1
|
Rai P, Bergmann A. Unraveling the intricate link between cell death and neuroinflammation using Drosophila as a model. Front Cell Dev Biol 2024; 12:1479864. [PMID: 39411483 PMCID: PMC11474694 DOI: 10.3389/fcell.2024.1479864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Protein aggregation is a common pathological occurrence in neurodegenerative diseases. This often leads to neuroinflammation, which exacerbates the aggregation and progression of diseases like Parkinson's and Alzheimer's. Here, we focus on immune responses and neurotoxicity in a Parkinson's disease model in Drosophila. Mutations in the SNCA gene that encodes the alpha (α)-Synuclein protein have been linked to familial Parkinson's disease, disrupting autophagy regulation in neuronal cells and promoting the formation of Lewy bodies, a hallmark of Parkinson's pathology. This results in the loss of dopaminergic neurons, manifesting as movement disorders. α-Synuclein aggregation triggers innate immune responses by activating microglial cells, leading to phagocytic activity and the expression of neuroprotective antimicrobial peptides (AMPs). However, sustained AMP expression or chronic inflammation resulting from inadequate microglial phagocytosis can induce neuronal toxicity and apoptosis, leading to severe dopaminergic neuron loss. This review underscores the mechanistic connection between immune response pathways and α-Synuclein-mediated neurodegeneration using Drosophila models. Furthermore, we extensively explore factors influencing neuroinflammation and key immune signaling pathways implicated in neurodegenerative diseases, particularly Parkinson's disease. Given the limited success of traditional treatments, recent research has focused on therapies targeting inflammatory signaling pathways. Some of these approaches have shown promising results in animal models and clinical trials. We provide an overview of current therapeutic strategies showing potential in treating neurodegenerative diseases, offering new avenues for future research and treatment development.
Collapse
|
2
|
Roshdy M, Zaky DA, Abbas SS, Abdallah DM. Niacin, an innovative protein kinase-C-dependent endoplasmic reticulum stress reticence in murine Parkinson's disease. Life Sci 2024; 351:122865. [PMID: 38914304 DOI: 10.1016/j.lfs.2024.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
AIMS Niacin (NIA) supplementation showed effectiveness against Parkinson's disease (PD) in clinical trials. The depletion of NAD and endoplasmic reticulum stress response (ERSR) are implicated in the pathogenesis of PD, but the potential role for NAD precursors on ERSR is not yet established. This study was undertaken to decipher NIA molecular mechanisms against PD-accompanied ERSR, especially in relation to PKC. METHODS Alternate-day-low-dose-21 day-subcutaneous exposure to rotenone (ROT) in rats induced PD. Following the 5th ROT injection, rats received daily doses of either NIA alone or preceded by the PKC inhibitor tamoxifen (TAM). Extent of disease progression was assessed by behavioral, striatal biochemical and striatal/nigral histopathological/immunohistochemical analysis. KEY FINDINGS Via activating PKC/LKB1/AMPK stream, NIA post-treatment attenuated the ERSR reflected by the decline in ATF4, ATF6 and XBP1s to downregulate the apoptotic markers, CHOP/GADD153, p-JNK and active caspase-3. Such amendments congregated in motor activity/coordination improvements in open field and rotarod tasks, enhanced grid test latency and reduced overall PD scores, while boosting nigral/striatal tyrosine hydroxylase immunoreactivity and increasing intact neurons (Nissl stain) in both SNpc and striatum that showed less neurodegeneration (H&E stain). To different extents, TAM reverted all the NIA-related actions to prove PKC as a fulcrum in conveying the drug neurotherapeutic potential. SIGNIFICANCE PKC activation is a pioneer mechanism in the drug ERSR inhibitory anti-apoptotic modality to clarify NIA promising clinical and potent preclinical anti-PD efficacy. This kinase can be tagged as a druggable target for future add-on treatments that can assist dopaminergic neuronal aptitude against this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Merna Roshdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Ahmed Orabi District, Cairo 44971, Egypt
| | - Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Samah S Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Ahmed Orabi District, Cairo 44971, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
3
|
Vulin I, Tenji D, Teodorovic I, Kaisarevic S. Undifferentiated versus retinoic acid-differentiated SH-SY5Y cells in investigation of markers of neural function in toxicological research. Toxicol Mech Methods 2024:1-11. [PMID: 39076017 DOI: 10.1080/15376516.2024.2385968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
The SH-SY5Y human neuroblastoma cell line is a standard in vitro experimental model of neuronal-like cells used in neuroscience and toxicological research. These cells can be differentiated into mature neurons, most commonly using retinoic acid (RA). Despite differences in characteristics, both undifferentiated and differentiated SH-SY5Y cells are used in research. However, due to uncertainties regarding the expression of specific markers of neural function in each culture, there is no definite conclusion on which culture is better suited for (neuro)toxicological and/or neuroscience investigations. To address this dilemma, we investigated the basal expression/activity of the key elements of acetylcholine, dopamine, serotonin, and GABA neurotransmitter pathways, along with the elements involved in exocytosis of neurotransmitters, and neuron electrophysiological activity in undifferentiated and in RA-differentiated SH-SY5Y cells using a six-day differentiation protocol. Our findings revealed that both SH-SY5Y cell types are functionally active. While undifferentiated SH-SY5Y cells exhibited greater multipotency in the expression of tested markers, most of those markers expressed in both cell types showed higher expression levels in RA-differentiated SH-SY5Y cells. Our results suggest that the six-day differentiation protocol with RA induces maturation, but not differentiation of the cells into specific neuron phenotype. The greater multipotency of undifferentiated cells in neural markers expression, together with their higher sensitivity to xenobiotic exposure and more simple cultivation protocols, make them a better candidate for high throughput toxicological screenings. Differentiated neurons are better suited for neuroscience researches that require higher expression of more specific neural markers and the specific types of neural cells.
Collapse
Affiliation(s)
- Irina Vulin
- Department of Biology and Ecology, Faculty of Sciences, Laboratory for Ecophysiology and Ecotoxicology - LECOTOX, University of Novi Sad, Novi Sad, Serbia
| | - Dina Tenji
- Department of Biology and Ecology, Faculty of Sciences, Laboratory for Ecophysiology and Ecotoxicology - LECOTOX, University of Novi Sad, Novi Sad, Serbia
| | - Ivana Teodorovic
- Department of Biology and Ecology, Faculty of Sciences, Laboratory for Ecophysiology and Ecotoxicology - LECOTOX, University of Novi Sad, Novi Sad, Serbia
| | - Sonja Kaisarevic
- Department of Biology and Ecology, Faculty of Sciences, Laboratory for Ecophysiology and Ecotoxicology - LECOTOX, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
4
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Loan A, Syal C, Lui M, He L, Wang J. Promising use of metformin in treating neurological disorders: biomarker-guided therapies. Neural Regen Res 2024; 19:1045-1055. [PMID: 37862207 PMCID: PMC10749596 DOI: 10.4103/1673-5374.385286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 10/22/2023] Open
Abstract
Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease), cerebrovascular conditions (stroke), and neurodevelopmental disorders (autism spectrum disorder). Although they affect millions of individuals around the world, only a limited number of effective treatment options are available today. Since most neurological disorders express mitochondria-related metabolic perturbations, metformin, a biguanide type II antidiabetic drug, has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism. However, controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders. Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging, lifestyle, genetics, and environment, it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders. These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment, ultimately developing targeted therapy. In this review, we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Margarita Lui
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
6
|
Athari SZ, Farajdokht F, Keyhanmanesh R, Mohaddes G. AMPK Signaling Pathway as a Potential Therapeutic Target for Parkinson's Disease. Adv Pharm Bull 2024; 14:120-131. [PMID: 38585465 PMCID: PMC10997932 DOI: 10.34172/apb.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the loss of dopaminergic neurons. Genetic factors, inflammatory responses, oxidative stress, metabolic disorders, cytotoxic factors, and mitochondrial dysfunction are all involved in neuronal death in neurodegenerative diseases. The risk of PD can be higher in aging individuals due to decreased mitochondrial function, energy metabolism, and AMP-activated protein kinase (AMPK) function. The potential of AMPK to regulate neurodegenerative disorders lies in its ability to enhance antioxidant capacity, reduce oxidative stress, improve mitochondrial function, decrease mitophagy and macroautophagy, and inhibit inflammation. In addition, it has been shown that modulating the catalytic activity of AMPK can protect the nervous system. This article reviews the mechanisms by which AMPK activation can modulate PD.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| |
Collapse
|
7
|
Ay M, Charli A, Langley M, Jang A, Padhi P, Jin H, Anantharam V, Kalyanaraman B, Kanthasamy A, Kanthasamy AG. Mito-metformin protects against mitochondrial dysfunction and dopaminergic neuronal degeneration by activating upstream PKD1 signaling in cell culture and MitoPark animal models of Parkinson's disease. Front Neurosci 2024; 18:1356703. [PMID: 38449738 PMCID: PMC10915001 DOI: 10.3389/fnins.2024.1356703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Impaired mitochondrial function and biogenesis have strongly been implicated in the pathogenesis of Parkinson's disease (PD). Thus, identifying the key signaling mechanisms regulating mitochondrial biogenesis is crucial to developing new treatment strategies for PD. We previously reported that protein kinase D1 (PKD1) activation protects against neuronal cell death in PD models by regulating mitochondrial biogenesis. To further harness the translational drug discovery potential of targeting PKD1-mediated neuroprotective signaling, we synthesized mito-metformin (Mito-Met), a mitochondria-targeted analog derived from conjugating the anti-diabetic drug metformin with a triphenylphosphonium functional group, and then evaluated the preclinical efficacy of Mito-Met in cell culture and MitoPark animal models of PD. Mito-Met (100-300 nM) significantly activated PKD1 phosphorylation, as well as downstream Akt and AMPKα phosphorylation, more potently than metformin, in N27 dopaminergic neuronal cells. Furthermore, treatment with Mito-Met upregulated the mRNA and protein expression of mitochondrial transcription factor A (TFAM) implying that Mito-Met can promote mitochondrial biogenesis. Interestingly, Mito-Met significantly increased mitochondrial bioenergetics capacity in N27 dopaminergic cells. Mito-Met also reduced mitochondrial fragmentation induced by the Parkinsonian neurotoxicant MPP+ in N27 cells and protected against MPP+-induced TH-positive neurite loss in primary neurons. More importantly, Mito-Met treatment (10 mg/kg, oral gavage for 8 week) significantly improved motor deficits and reduced striatal dopamine depletion in MitoPark mice. Taken together, our results demonstrate that Mito-Met possesses profound neuroprotective effects in both in vitro and in vivo models of PD, suggesting that pharmacological activation of PKD1 signaling could be a novel neuroprotective translational strategy in PD and other related neurocognitive diseases.
