PMC6117378 DOI: 10.3389/fnmol.2018.00293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/03/2018] [Indexed: 02/03/2023] Open
Abstract
The implication of the microtubule-associated protein (MAP) Tau in the ocular manifestations of Alzheimer’s disease (AD) is elusive due to the lack of relevant animal model. However, signs of AD have been reported in the brain of transgenic mice expressing human Tau (hTau). To assess whether hTau is sufficient to induce AD pathogenesis in the retina as well, in the present study, we compared the retinal structure and function of KO mice deprived of Tau (mTKO) with those of transgenic mice expressing hTau. Our results revealed that hTau is particularly abundant in the inner nuclear layer (INL) cells of the retina. By electroretinogram (ERG) recording, light-induced retinal cell activation was not altered in hTau compared with mTKO littermates. Surprisingly, the ERG response mediated by cone photoreceptor stimulation was even stronger in hTau than in mTKO retinae. Immunofluorescent analysis of retinal sections allowed us to observe thicker inner retina in hTau than in mTKO eyes. By Western Blotting (WB), the upregulation of mTOR that was found in hTau mice may underlie retinal structure and function increases. Taken together, our results not only indicate that hTau expression is not toxic for retinal cells but they also suggest that it may play a positive role in visual physiology. The use of hTau may be envisaged to improve visual recovery in ocular diseases affecting the retinal function such as glaucoma or diabetic retinopathy.
Collapse
Affiliation(s)
- Léa Rodriguez
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Julius Baya Mdzomba
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Sandrine Joly
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Mélissa Boudreau-Laprise
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
7
|
Baglietto-Vargas D, Prieto GA, Limon A, Forner S, Rodriguez-Ortiz CJ, Ikemura K, Ager RR, Medeiros R, Trujillo-Estrada L, Martini AC, Kitazawa M, Davila JC, Cotman CW, Gutierrez A, LaFerla FM. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell 2018; 17:e12791. [PMID: 29877034 PMCID: PMC6052400 DOI: 10.1111/acel.12791] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impairs memory and causes cognitive and psychiatric deficits. New evidences indicate that AD is conceptualized as a disease of synaptic failure, although the molecular and cellular mechanisms underlying these defects remain to be elucidated. Determining the timing and nature of the early synaptic deficits is critical for understanding the progression of the disease and for identifying effective targets for therapeutic intervention. Using single-synapse functional and morphological analyses, we find that AMPA signaling, which mediates fast glutamatergic synaptic transmission in the central nervous system (CNS), is compromised early in the disease course in an AD mouse model. The decline in AMPA signaling is associated with changes in actin cytoskeleton integrity, which alters the number and the structure of dendritic spines. AMPA dysfunction and spine alteration correlate with the presence of soluble but not insoluble Aβ and tau species. In particular, we demonstrate that these synaptic impairments can be mitigated by Aβ immunotherapy. Together, our data suggest that alterations in AMPA signaling and cytoskeletal processes occur early in AD. Most important, these deficits are prevented by Aβ immunotherapy, suggesting that existing therapies, if administered earlier, could confer functional benefits.
Collapse
Affiliation(s)
- David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
- Department of Neurobiology and Behavior; University of California; Irvine California
- Department of Cell Biology, Genetic and Physiology; Faculty of Sciences; Biomedical Research Institute of Malaga (IBIMA); Networking Research Center on Neurodegenerative Diseases (CIBERNED); University of Malaga; Malaga Spain
| | - Gilberto Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Agenor Limon
- Department of Psychiatry and Human Behavior; University of California; Irvine California
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Carlos J. Rodriguez-Ortiz
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
- Division of Occupational and Environmental Medicine; Department of Medicine; Center for Occupational and Environmental Health (COEH); University of California; Irvine California
| | - Kenji Ikemura
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Rahasson R. Ager
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Rodrigo Medeiros
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
- Clem Jones Centre for Ageing Dementia Research; Queensland Brain Institute; The University of Queensland; Brisbane Qld Australia
| | - Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
- Department of Cell Biology, Genetic and Physiology; Faculty of Sciences; Biomedical Research Institute of Malaga (IBIMA); Networking Research Center on Neurodegenerative Diseases (CIBERNED); University of Malaga; Malaga Spain
| | - Alessandra C. Martini
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Masashi Kitazawa
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
- Division of Occupational and Environmental Medicine; Department of Medicine; Center for Occupational and Environmental Health (COEH); University of California; Irvine California
| | - Jose C. Davila
- Department of Cell Biology, Genetic and Physiology; Faculty of Sciences; Biomedical Research Institute of Malaga (IBIMA); Networking Research Center on Neurodegenerative Diseases (CIBERNED); University of Malaga; Malaga Spain
| | - Carl W. Cotman
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
- Department of Neurobiology and Behavior; University of California; Irvine California
- Department of Neurology; University of California; Irvine California
| | - Antonia Gutierrez
- Department of Cell Biology, Genetic and Physiology; Faculty of Sciences; Biomedical Research Institute of Malaga (IBIMA); Networking Research Center on Neurodegenerative Diseases (CIBERNED); University of Malaga; Malaga Spain
| | - Frank M. LaFerla
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
- Department of Neurobiology and Behavior; University of California; Irvine California
| |
Collapse
|
8
|
Huber CM, Yee C, May T, Dhanala A, Mitchell CS. Cognitive Decline in Preclinical Alzheimer's Disease: Amyloid-Beta versus Tauopathy. J Alzheimers Dis 2018; 61:265-281. [PMID: 29154274 PMCID: PMC5734131 DOI: 10.3233/jad-170490] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We perform a large-scale meta-analysis of 51 peer-reviewed 3xTg-AD mouse publications to compare Alzheimer’s disease (AD) quantitative clinical outcome measures, including amyloid-β (Aβ), total tau, and phosphorylated tau (pTau), with cognitive performance in Morris water maze (MWM) and Novel Object Recognition (NOR). “High” levels of Aβ (Aβ40, Aβ42) showed significant but weak trends with cognitive decline (MWM: slope = 0.336, R2 = 0.149, n = 259, p < 0.001; NOR: slope = 0.156, R2 = 0.064, n = 116, p < 0.05); only soluble Aβ or directly measured Aβ meaningfully contribute. Tau expression in 3xTg-AD mice was within 10–20% of wild type and not associated with cognitive decline. In contrast, increased pTau is directly and significantly correlated with cognitive decline in MWM (slope = 0.408, R2 = 0.275, n = 371, p < < 0.01) and NOR (slope = 0.319, R2 = 0.176, n = 113, p < 0.05). While a variety of pTau epitopes (AT8, AT270, AT180, PHF-1) were examined, AT8 correlated most strongly with cognition (slope = 0.586, R2 = 0.521, n = 185, p < < 0.001). Multiple linear regression confirmed pTau is a stronger predictor of MWM performance than Aβ. Despite pTau’s lower physical concentration than Aβ, pTau levels more directly and quantitatively correlate with 3xTg-AD cognitive decline. pTau’s contribution to neurofibrillary tangles well after Aβ levels plateau makes pTau a viable treatment target even in late-stage clinical AD. Principal component analysis, which included hyperphosphorylation induced by kinases (pGSK3β, GSK3β, CDK5), identified phosphorylated ser9 GSK3β as the primary contributor to MWM variance. In summary, meta-analysis of cognitive decline in preclinical AD finds tauopathy more impactful than Aβ. Nonetheless, complex AD interactions dictate successful therapeutics harness synergy between Aβ and pTau, possibly through the GSK3 pathway.
Collapse
Affiliation(s)
- Colin M Huber
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.,Department of Bioengineering, University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia, PA, USA
| | - Connor Yee
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Taylor May
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Apoorva Dhanala
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Yuksel M, Biberoglu K, Onder S, Akbulut KG, Tacal O. Toluidine blue O modifies hippocampal amyloid pathology in a transgenic mouse model of Alzheimer's disease. Biochimie 2018; 146:105-112. [DOI: 10.1016/j.biochi.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023]
|
10
|
Qin X, Wang Y, Paudel HK. Inhibition of Early Growth Response 1 in the Hippocampus Alleviates Neuropathology and Improves Cognition in an Alzheimer Model with Plaques and Tangles. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28641077 DOI: 10.1016/j.ajpath.2017.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A sporadic form of Alzheimer disease (AD) and vascular dementia share many risk factors, and their pathogenic mechanisms are suggested to be related. Transcription factor early growth response 1 (Egr-1) regulates various vascular pathologies and is up-regulated in both AD brains and AD mouse models; however, its role in AD pathogenesis is unclear. Herein, we report that silencing of Egr-1 in the hippocampus by shRNA reduces tau phosphorylation, lowers amyloid-β (Aβ) pathology, and improves cognition in the 3xTg-AD mouse model. Egr-1 silencing does not affect levels of cyclin-dependent protein kinase 5 (Cdk5), glycogen synthase kinase 3β, protein phosphatase 1, or protein phosphatase 2A, but reduces p35 subunit of Cdk5. Egr-1 silencing also reduces levels of β-secretase 1 (BACE-1) and BACE-1-cleaved amyloid precursor protein (APP) metabolites (secreted APPβ, C99, Aβ40, and Aβ42) but has no effect on presenilin 1 and presenilin 2. In hippocampal primary neurons, Egr-1 binds to BACE-1 and p35 promoters, enhances tau phosphorylation, activates Cdk5 and BACE-1, and accelerates amyloidogenic APP processing. Blocking Cdk5 action blocks Egr-1-induced tau phosphorylation but has no effect on BACE-1 activation and amyloidogenic APP processing. Blocking BACE-1 action, on the other hand, blocks Egr-1-induced amyloidogenic APP processing but does not affect tau phosphorylation. Egr-1 regulates tau phosphorylation and Aβ synthesis in the brain by respectively controlling activities of Cdk5 and BACE-1, suggesting that Egr-1 is a potential therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Xike Qin