Collapse
Affiliation(s)
- Muhammet Ay
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Adhithiya Charli
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Monica Langley
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Ahyoung Jang
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Piyush Padhi
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Huajun Jin
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Vellareddy Anantharam
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | | | - Arthi Kanthasamy
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Chegão A, Vicente Miranda H. Unveiling new secrets in Parkinson's disease: The glycatome. Behav Brain Res 2023; 442:114309. [PMID: 36706808 DOI: 10.1016/j.bbr.2023.114309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
We are witnessing a considerable increase in the incidence of Parkinson's disease (PD), which may be due to the general ageing of the population. While there is a plethora of therapeutic strategies for this disease, they still fail to arrest disease progression as they do not target and prevent the neurodegenerative process. The identification of disease-causing mutations allowed researchers to better dissect the underlying causes of this disease, highlighting, for example, the pathogenic role of alpha-synuclein. However, most PD cases are sporadic, which is making it hard to unveil the major causative mechanisms of this disease. In the recent years, epidemiological evidence suggest that type-2 diabetes mellitus (T2DM) individuals have higher risk and worst outcomes of PD, allowing to raise the hypothesis that some dysregulated processes in T2DM may contribute or even trigger the neurodegenerative process in PD. One major consequence of T2DM is the unprogrammed reaction between sugars, increased in T2DM, and proteins, a reaction named glycation. Pre-clinical reports show that alpha-synuclein is a target of glycation, and glycation potentiates its pathogenicity which contributes for the neurodegenerative process. Moreover, it triggers, anticipates, or aggravates several PD-like motor and non-motor complications. A given profile of proteins are differently glycated in diseased conditions, altering the brain proteome and leading to brain dysfunction and neurodegeneration. Herein we coin the term Glycatome as the profile of glycated proteins. In this review we report on the mechanisms underlying the association between T2DM and PD, with particular focus on the impact of protein glycation.
Collapse
Affiliation(s)
- Ana Chegão
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Leem YH, Park JS, Park JE, Kim DY, Kim HS. Suppression of neuroinflammation and α-synuclein oligomerization by rotarod walking exercise in subacute MPTP model of Parkinson's disease. Neurochem Int 2023; 165:105519. [PMID: 36931345 DOI: 10.1016/j.neuint.2023.105519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Parkinson's disease (PD) belongs to an α-synucleinopathy and manifests motor dysfunction attributed to nigrostriatal dopaminergic degeneration. In clinical practice, the beneficial role of physical therapy such as motor skill learning training has been recognized in PD-linked motor defects. Nevertheless, the disease-modifying effects of motor skill learning training on PD-related pathology remain unclear. Here, we investigated the disease-modifying effects of rotarod walking exercise (RWE), a modality of motor skill learning training, in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In motor function and dopaminergic degeneration, RWE improved MPTP-induced deficits. In addition, RWE enhanced the expression of neurotrophic factors BDNF/GDNF, PGC1-α, Nurr1, and p-AMPK, thereby recovering dopaminergic neuronal cell death. Moreover, RWE inhibited microglial activation and the expression of pro-inflammatory markers, such as p-IκBα, iNOS, IL-1β, TNF-α, and cathepsin D, while elevating anti-inflammatory IL-10 and TGF-β. RWE also decreased oxidative stress markers in the substantia nigra, such as 4-HNE and 8-OHdG-positive cells, while increasing Nrf2-controlled antioxidant enzymes. Regarding the effect of RWE on α-synuclein, it reduced the monomer/oligomer forms of α-synuclein and phosphorylation at serine 129. Further mechanistic studies revealed that RWE suppressed the expression of matrix metalloproteinase-3 and p-GSK3β (Y216), which play key roles in α-synuclein aggregation. These data collectively suggest that inhibition of neuroinflammation and α-synuclein oligomerization by RWE may contribute to the improvement of PD pathology.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Jung-Eun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Do-Youn Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea; Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
10
|
Dong-Chen X, Yong C, Yang X, Chen-Yu S, Li-Hua P. Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:73. [PMID: 36810524 PMCID: PMC9944326 DOI: 10.1038/s41392-023-01353-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and its treatment remains a big challenge. The pathogenesis of PD may be related to environmental and genetic factors, and exposure to toxins and gene mutations may be the beginning of brain lesions. The identified mechanisms of PD include α-synuclein aggregation, oxidative stress, ferroptosis, mitochondrial dysfunction, neuroinflammation, and gut dysbiosis. The interactions among these molecular mechanisms complicate the pathogenesis of PD and pose great challenges to drug development. At the same time, the diagnosis and detection of PD are also one of obstacles to the treatment of PD due to its long latency and complex mechanism. Most conventional therapeutic interventions for PD possess limited effects and have serious side effects, heightening the need to develop novel treatments for this disease. In this review, we systematically summarized the pathogenesis, especially the molecular mechanisms of PD, the classical research models, clinical diagnostic criteria, and the reported drug therapy strategies, as well as the newly reported drug candidates in clinical trials. We also shed light on the components derived from medicinal plants that are newly identified for their effects in PD treatment, with the expectation to provide the summary and outlook for developing the next generation of drugs and preparations for PD therapy.
Collapse
Affiliation(s)
- Xu Dong-Chen
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Chen Yong
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Xu Yang
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - ShenTu Chen-Yu
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Peng Li-Hua
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China.
| |
Collapse
|
11
|
Parekh P, Sharma N, Sharma M, Gadepalli A, Sayyed AA, Chatterjee S, Kate A, Khairnar A. AMPK-dependent autophagy activation and alpha-Synuclein clearance: a putative mechanism behind alpha-mangostin's neuroprotection in a rotenone-induced mouse model of Parkinson's disease. Metab Brain Dis 2022; 37:2853-2870. [PMID: 36178640 DOI: 10.1007/s11011-022-01087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
Alpha-Synuclein (α-Syn) accumulation is central to the pathogenesis of Parkinson's disease (PD), hence the quest for finding potential therapeutics that may promote the α-Syn clearance is the need of the hour. To this, activation of the evolutionarily conserved protein and key regulator of the autophagy, 5'AMP-activated protein kinase (AMPK) is well-known to induce autophagy and subsequently the clearance of α-Syn aggregates. Alpha-mangostin (AM) a polyphenolic xanthone obtained from Garcinia Mangostana L. was previously reported to activate AMPK-dependent autophagy in various pre-clinical cancer models. However, no studies evidenced the effect of AM on AMPK-dependent autophagy activation in the PD. Therefore, the present study aimed to investigate the neuroprotective activity of AM in the chronic rotenone mouse model of PD against rotenone-induced α-Syn accumulation and to dissect molecular mechanisms underlying the observed neuroprotection. The findings showed that AM exerts neuroprotection against rotenone-induced α-Syn accumulation in the striatum and cortex by activating AMPK, upregulating autophagy (LC3II/I, Beclin-1), and lysosomal (TFEB) markers. Of note, an in-vitro study utilizing rat pheochromocytoma cells verified that AM conferred the neuroprotection only through AMPK activation, as the presence of inhibitors of AMPK (dorsomorphin) and autophagy (3-methyl adenine) failed to mitigate rotenone-induced α-Syn accumulation. Moreover, AM also counteracted rotenone-induced behavioral deficits, oxidative stress, and degeneration of nigro-striatal dopaminergic neurons. In conclusion, AM provided neuroprotection by ameliorating the rotenone-induced α-Syn accumulation through AMPK-dependent autophagy activation and it can be considered as a therapeutic agent which might be having a higher translational value in the treatment of PD.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Anagha Gadepalli
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Adil Ali Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Sayan Chatterjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Abhijeet Kate
- Department of Natural products, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India.
| |
Collapse
|
12
|
O'Brien JT, Chouliaras L, Sultana J, Taylor JP, Ballard C. RENEWAL: REpurposing study to find NEW compounds with Activity for Lewy body dementia-an international Delphi consensus. Alzheimers Res Ther 2022; 14:169. [PMID: 36369100 PMCID: PMC9650797 DOI: 10.1186/s13195-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Drug repositioning and repurposing has proved useful in identifying new treatments for many diseases, which can then rapidly be brought into clinical practice. Currently, there are few effective pharmacological treatments for Lewy body dementia (which includes both dementia with Lewy bodies and Parkinson's disease dementia) apart from cholinesterase inhibitors. We reviewed several promising compounds that might potentially be disease-modifying agents for Lewy body dementia and then undertook an International Delphi consensus study to prioritise compounds. We identified ambroxol as the top ranked agent for repurposing and identified a further six agents from the classes of tyrosine kinase inhibitors, GLP-1 receptor agonists, and angiotensin receptor blockers that were rated by the majority of our expert panel as justifying a clinical trial. It would now be timely to take forward all these compounds to Phase II or III clinical trials in Lewy body dementia.
Collapse
Affiliation(s)
- John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Janet Sultana
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
13
|
Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Front Neurol 2022; 13:852003. [PMID: 35614915 PMCID: PMC9124903 DOI: 10.3389/fneur.2022.852003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (asyn) is a key pathogenetic factor in a group of neurodegenerative diseases generically known as synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the initial triggers of pathology and progression are unclear, multiple lines of evidence support therapeutic targeting of asyn in order to limit its prion-like misfolding. Here, we review recent pre-clinical and clinical work that offers promising treatment strategies to sequester, degrade, or silence asyn expression as a means to reduce the levels of seed or substrate. These diverse approaches include removal of aggregated asyn with passive or active immunization or by expression of vectorized antibodies, modulating kinetics of misfolding with small molecule anti-aggregants, lowering asyn gene expression by antisense oligonucleotides or inhibitory RNA, and pharmacological activation of asyn degradation pathways. We also discuss recent technological advances in combining low intensity focused ultrasound with intravenous microbubbles to transiently increase blood-brain barrier permeability for improved brain delivery and target engagement of these large molecule anti-asyn biologics.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Sabrina Armstrong
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Amir Hamzeh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Naomi P. Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | | | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Dysmetabolism and Neurodegeneration: Trick or Treat? Nutrients 2022; 14:nu14071425. [PMID: 35406040 PMCID: PMC9003269 DOI: 10.3390/nu14071425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests the existence of a strong link between metabolic syndrome and neurodegeneration. Indeed, epidemiologic studies have described solid associations between metabolic syndrome and neurodegeneration, whereas animal models contributed for the clarification of the mechanistic underlying the complex relationships between these conditions, having the development of an insulin resistance state a pivotal role in this relationship. Herein, we review in a concise manner the association between metabolic syndrome and neurodegeneration. We start by providing concepts regarding the role of insulin and insulin signaling pathways as well as the pathophysiological mechanisms that are in the genesis of metabolic diseases. Then, we focus on the role of insulin in the brain, with special attention to its function in the regulation of brain glucose metabolism, feeding, and cognition. Moreover, we extensively report on the association between neurodegeneration and metabolic diseases, with a particular emphasis on the evidence observed in animal models of dysmetabolism induced by hypercaloric diets. We also debate on strategies to prevent and/or delay neurodegeneration through the normalization of whole-body glucose homeostasis, particularly via the modulation of the carotid bodies, organs known to be key in connecting the periphery with the brain.
Collapse
|
15
|
Cui M, Yoshimori T, Nakamura S. Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochem Int 2022; 155:105308. [PMID: 35181396 DOI: 10.1016/j.neuint.2022.105308] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 02/13/2022] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionally conserved process by which cytoplasmic contents including protein aggregates and damaged organelles such as mitochondria and lysosomes, are sequestered by double-membrane structure, autophagosomes, and delivered to the lysosomes for degradation. Recently, considerable efforts have been made to reveal the role of autophagy in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease. Impairment of autophagy aggravates the accumulation of misfolded protein and damaged organelles in neurons, while sufficient autophagic activity reduces such accumulation in nervous system and ameliorates the pathology. Here we summarize recent progress regarding the role of autophagy in several neurodegenerative diseases and the potential autophagy-associated therapies for them.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan.
| |
Collapse
|
16
|
Bonam SR, Tranchant C, Muller S. Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson's Disease. Cells 2021; 10:3547. [PMID: 34944054 PMCID: PMC8700067 DOI: 10.3390/cells10123547] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Cellular quality control systems have gained much attention in recent decades. Among these, autophagy is a natural self-preservation mechanism that continuously eliminates toxic cellular components and acts as an anti-ageing process. It is vital for cell survival and to preserve homeostasis. Several cell-type-dependent canonical or non-canonical autophagy pathways have been reported showing varying degrees of selectivity with regard to the substrates targeted. Here, we provide an updated review of the autophagy machinery and discuss the role of various forms of autophagy in neurodegenerative diseases, with a particular focus on Parkinson's disease. We describe recent findings that have led to the proposal of therapeutic strategies targeting autophagy to alter the course of Parkinson's disease progression.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Sylviane Muller
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- CNRS and Strasbourg University, Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|
17
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|
18
|
Hang L, Wang Z, Foo ASC, Goh GWY, Choong HC, Thundyil J, Xu S, Lam KP, Lim KL. Conditional disruption of AMP kinase in dopaminergic neurons promotes Parkinson's disease-associated phenotypes in vivo. Neurobiol Dis 2021; 161:105560. [PMID: 34767944 DOI: 10.1016/j.nbd.2021.105560] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
Emerging studies implicate energy dysregulation as an underlying trigger for Parkinson's disease (PD), suggesting that a better understanding of the molecular pathways governing energy homeostasis could help elucidate therapeutic targets for the disease. A critical cellular energy regulator is AMP kinase (AMPK), which we have previously shown to be protective in PD models. However, precisely how AMPK function impacts on dopaminergic neuronal survival and disease pathogenesis remains elusive. Here, we showed that Drosophila deficient in AMPK function exhibits PD-like features, including dopaminergic neuronal loss and climbing impairment that progress with age. We also created a tissue-specific AMPK-knockout mouse model where the catalytic subunits of AMPK are ablated in nigral dopaminergic neurons. Using this model, we demonstrated that loss of AMPK function promotes dopaminergic neurodegeneration and associated locomotor aberrations. Accompanying this is an apparent reduction in the number of mitochondria in the surviving AMPK-deficient nigral dopaminergic neurons, suggesting that an impairment in mitochondrial biogenesis may underlie the observed PD-associated phenotypes. Importantly, the loss of AMPK function enhances the susceptibility of nigral dopaminergic neurons in these mice to 6-hydroxydopamine-induced toxicity. Notably, we also found that AMPK activation is reduced in post-mortem PD brain samples. Taken together, these findings highlight the importance of neuronal energy homeostasis by AMPK in PD and position AMPK pathway as an attractive target for future therapeutic exploitation.