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Yunling Wang
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hemant K Paudel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
11
|
Koss DJ, Robinson L, Drever BD, Plucińska K, Stoppelkamp S, Veselcic P, Riedel G, Platt B. Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology. Neurobiol Dis 2016; 91:105-23. [PMID: 26949217 DOI: 10.1016/j.nbd.2016.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022] Open
Abstract
Models of Tau pathology related to frontotemporal dementia (FTD) are essential to determine underlying neurodegenerative pathologies and resulting tauopathy relevant behavioural changes. However, existing models are often limited in their translational value due to Tau overexpression, and the frequent occurrence of motor deficits which prevent comprehensive behavioural assessments. In order to address these limitations, a forebrain-specific (CaMKIIα promoter), human mutated Tau (hTauP301L+R406W) knock-in mouse was generated out of the previously characterised PLB1Triple mouse, and named PLB2Tau. After confirmation of an additional hTau species (~60kDa) in forebrain samples, we identified age-dependent progressive Tau phosphorylation which coincided with the emergence of FTD relevant behavioural traits. In line with the non-cognitive symptomatology of FTD, PLB2Tau mice demonstrated early emerging (~6months) phenotypes of heightened anxiety in the elevated plus maze, depressive/apathetic behaviour in a sucrose preference test and generally reduced exploratory activity in the absence of motor impairments. Investigations of cognitive performance indicated prominent dysfunctions in semantic memory, as assessed by social transmission of food preference, and in behavioural flexibility during spatial reversal learning in a home cage corner-learning task. Spatial learning was only mildly affected and task-specific, with impairments at 12months of age in the corner learning but not in the water maze task. Electroencephalographic (EEG) investigations indicated a vigilance-stage specific loss of alpha power during wakefulness at both parietal and prefrontal recording sites, and site-specific EEG changes during non-rapid eye movement sleep (prefrontal) and rapid eye movement sleep (parietal). Further investigation of hippocampal electrophysiology conducted in slice preparations indicated a modest reduction in efficacy of synaptic transmission in the absence of altered synaptic plasticity. Together, our data demonstrate that the transgenic PLB2Tau mouse model presents with a striking behavioural and physiological face validity relevant for FTD, driven by the low level expression of mutant FTD hTau.
Collapse
Affiliation(s)
- David J Koss
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Benjamin D Drever
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kaja Plucińska
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sandra Stoppelkamp
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter Veselcic
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gernot Riedel
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Bettina Platt
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
12
|
Evidence for an imbalance between tau O-GlcNAcylation and phosphorylation in the hippocampus of a mouse model of Alzheimer’s disease. Pharmacol Res 2016; 105:186-97. [DOI: 10.1016/j.phrs.2016.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 12/25/2022]
|
13
|
Gilley J, Ando K, Seereeram A, Rodríguez-Martín T, Pooler AM, Sturdee L, Anderton BH, Brion JP, Hanger DP, Coleman MP. Mislocalization of neuronal tau in the absence of tangle pathology in phosphomutant tau knockin mice. Neurobiol Aging 2015; 39:1-18. [PMID: 26923397 DOI: 10.1016/j.neurobiolaging.2015.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 01/22/2023]
Abstract
Hyperphosphorylation and fibrillar aggregation of the microtubule-associated protein tau are key features of Alzheimer's disease and other tauopathies. To investigate the involvement of tau phosphorylation in the pathological process, we generated a pair of complementary phosphomutant tau knockin mouse lines. One exclusively expresses phosphomimetic tau with 18 glutamate substitutions at serine and/or threonine residues in the proline-rich and first microtubule-binding domains to model hyperphosphorylation, whereas its phosphodefective counterpart has matched alanine substitutions. Consistent with expected effects of genuine phosphorylation, association of the phosphomimetic tau with microtubules and neuronal membranes is severely disrupted in vivo, whereas the phosphodefective mutations have more limited or no effect. Surprisingly, however, age-related mislocalization of tau is evident in both lines, although redistribution appears more widespread and more pronounced in the phosphomimetic tau knockin. Despite these changes, we found no biochemical or immunohistological evidence of pathological tau aggregation in mice of either line up to at least 2 years of age. These findings raise important questions about the role of tau phosphorylation in driving pathology in human tauopathies.