Collapse
Affiliation(s)
- Liting Hang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Physiology, National University of Singapore, Singapore; Department of Research, National Neuroscience Institute, Singapore
| | - Ziyin Wang
- Department of Research, National Neuroscience Institute, Singapore
| | - Aaron S C Foo
- Department of Physiology, National University of Singapore, Singapore; Department of Research, National Neuroscience Institute, Singapore
| | - Geraldine W Y Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Department of Research, National Neuroscience Institute, Singapore
| | | | - John Thundyil
- Department of Research, National Neuroscience Institute, Singapore
| | - Shengli Xu
- Department of Physiology, National University of Singapore, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Kong-Peng Lam
- Department of Microbiology & Immunology, National University of Singapore, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Department of Research, National Neuroscience Institute, Singapore; Department of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom.
| |
Collapse
|
19
|
Lee MTW, Mahy W, Rackham MD. The medicinal chemistry of mitochondrial dysfunction: a critical overview of efforts to modulate mitochondrial health. RSC Med Chem 2021; 12:1281-1311. [PMID: 34458736 PMCID: PMC8372206 DOI: 10.1039/d1md00113b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are subcellular organelles that perform a variety of critical biological functions, including ATP production and acting as hubs of immune and apoptotic signalling. Mitochondrial dysfunction has been extensively linked to the pathology of multiple neurodegenerative disorders, resulting in significant investment from the drug discovery community. Despite extensive efforts, there remains no disease modifying therapies for neurodegenerative disorders. This manuscript aims to review the compounds historically used to modulate the mitochondrial network through the lens of modern medicinal chemistry, and to offer a perspective on the evidence that relevant exposure was achieved in a representative model and that exposure was likely to result in target binding and engagement of pharmacology. We hope this manuscript will aid the community in identifying those targets and mechanisms which have been convincingly (in)validated with high quality chemical matter, and those for which an opportunity exists to explore in greater depth.
Collapse
Affiliation(s)
| | - William Mahy
- MSD The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | | |
Collapse
|
20
|
Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, Kannan A, Bolla SR, Chidambaram SB, Sakharkar MK. "Janus-Faced" α-Synuclein: Role in Parkinson's Disease. Front Cell Dev Biol 2021; 9:673395. [PMID: 34124057 PMCID: PMC8194081 DOI: 10.3389/fcell.2021.673395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience & Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- Special Interest Group – Brain, Behaviour, and Cognitive Neurosciences Research, JSS Academy of Higher Education & Research, Mysuru, India
| | | |
Collapse
|
21
|
Nikbakhtzadeh M, Shaerzadeh F, Ashabi G. Highlighting the protective or degenerative role of AMPK activators in dementia experimental models. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:786-801. [PMID: 34042039 DOI: 10.2174/1871527320666210526160214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a serine/threonine kinase and a driving or deterrent factor in the development of neurodegenerative diseases and dementia. AMPK affects intracellular proteins like the mammalian target of rapamycin (mTOR). Peroxisome proliferator-activated receptor-γ coactivator 1-α (among others) contributes to a wide range of intracellular activities based on its downstream molecules such as energy balancing (ATP synthesis), extracellular inflammation, cell growth, and neuronal cell death (such as apoptosis, necrosis, and necroptosis). Several studies have looked at the dual role of AMPK in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington disease (HD) but the exact effect of this enzyme on dementia, stroke, and motor neuron dysfunction disorders has not been elucidated yet. In this article, we review current research on the effects of AMPK on the brain to give an overview of the relationship. More specifically, we review the neuroprotective or neurodegenerative effects of AMPK or AMPK activators like metformin, resveratrol, and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside on neurological diseases and dementia, which exert through the intracellular molecules involved in neuronal survival or death.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, United States
| | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Mitochondria and Neurodegenerative Diseases. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Blagojević S, Jeremić M, Jovanović-Tucović M. The neuroprotective effect of Rho-kinase Inhibition in 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of neurodegeneration. MEDICINSKI PODMLADAK 2021. [DOI: 10.5937/mp72-33532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction: The 1-methyl 4-phenyl 1,2,3,6-tetrahydropiridium (MPTP) induced model of neurodegeneration in Parkinson's disease (PD) is one of the most commonly used experimental models. This neurotoxic agent , or rather its metabolite MPP+, leads to inhibition of mitochondrial complex I, an increase in free radicals' production and ATP depletion, all resulting in cellular demise and death. Rho-kinase is an enzyme involved with numerous cellregulatory mechanisms, such as cytoskeleton organization, axonogenesis, vesicular transport regulation and apoptosis regulation, which are all important for cell survival. Aim: Our aim was to investigate the effects of Rho-kinase inhibition on the MPP+ induced model of neurodegeneration and the role of Akt and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways in this process. Material and methods: The experiments were performed on the human neuroblastoma SHSY5Y cell line. The MTT test was used to measure the viability of the cells after the MPP+ and/ or Rho-kinase inhibitor, fasudil, treatments. Changes in activation levels, or expression of pAMPK, pAkt, AMPK and Akt, were measured using the immunoblotting method, and the protein levels were quantified by densitometry. Results: The MPP+ caused a dose-dependent decrease in cellular viability, compared to the control group (untreated cells), while fasudil treatment, prior to MPP+ exposure, improved cell viability in a dose dependant manner, compared to MPP+ treatment. Analysis of activation status of target proteins showed an increase in Akt activation after the fasudil treatment, while the AMPK activation was not significantly changed. Conclusion: Inhibition of Rho-kinase using fasudil causes a decrease in MPP+ induced cell death, which is possibly mediated by an activation of the Akt/PI3K signaling pathway.
Collapse
|
24
|
Huang C, Yan S, Zhang Z. Maintaining the balance of TDP-43, mitochondria, and autophagy: a promising therapeutic strategy for neurodegenerative diseases. Transl Neurodegener 2020; 9:40. [PMID: 33126923 PMCID: PMC7597011 DOI: 10.1186/s40035-020-00219-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy center of cell operations and are involved in physiological functions and maintenance of metabolic balance and homeostasis in the body. Alterations of mitochondrial function are associated with a variety of degenerative and acute diseases. As mitochondria age in cells, they gradually become inefficient and potentially toxic. Acute injury can trigger the permeability of mitochondrial membranes, which can lead to apoptosis or necrosis. Transactive response DNA-binding protein 43 kDa (TDP-43) is a protein widely present in cells. It can bind to RNA, regulate a variety of RNA processes, and play a role in the formation of multi-protein/RNA complexes. Thus, the normal physiological functions of TDP-43 are particularly important for cell survival. Normal TDP-43 is located in various subcellular structures including mitochondria, mitochondrial-associated membrane, RNA particles and stress granules to regulate the endoplasmic reticulum–mitochondrial binding, mitochondrial protein translation, and mRNA transport and translation. Importantly, TDP-43 is associated with a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia and Alzheimer's disease, which are characterized by abnormal phosphorylation, ubiquitination, lysis or nuclear depletion of TDP-43 in neurons and glial cells. Although the pathogenesis of TDP-43 proteinopathy remains unknown, the presence of pathological TDP-43 inside or outside of mitochondria and the functional involvement of TDP-43 in the regulation of mitochondrial morphology, transport, and function suggest that mitochondria are associated with TDP-43-related diseases. Autophagy is a basic physiological process that maintains the homeostasis of cells, including targeted clearance of abnormally aggregated proteins and damaged organelles in the cytoplasm; therefore, it is considered protective against neurodegenerative diseases. However, the combination of abnormal TDP-43 aggregation, mitochondrial dysfunction, and insufficient autophagy can lead to a variety of aging-related pathologies. In this review, we describe the current knowledge on the associations of mitochondria with TDP-43 and the role of autophagy in the clearance of abnormally aggregated TDP-43 and dysfunctional mitochondria. Finally, we discuss a novel approach for neurodegenerative treatment based on the knowledge.
Collapse
Affiliation(s)
- Chunhui Huang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Sen Yan
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Zaijun Zhang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
25
|
Fernando S, Allan CY, Mroczek K, Pearce X, Sanislav O, Fisher PR, Annesley SJ. Cytotoxicity and Mitochondrial Dysregulation Caused by α-Synuclein in Dictyostelium discoideum. Cells 2020; 9:E2289. [PMID: 33066427 PMCID: PMC7602147 DOI: 10.3390/cells9102289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Alpha synuclein has been linked to both sporadic and familial forms of Parkinson's disease (PD) and is the most abundant protein in Lewy bodies a hallmark of Parkinson's disease. The function of this protein and the molecular mechanisms underlying its toxicity are still unclear, but many studies have suggested that the mechanism of α-synuclein toxicity involves alterations to mitochondrial function. Here we expressed human α-synuclein and two PD-causing α-synuclein mutant proteins (with a point mutation, A53T, and a C-terminal 20 amino acid truncation) in the eukaryotic model Dictyostelium discoideum. Mitochondrial disease has been well studied in D. discoideum and, unlike in mammals, mitochondrial dysfunction results in a clear set of defective phenotypes. These defective phenotypes are caused by the chronic hyperactivation of the cellular energy sensor, AMP-activated protein kinase (AMPK). Expression of α-synuclein wild type and mutant forms was toxic to the cells and mitochondrial function was dysregulated. Some but not all of the defective phenotypes could be rescued by down regulation of AMPK revealing both AMPK-dependent and -independent mechanisms. Importantly, we also show that the C-terminus of α-synuclein is required and sufficient for the localisation of the protein to the cell cortex in D. discoideum.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah J. Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia; (S.F.); (C.Y.A.); (K.M.); (X.P.); (O.S.); (P.R.F.)
| |
Collapse
|
26
|
Fouka M, Mavroeidi P, Tsaka G, Xilouri M. In Search of Effective Treatments Targeting α-Synuclein Toxicity in Synucleinopathies: Pros and Cons. Front Cell Dev Biol 2020; 8:559791. [PMID: 33015057 PMCID: PMC7500083 DOI: 10.3389/fcell.2020.559791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD), multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB) represent pathologically similar, progressive neurodegenerative disorders characterized by the pathological aggregation of the neuronal protein α-synuclein. PD and DLB are characterized by the abnormal accumulation and aggregation of α-synuclein in proteinaceous inclusions within neurons named Lewy bodies (LBs) and Lewy neurites (LNs), whereas in MSA α-synuclein inclusions are mainly detected within oligodendrocytes named glial cytoplasmic inclusions (GCIs). The presence of pathologically aggregated α-synuclein along with components of the protein degradation machinery, such as ubiquitin and p62, in LBs and GCIs is considered to underlie the pathogenic cascade that eventually leads to the severe neurodegeneration and neuroinflammation that characterizes these diseases. Importantly, α-synuclein is proposed to undergo pathogenic misfolding and oligomerization into higher-order structures, revealing self-templating conformations, and to exert the ability of "prion-like" spreading between cells. Therefore, the manner in which the protein is produced, is modified within neural cells and is degraded, represents a major focus of current research efforts in the field. Given that α-synuclein protein load is critical to disease pathogenesis, the identification of means to limit intracellular protein burden and halt α-synuclein propagation represents an obvious therapeutic approach in synucleinopathies. However, up to date the development of effective therapeutic strategies to prevent degeneration in synucleinopathies is limited, due to the lack of knowledge regarding the precise mechanisms underlying the observed pathology. This review critically summarizes the recent developed strategies to counteract α-synuclein toxicity, including those aimed to increase protein degradation, to prevent protein aggregation and cell-to-cell propagation, or to engage antibodies against α-synuclein and discuss open questions and unknowns for future therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
27
|
Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech Ageing Dev 2020; 190:111297. [PMID: 32610099 PMCID: PMC7484136 DOI: 10.1016/j.mad.2020.111297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Namasthée Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Katila N, Bhurtel S, Park PH, Hong JT, Choi DY. Activation of AMPK/aPKCζ/CREB pathway by metformin is associated with upregulation of GDNF and dopamine. Biochem Pharmacol 2020; 180:114193. [PMID: 32800853 DOI: 10.1016/j.bcp.2020.114193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, leading to a decrease in striatal dopamine. There is no antiparkinsonian therapy that offers a true disease-modifying treatment till date and there is an urgent need for a safe and effective neuroprotective or neurorestorative therapy. Our previous study demonstrated that metformin upregulated dopamine in the mouse brain and provided significant neuroprotection in animal model of PD. Therefore, we designed this study to investigate the molecular mechanism underlying such pharmacological effect of metformin. Herein, we found that metformin enhanced the phosphorylation of tyrosine hydroxylase (TH) which was accompanied by increase in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and activation of their downstream signaling pathways in the mouse brain and SH-SY5Y cells. We further investigated the role of the neurotrophic factors in the activation of TH and observed that both BDNF and GDNF-induction were essential for metformin-induced TH activation. We found that the AMPK/aPKCζ/CREB pathway was essential for metformin-induced GDNF upregulation and TH activation. Thus, this study reveals the TH-activating property of metformin in the brain via induction of neurotrophic factors along with the signaling mechanism. These results potentiate the candidacy of metformin not only as a neuroprotective agent, but also as restorative therapy for the treatment of PD.
Collapse
Affiliation(s)
- Nikita Katila
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sunil Bhurtel
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21 Osongsaengmyeong1-ro, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
29
|
Peshattiwar V, Muke S, Kaikini A, Bagle S, Dighe V, Sathaye S. Mechanistic evaluation of Ursolic acid against rotenone induced Parkinson's disease- emphasizing the role of mitochondrial biogenesis. Brain Res Bull 2020; 160:150-161. [PMID: 32147532 DOI: 10.1016/j.brainresbull.2020.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is an age associated, progressive and a second most common neurodegenerative disease. It is caused due to degeneration of dopaminergic neurons in substantia nigra (SN). Various studies implicate mitochondrial dysfunction, oxidative stress, altered degradation of misfolded proteins in PD pathogenesis. Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, is reported to possess a number of biological activities viz. anti-oxidant, anti-inflammatory etc. The focus of our study was to assess the neuroprotective potential of UA against the rotenone induced pathophysiological alterations. In this study rats were subjected to stereotaxic bilateral injection of rotenone (12 μg/μl) in SN. Further, they were treated per-orally with UA (5 and 10 mg/kg) for 30 days. During the study, neurobehavioral tests comprising Rota-rod, Open field and Barnes maze (BMT) were conducted. At the end of 30 days, the antioxidant (Reduced glutathione, superoxide dismutase, catalase and lipid peroxidation), inflammatory (TNF-α) parameters, mitochondrial complex I, mitochondrial biogenesis (MB) and immunohistochemical analysis (TH positive neurons, Glial Fibrillary Acidic Protein (GFAP)) was performed. The results exhibited significant amelioration in the motor deficits by UA which can be attributed to the protection of TH positive neurons from degeneration. A significant improvement in the cognitive function due to UA was observed in BMT. Biochemically, the oxidative stress and inflammation triggered by rotenone was significantly diminished by UA. It also significantly obviated the complex I inhibition and promoted MB. The preliminary results thus firmly advocate the neuroprotective potential of UA to prevent rotenone induced neurotoxicity in rats.
Collapse
Affiliation(s)
- Vaibhavi Peshattiwar
- A-252, Pharmacology Lab II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Suraj Muke
- A-252, Pharmacology Lab II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Aakruti Kaikini
- A-252, Pharmacology Lab II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Sneha Bagle
- A-252, Pharmacology Lab II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra, 400 012, India
| | - Sadhana Sathaye
- A-252, Pharmacology Lab II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| |
Collapse
|
30
|
Kim D, Hwang HY, Kwon HJ. Targeting Autophagy In Disease: Recent Advances In Drug Discovery. Expert Opin Drug Discov 2020; 15:1045-1064. [DOI: 10.1080/17460441.2020.1773429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Wilkaniec A, Cieślik M, Murawska E, Babiec L, Gąssowska-Dobrowolska M, Pałasz E, Jęśko H, Adamczyk A. P2X7 Receptor is Involved in Mitochondrial Dysfunction Induced by Extracellular Alpha Synuclein in Neuroblastoma SH-SY5Y Cells. Int J Mol Sci 2020; 21:ijms21113959. [PMID: 32486485 PMCID: PMC7312811 DOI: 10.3390/ijms21113959] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) belongs to a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). Several studies have pointed to a role of P2X7R-dependent signalling in Parkinson's disease (PD)-related neurodegeneration. The pathology of (PD) is characterized by the formation of insoluble alpha-synuclein (α-Syn) aggregates—Lewy bodies, but the mechanisms underlying α-Syn-induced dopaminergic cell death are still partially unclear. Our previous studies indicate that extracellular α-Syn directly interact with neuronal P2X7R and induces intracellular free calcium mobilization in neuronal cells. The main objective of this study was to examine the involvement of P2X7R receptor in α-Syn-induced mitochondrial dysfunction and cell death. We found that P2X7R stimulation is responsible for α-Syn-induced oxidative stress and activation of the molecular pathways of programmed cell death. Exogenous α-Syn treatment led to P2X7R-dependent decrease in mitochondrial membrane potential as well as elevation of mitochondrial ROS production resulting in breakdown of cellular energy production. Moreover, P2X7R-dependent deregulation of AMP-activated protein kinase as well as decrease in parkin protein level could be responsible for α-Syn-induced mitophagy impairment and accumulation of dysfunctional mitochondria. P2X7R might be putative pharmacological targets in molecular mechanism of extracellular α-Syn toxicity.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
- Correspondence: ; Tel.: +48-22-608-66-00; Fax: +48-22-608-64-13
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Emilia Murawska
- Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1 Street, 02-096 Warsaw, Poland;
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Ewelina Pałasz
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| |
Collapse
|
32
|
Rodríguez-Losada N, de la Rosa J, Larriva M, Wendelbo R, Aguirre JA, Castresana JS, Ballaz SJ. Overexpression of alpha-synuclein promotes both cell proliferation and cell toxicity in human SH-SY5Y neuroblastoma cells. J Adv Res 2020; 23:37-45. [PMID: 32071790 PMCID: PMC7016025 DOI: 10.1016/j.jare.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 01/05/2023] Open
Abstract
Alpha-Synuclein (aSyn) is a chameleon-like protein. Its overexpression and intracellular deposition defines neurodegenerative α-synucleinopathies including Parkinson's disease. Whether aSyn up-regulation is the cause or the protective reaction to α-synucleinopathies remains unresolved. Remarkably, the accumulation of aSyn is involved in cancer. Here, the neuroblastoma SH-SY5Y cell line was genetically engineered to overexpress aSyn at low and at high levels. aSyn cytotoxicity was assessed by the MTT and vital-dye exclusion methods, observed at the beginning of the sub-culture of low-aSyn overexpressing neurons when cells can barely proliferate exponentially. Conversely, high-aSyn overexpressing cultures grew at high rates while showing enhanced colony formation compared to low-aSyn neurons. Cytotoxicity of aSyn overexpression was indirectly revealed by the addition of pro-oxidant rotenone. Pretreatment with partially reduced graphene oxide, an apoptotic agent, increased toxicity of rotenone in low-aSyn neurons, but, it did not in high-aSyn neurons. Consistent with their enhanced proliferation, high-aSyn neurons showed elevated levels of SMP30, a senescence-marker protein, and the mitosis Ki-67 marker. High-aSyn overexpression conferred to the carcinogenic neurons heightened tumorigenicity and resistance to senescence compared to low-aSyn cells, thus pointing to an inadequate level of aSyn stimulation, rather than the aSyn overload itself, as one of the factors contributing to α-synucleinopathy.