Collapse
Affiliation(s)
- Jonathan Gilley
- Signalling Programme, The Babraham Institute, Cambridge, UK.
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Anjan Seereeram
- Department of Basic and Clinical Neuroscience (PO37), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Teresa Rodríguez-Martín
- Department of Basic and Clinical Neuroscience (PO37), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amy M Pooler
- Department of Basic and Clinical Neuroscience (PO37), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Laura Sturdee
- Signalling Programme, The Babraham Institute, Cambridge, UK
| | - Brian H Anderton
- Department of Basic and Clinical Neuroscience (PO37), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience (PO37), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | |
Collapse
|
14
|
Smith PY, Hernandez-Rapp J, Jolivette F, Lecours C, Bisht K, Goupil C, Dorval V, Parsi S, Morin F, Planel E, Bennett DA, Fernandez-Gomez FJ, Sergeant N, Buée L, Tremblay MÈ, Calon F, Hébert SS. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet 2015; 24:6721-35. [PMID: 26362250 PMCID: PMC4634376 DOI: 10.1093/hmg/ddv377] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) and related tauopathies comprise a large group of neurodegenerative diseases associated with the pathological aggregation of tau protein. While much effort has focused on understanding the function of tau, little is known about the endogenous mechanisms regulating tau metabolism in vivo and how these contribute to disease. Previously, we have shown that the microRNA (miRNA) cluster miR-132/212 is downregulated in tauopathies such as AD. Here, we report that miR-132/212 deficiency in mice leads to increased tau expression, phosphorylation and aggregation. Using reporter assays and cell-based studies, we demonstrate that miR-132 directly targets tau mRNA to regulate its expression. We identified GSK-3β and PP2B as effectors of abnormal tau phosphorylation in vivo. Deletion of miR-132/212 induced tau aggregation in mice expressing endogenous or human mutant tau, an effect associated with autophagy dysfunction. Conversely, treatment of AD mice with miR-132 mimics restored in part memory function and tau metabolism. Finally, miR-132 and miR-212 levels correlated with insoluble tau and cognitive impairment in humans. These findings support a role for miR-132/212 in the regulation of tau pathology in mice and humans and provide new alternatives for therapeutic development.
Collapse
Affiliation(s)
- Pascal Y Smith
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Julia Hernandez-Rapp
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Francis Jolivette
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Kanchan Bisht
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Veronique Dorval
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Sepideh Parsi
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Françoise Morin
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Francisco-Jose Fernandez-Gomez
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Nicolas Sergeant
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Luc Buée
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Frédéric Calon
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Faculté de Pharmacie, Université Laval, Québec, QC, Canada G1V 0A6
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences,
| |
Collapse
|
15
|
Jiang T, Tan L, Zhu XC, Zhou JS, Cao L, Tan MS, Wang HF, Chen Q, Zhang YD, Yu JT. Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiol Aging 2015; 36:3176-3186. [DOI: 10.1016/j.neurobiolaging.2015.08.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 01/10/2023]
|
16
|
Protective Effect of Tat PTD-Hsp27 Fusion Protein on Tau Hyperphosphorylation Induced by Okadaic Acid in the Human Neuroblastoma Cell Line SH-SY5Y. Cell Mol Neurobiol 2015; 35:1049-59. [PMID: 25990227 PMCID: PMC4572059 DOI: 10.1007/s10571-015-0199-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/21/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer’s disease (AD) is an age-related disorder that causes a loss of brain function. Hyperphosphorylation of tau and the subsequent formation of intracellular neurofibrillary tangles (NFTs) are implicated in the pathogenesis of AD. Hyperphosphorylated tau accumulates into insoluble paired helical filaments that aggregate into NFTs; therefore, regulation of tau phosphorylation represents an important treatment approach for AD. Heat shock protein 27 (Hsp27) plays a specific role in human neurodegenerative diseases; however, few studies have examined its therapeutic effect. In this study, we induced tau hyperphosphorylation using okadaic acid, which is a protein phosphatase inhibitor, and generated a fusion protein of Hsp27 and the protein transduction domain of the HIV Tat protein (Tat-Hsp27) to enhance the delivery of Hsp27. We treated Tat-Hsp27 to SH-SY5Y neuroblastoma cells for 2 h; the transduction level was proportional to the Tat-hsp27 concentration. Additionally, Tat-Hsp27 reduced the level of hyperphosphorylated tau and protected cells from apoptotic cell death caused by abnormal tau aggregates. These results reveal that Hsp27 represents a valuable protein therapeutic for AD.
Collapse
|
17
|
Dorsal root ganglion neurons carrying a P301S Tau mutation: a valid in vitro model for screening drugs against tauopathies? J Neurosci 2014; 34:4757-9. [PMID: 24695695 DOI: 10.1523/jneurosci.0135-14.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|