Collapse
Affiliation(s)
- Noela Rodríguez-Losada
- Dept. of Human Physiology & Physical Sports Education, Medical School, University of Málaga, Málaga, Spain
| | - Javier de la Rosa
- Dept. of Biochemistry & Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - María Larriva
- Dept. of Pharmacology & Toxicology, University of Navarra School of Pharmacy and Nutrition, Pamplona, Spain
| | | | - José A. Aguirre
- Dept. of Human Physiology & Physical Sports Education, Medical School, University of Málaga, Málaga, Spain
| | - Javier S. Castresana
- Dept. of Biochemistry & Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Santiago J. Ballaz
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí, Ecuador
| |
Collapse
|
33
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
34
|
Ozbey G, Nemutlu-Samur D, Parlak H, Yildirim S, Aslan M, Tanriover G, Agar A. Metformin protects rotenone-induced dopaminergic neurodegeneration by reducing lipid peroxidation. Pharmacol Rep 2020; 72:1397-1406. [PMID: 32207092 DOI: 10.1007/s43440-020-00095-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/21/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Metformin, a widely prescribed antidiabetic drug, has been suggested to have a neuroprotective effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice. In this study, we investigated the neuroprotective potential of metformin against rotenone-induced dopaminergic neuron damage and its underlying mechanisms. METHODS C57BL/6 mice were given saline or rotenone (2.5 mg/kg/day, ip) injection for 10 days. Metformin treatment (300 mg/kg/day, ip) was started concurrently with rotenone administration and continued for 10 days. The neuroprotective effect of metformin on rotenone-induced dopaminergic toxicity was assessed by tyrosine hydroxylase (TH), cleaved caspase-3 and α-synuclein immunohistochemistry in substantia nigra (SN). SN tissues were extracted for biochemical analysis. Malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) protein levels were measured by spectrophotometric assay. RESULTS We found that metformin treatment attenuated the rotenone-induced loss of TH+ neurons in the SN. Additionally, metformin significantly decreased the rotenone-induced increase of cleaved caspase-3 and α-synuclein accumulation in the SN; however, there was no difference in motor behaviours between the experimental groups. Meanwhile, the levels of MDA and 4-HNE in SN were significantly reduced in the rotenone-metformin group compared to the rotenone group. CONCLUSIONS Results showed that metformin treatment attenuated dopaminergic neuron loss in SN induced by rotenone by decreasing lipid peroxidation.
Collapse
Affiliation(s)
- Gul Ozbey
- Department of Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey.
| | - Dilara Nemutlu-Samur
- Department of Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| | - Hande Parlak
- Department of Physiology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| | - Sendegul Yildirim
- Department of Histology and Embryology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| | - Mutay Aslan
- Department of Biochemistry, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| | - Gamze Tanriover
- Department of Histology and Embryology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| | - Aysel Agar
- Department of Physiology, Akdeniz University Medical Faculty, Dumlupinar Street, 07070, Antalya, Turkey
| |
Collapse
|
35
|
FGF21 Protects Dopaminergic Neurons in Parkinson's Disease Models Via Repression of Neuroinflammation. Neurotox Res 2020; 37:616-627. [PMID: 31997152 DOI: 10.1007/s12640-019-00151-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor21 (FGF21), a member of the FGF family, plays multiple biological functions including anti-inflammation, anti-oxidative stress, and anti-apoptosis. It has been shown that FGF21 protects cells from acute injury in several kinds of cells such as islet β-cells, endothelial cells, cardiomyocytes, and dopaminergic neurons. However, whether FGF21 plays neuroprotective roles against Parkinsonian syndrome in vivo has not been elucidated. Our results showed that FGF21 markedly improves cell survival in MPP+-treated SH-SY5Y cells and primary dopaminergic neurons. Furthermore, we treated MPTP-induced Parkinson's disease (PD) model mice with the recombinant FGF21 via intranasal pathway. The results showed that FGF21 treatment significantly improves behavioral performances and prevents tyrosine hydroxylase (TH) loss in the substantia nigra par compacta (SNpc) and striatum. Mechanistically, FGF21 stimulates the AMPK/PGC-1α axis to promote mitochondrial functions. Moreover, FGF21 attenuates microglia and astrocyte activation induced by MPTP, leading to a low level of inflammation in the brain. Our data indicate that FGF21 prevents dopaminergic neuron loss and shows beneficial effects against MPTP-induced PD syndrome in mice, indicating it might be a potent candidate for developing novel drugs to deal with PD.
Collapse
|
36
|
Park JH, Burgess JD, Faroqi AH, DeMeo NN, Fiesel FC, Springer W, Delenclos M, McLean PJ. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol Neurodegener 2020; 15:5. [PMID: 31931835 PMCID: PMC6956494 DOI: 10.1186/s13024-019-0349-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Misfolding and aggregation of the presynaptic protein alpha-synuclein (αsyn) is a hallmark of Parkinson's disease (PD) and related synucleinopathies. Although predominantly localized in the cytosol, a body of evidence has shown that αsyn localizes to mitochondria and contributes to the disruption of key mitochondrial processes. Mitochondrial dysfunction is central to the progression of PD and mutations in mitochondrial-associated proteins are found in familial cases of PD. The sirtuins are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes that play a broad role in cellular metabolism and aging. Interestingly, mitochondrial sirtuin 3 (SIRT3) plays a major role in maintaining mitochondrial function and preventing oxidative stress, and is downregulated in aging and age-associated diseases such as neurodegenerative disorders. Herein, we hypothesize that αsyn is associated with decreased SIRT3 levels contributing to impaired mitochondrial dynamics and biogenesis in PD. METHODS The level of mitochondrial SIRT3 was assessed in cells expressing oligomeric αsyn within the cytosolic and mitochondrial-enriched fractions. Mitochondrial integrity, respiration, and health were examined using several markers of mitochondrial dynamics and stress response and by measuring the rate of oxygen consumption (OCR). Our findings were validated in a rodent model of PD as well as in human post-mortem Lewy body disease (LBD) brain tissue. RESULTS Here, we demonstrate that αsyn associates with mitochondria and induces a decrease in mitochondrial SIRT3 levels and mitochondrial biogenesis. We show that SIRT3 downregulation is accompanied by decreased phosphorylation of AMPK and cAMP-response element binding protein (CREB), as well as increased phosphorylation of dynamin-related protein 1 (DRP1), indicative of impaired mitochondrial dynamics. OCR was significantly decreased suggesting a mitochondria respiratory deficit. Interestingly treatment with AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) restores SIRT3 expression, improves mitochondrial function, and decreases αsyn oligomer formation in a SIRT3-dependent manner. CONCLUSIONS Together, our findings suggest that pharmacologically increasing SIRT3 levels can counteract αsyn-induced mitochondrial dysfunction by reducing αsyn oligomers and normalizing mitochondrial bioenergetics. These data support a protective role for SIRT3 in PD-associated pathways and contribute significant mechanistic insight into the interplay of SIRT3 and αsyn.
Collapse
Affiliation(s)
- Jae-Hyeon Park
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jeremy D. Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Ayman H. Faroqi
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Natasha N. DeMeo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
37
|
Djajadikerta A, Keshri S, Pavel M, Prestil R, Ryan L, Rubinsztein DC. Autophagy Induction as a Therapeutic Strategy for Neurodegenerative Diseases. J Mol Biol 2019; 432:2799-2821. [PMID: 31887286 DOI: 10.1016/j.jmb.2019.12.035] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/28/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Autophagy is a major, conserved cellular pathway by which cells deliver cytoplasmic contents to lysosomes for degradation. Genetic studies have revealed extensive links between autophagy and neurodegenerative disease, and disruptions to autophagy may contribute to pathology in some cases. Autophagy degrades many of the toxic, aggregate-prone proteins responsible for such diseases, including mutant huntingtin (mHTT), alpha-synuclein (α-syn), tau, and others, raising the possibility that autophagy upregulation may help to reduce levels of toxic protein species, and thereby alleviate disease. This review examines autophagy induction as a potential therapy in several neurodegenerative diseases-Alzheimer's disease, Parkinson's disease, polyglutamine diseases, and amyotrophic lateral sclerosis (ALS). Evidence in cells and in vivo demonstrates promising results in many disease models, in which autophagy upregulation is able to reduce the levels of toxic proteins, ameliorate signs of disease, and delay disease progression. However, the effective therapeutic use of autophagy induction requires detailed knowledge of how the disease affects the autophagy-lysosome pathway, as activating autophagy when the pathway cannot go to completion (e.g., when lysosomal degradation is impaired) may instead exacerbate disease in some cases. Investigating the interactions between autophagy and disease pathogenesis is thus a critical area for further research.
Collapse
Affiliation(s)
- Alvin Djajadikerta
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Swati Keshri
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Mariana Pavel
- Department of Immunology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Ryan Prestil
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Laura Ryan
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
38
|
Analysis of the Relationship between Type II Diabetes Mellitus and Parkinson's Disease: A Systematic Review. PARKINSONS DISEASE 2019; 2019:4951379. [PMID: 31871617 PMCID: PMC6906831 DOI: 10.1155/2019/4951379] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
In the early sixties, a discussion started regarding the association between Parkinson's disease (PD) and type II diabetes mellitus (T2DM). Today, this potential relationship is still a matter of debate. This review aims to analyze both diseases concerning causal relationships and treatments. A total of 104 articles were found, and studies on animal and “in vitro” models showed that T2DM causes neurological alterations that may be associated with PD, such as deregulation of the dopaminergic system, a decrease in the expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), an increase in the expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes 15 (PED/PEA-15), and neuroinflammation, as well as acceleration of the formation of alpha-synuclein amyloid fibrils. In addition, clinical studies described that Parkinson's symptoms were notably worse after the onset of T2DM, and seven deregulated genes were identified in the DNA of T2DM and PD patients. Regarding treatment, the action of antidiabetic drugs, especially incretin mimetic agents, seems to confer certain degree of neuroprotection to PD patients. In conclusion, the available evidence on the interaction between T2DM and PD justifies more robust clinical trials exploring this interaction especially the clinical management of patients with both conditions.
Collapse
|
39
|
AMP-activated protein kinase inhibits MPP+-induced oxidative stress and apoptotic death of SH-SY5Y cells through sequential stimulation of Akt and autophagy. Eur J Pharmacol 2019; 863:172677. [DOI: 10.1016/j.ejphar.2019.172677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023]
|
40
|
Zhao X, Zeng Z, Gaur U, Fang J, Peng T, Li S, Zheng W. Metformin protects PC12 cells and hippocampal neurons from H 2 O 2 -induced oxidative damage through activation of AMPK pathway. J Cell Physiol 2019; 234:16619-16629. [PMID: 30784077 DOI: 10.1002/jcp.28337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 01/24/2023]
Abstract
Metformin, a first line anti type 2 diabetes drug, has recently been shown to extend lifespan in various species, and therefore, became the first antiaging drug in clinical trial. Oxidative stress due to excess reactive oxygen species (ROS) is considered to be an important factor in aging and related disease, such as Alzheimer's disease (AD). However, the antioxidative effects of metformin and its underlying mechanisms in neuronal cells is not known. In the present study, we showed that metformin, in clinically relevant concentrations, protected neuronal PC12 cells from H2 O2 -induced cell death. Metformin significantly ameliorated cell death due to H2 O2 insult by restoring abnormal changes in nuclear morphology, intracellular ROS, lactate dehydrogenase, and mitochondrial membrane potential induced by H2 O2 . Hoechst staining assay and flow cytometry analysis revealed that metformin significantly reduced the apoptosis in PC12 cells exposed to H2 O2 . Western blot analysis further demonstrated that metformin stimulated the phosphorylation and activation of AMP-activated protein kinase (AMPK) in PC12 cells, while application of AMPK inhibitor compound C, or knockdown of the expression of AMPK by specific small interfering RNA or short hairpin RNA blocked the protective effect of metformin. Similar results were obtained in primary cultured hippocampal neurons. Taken together, these results indicated that metformin is able to protect neuronal cells from oxidative injury, at least in part, via the activation of AMPK. As metformin is comparatively cheaper with much less side effects in clinic, our findings support its potential to be a drug for prevention and treatment of aging and aging-related diseases.
Collapse
Affiliation(s)
- Xia Zhao
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhiwen Zeng
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Uma Gaur
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiankang Fang
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Tangming Peng
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, China
| | - Shuai Li
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wenhua Zheng
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
41
|
Abstract
Lafora disease is a severe, autosomal recessive, progressive myoclonus epilepsy. The disease usually manifests in previously healthy adolescents, and death commonly occurs within 10 years of symptom onset. Lafora disease is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The absence of either protein results in poorly branched, hyperphosphorylated glycogen, which precipitates, aggregates and accumulates into Lafora bodies. Evidence from Lafora disease genetic mouse models indicates that these intracellular inclusions are a principal driver of neurodegeneration and neurological disease. The integration of current knowledge on the function of laforin-malin as an interacting complex suggests that laforin recruits malin to parts of glycogen molecules where overly long glucose chains are forming, so as to counteract further chain extension. In the absence of either laforin or malin function, long glucose chains in specific glycogen molecules extrude water, form double helices and drive precipitation of those molecules, which over time accumulate into Lafora bodies. In this article, we review the genetic, clinical, pathological and molecular aspects of Lafora disease. We also discuss traditional antiseizure treatments for this condition, as well as exciting therapeutic advances based on the downregulation of brain glycogen synthesis and disease gene replacement.
Collapse
|
42
|
Gao J, Perera G, Bhadbhade M, Halliday GM, Dzamko N. Autophagy activation promotes clearance of α-synuclein inclusions in fibril-seeded human neural cells. J Biol Chem 2019; 294:14241-14256. [PMID: 31375560 DOI: 10.1074/jbc.ra119.008733] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/28/2019] [Indexed: 01/12/2023] Open
Abstract
There is much interest in delineating the mechanisms by which the α-synuclein protein accumulates in brains of individuals with Parkinson's disease (PD). Preclinical studies with rodent and primate models have indicated that fibrillar forms of α-synuclein can initiate the propagation of endogenous α-synuclein pathology. However, the underlying mechanisms by which α-synuclein fibrils seed pathology remain unclear. To investigate this further, we have used exogenous fibrillar α-synuclein to seed endogenous α-synuclein pathology in human neuronal cell lines, including primary human neurons differentiated from induced pluripotent stem cells. Fluorescence microscopy and immunoblot analyses were used to monitor levels of α-synuclein and key autophagy/lysosomal proteins over time in the exogenous α-synuclein fibril-treated neurons. We observed that temporal changes in the accumulation of cytoplasmic α-synuclein inclusions were associated with changes in the key autophagy/lysosomal markers. Of note, chloroquine-mediated blockade of autophagy increased accumulation of α-synuclein inclusions, and rapamycin-induced activation of autophagy, or use of 5'-AMP-activated protein kinase (AMPK) agonists, promoted the clearance of fibril-mediated α-synuclein pathology. These results suggest a key role for autophagy in clearing fibrillar α-synuclein pathologies in human neuronal cells. We propose that our findings may help inform the development of human neural cell models for screening of potential therapeutic compounds for PD or for providing insight into the mechanisms of α-synuclein propagation. Our results further add to existing evidence that AMPK activation may be a therapeutic option for managing PD.
Collapse
Affiliation(s)
- Jianqun Gao
- ForeFront Dementia and Movement Disorders Laboratory, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2050, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2033, Australia.,Neuroscience Research Australia, Randwick, New South Wales 2031, Australia
| | - Gayathri Perera
- ForeFront Dementia and Movement Disorders Laboratory, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Megha Bhadbhade
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Glenda M Halliday
- ForeFront Dementia and Movement Disorders Laboratory, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2050, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2033, Australia.,Neuroscience Research Australia, Randwick, New South Wales 2031, Australia
| | - Nicolas Dzamko
- ForeFront Dementia and Movement Disorders Laboratory, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2050, Australia .,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2033, Australia.,Neuroscience Research Australia, Randwick, New South Wales 2031, Australia
| |
Collapse
|
43
|
Bisulli F, Muccioli L, d'Orsi G, Canafoglia L, Freri E, Licchetta L, Mostacci B, Riguzzi P, Pondrelli F, Avolio C, Martino T, Michelucci R, Tinuper P. Treatment with metformin in twelve patients with Lafora disease. Orphanet J Rare Dis 2019; 14:149. [PMID: 31227012 PMCID: PMC6588886 DOI: 10.1186/s13023-019-1132-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023] Open
Abstract
Background Lafora disease (LD) is a rare, lethal, progressive myoclonus epilepsy for which no targeted therapy is currently available. Studies on a mouse model of LD showed a good response to metformin, a drug with a well known neuroprotective effect. For this reason, in 2016, the European Medicines Agency granted orphan designation to metformin for the treatment of LD. However, no clinical data is available thus far. Methods We retrospectively collected data on LD patients treated with metformin referred to three Italian epilepsy centres. Results Twelve patients with genetically confirmed LD (6 EPM2A, 6 NHLRC1) at middle/late stages of disease were treated with add-on metformin for a mean period of 18 months (range: 6–36). Metformin was titrated to a mean maintenance dose of 1167 mg/day (range: 500–2000 mg). In four patients dosing was limited by gastrointestinal side-effects. No serious adverse events occurred. Three patients had a clinical response, which was temporary in two, characterized by a reduction of seizure frequency and global clinical improvement. Conclusions Metformin was overall safe in our small cohort of LD patients. Even though the clinical outcome was poor, this may be related to the advanced stage of disease in our cases and we cannot exclude a role of metformin in slowing down LD progression. Therefore, on the grounds of the preclinical data, we believe that treatment with metformin may be attempted as early as possible in the course of LD.
Collapse
Affiliation(s)
- Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy. .,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Lorenzo Muccioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe d'Orsi
- Epilepsy Centre, Clinic of Nervous System Diseases, University of Foggia, Ospedali Riuniti, Foggia, Italy
| | - Laura Canafoglia
- Department of Neurophysiology and Diagnostic Epileptology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Pediatric Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Patrizia Riguzzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Federica Pondrelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo Avolio
- Epilepsy Centre, Clinic of Nervous System Diseases, University of Foggia, Ospedali Riuniti, Foggia, Italy
| | - Tommaso Martino
- Epilepsy Centre, Clinic of Nervous System Diseases, University of Foggia, Ospedali Riuniti, Foggia, Italy
| | - Roberto Michelucci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Paolo Tinuper
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Marvian AT, Koss DJ, Aliakbari F, Morshedi D, Outeiro TF. In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J Neurochem 2019; 150:535-565. [PMID: 31004503 DOI: 10.1111/jnc.14707] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Amir Tayaranian Marvian
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
45
|
Lehtonen Š, Sonninen TM, Wojciechowski S, Goldsteins G, Koistinaho J. Dysfunction of Cellular Proteostasis in Parkinson's Disease. Front Neurosci 2019; 13:457. [PMID: 31133790 PMCID: PMC6524622 DOI: 10.3389/fnins.2019.00457] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Despite decades of research, current therapeutic interventions for Parkinson’s disease (PD) are insufficient as they fail to modify disease progression by ameliorating the underlying pathology. Cellular proteostasis (protein homeostasis) is an essential factor in maintaining a persistent environment for neuronal activity. Proteostasis is ensured by mechanisms including regulation of protein translation, chaperone-assisted protein folding and protein degradation pathways. It is generally accepted that deficits in proteostasis are linked to various neurodegenerative diseases including PD. While the proteasome fails to degrade large protein aggregates, particularly alpha-synuclein (α-SYN) in PD, drug-induced activation of autophagy can efficiently remove aggregates and prevent degeneration of dopaminergic (DA) neurons. Therefore, maintenance of these mechanisms is essential to preserve all cellular functions relying on a correctly folded proteome. The correlations between endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway are well-established. However, while mild insults increase the activity of chaperones, prolonged cell stress, or insufficient adaptive response causes cell death. Modulating the activity of molecular chaperones, such as protein disulfide isomerase which assists refolding and contributes to the removal of unfolded proteins, and their associated pathways may offer a new approach for disease-modifying treatment. Here, we summarize some of the key concepts and emerging ideas on the relation of protein aggregation and imbalanced proteostasis with an emphasis on PD as our area of main expertise. Furthermore, we discuss recent insights into the strategies for reducing the toxic effects of protein unfolding in PD by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tuuli-Maria Sonninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Abstract
Mild environmental stress might have beneficial effects in aging by activating maintenance and repair processes in cells and organs. These beneficial stress effects fit to the concept of hormesis. Prominent stressors acting in a hormetic way are physical exercises, fasting, cold and heat. This review will introduce some toxins, which have been found to induce hormetic responses in animal models of aging research. To highlight the molecular signature of these hormetic effects we will depict signaling pathways affected by low doses of toxins on cellular and organismic level. As prominent examples for signaling pathways involved in both aging processes as well as toxin responses, PI3K/Akt/mTOR- and AMPK-signal transduction will be described in more detail. Due to the striking overlap of signaling pathways mediating toxin induced responses and aging processes we propose considering the ability of low doses of toxins to slow down the rate of aging.
Collapse
|
47
|
Glycine Protects against Hypoxic-Ischemic Brain Injury by Regulating Mitochondria-Mediated Autophagy via the AMPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4248529. [PMID: 30881590 PMCID: PMC6381570 DOI: 10.1155/2019/4248529] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/10/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is detrimental to newborns and is associated with high mortality and poor prognosis. Thus, the primary aim of the present study was to determine whether glycine could (1) attenuate HIE injury in rats and hypoxic stress in PC12 cells and (2) downregulate mitochondria-mediated autophagy dependent on the adenosine monophosphate- (AMP-) activated protein kinase (AMPK) pathway. Experiments conducted using an in vivo HIE animal model and in vitro hypoxic stress to PC12 cells revealed that intense autophagy associated with mitochondrial function occurred during in vivo HIE injury and in vitro hypoxic stress. However, glycine treatment effectively attenuated mitochondria-mediated autophagy. Additionally, after identifying alterations in proteins within the AMPK pathway in rats and PC12 cells following glycine treatment, cyclosporin A (CsA) and 5-aminoimidazole-4-carboxamide-1-b-4-ribofuranoside (AICAR) were administered in these models and indicated that glycine protected against HIE and CoCl2 injury by downregulating mitochondria-mediated autophagy that was dependent on the AMPK pathway. Overall, glycine attenuated hypoxic-ischemic injury in neurons via reductions in mitochondria-mediated autophagy through the AMPK pathway both in vitro and in vivo.
Collapse
|
48
|
Dombi E, Mortiboys H, Poulton J. Modulating Mitophagy in Mitochondrial Disease. Curr Med Chem 2019; 25:5597-5612. [DOI: 10.2174/0929867324666170616101741] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/28/2023]
Abstract
Mitochondrial diseases may result from mutations in the maternally-inherited mitochondrial
DNA (mtDNA) or from mutations in nuclear genes encoding mitochondrial proteins.
Their bi-genomic nature makes mitochondrial diseases a very heterogeneous group of
disorders that can present at any age and can affect any type of tissue.
The autophagic-lysosomal degradation pathway plays an important role in clearing dysfunctional
and redundant mitochondria through a specific quality control mechanism termed mitophagy.
Mitochondria could be targeted for autophagic degradation for a variety of reasons including
basal turnover for recycling, starvation induced degradation, and degradation due to
damage. While the core autophagic machinery is highly conserved and common to most
pathways, the signaling pathways leading to the selective degradation of damaged mitochondria
are still not completely understood. Type 1 mitophagy due to nutrient starvation is dependent
on PI3K (phosphoinositide 3-kinase) for autophagosome formation but independent
of mitophagy proteins, PINK1 (PTEN-induced putative kinase 1) and Parkin. Whereas type 2
mitophagy that occurs due to damage is dependent on PINK1 and Parkin but does not require
PI3K.
Autophagy and mitophagy play an important role in human disease and hence could serve as
therapeutic targets for the treatment of mitochondrial as well as neurodegenerative disorders.
Therefore, we reviewed drugs that are known modulators of autophagy (AICAR and metformin)
and may affect this by activating the AMP-activated protein kinase signaling pathways.
Furthermore, we reviewed the data available on supplements, such as Coenzyme Q and
the quinone idebenone, that we assert rescue increased mitophagy in mitochondrial disease by
benefiting mitochondrial function.
Collapse
Affiliation(s)
- Eszter Dombi
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, Neuroscience Department, University of Sheffield, United Kingdom
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Vaikath NN, Erskine D, Morris CM, Majbour NK, Vekrellis K, Li JY, El-Agnaf OMA. Heterogeneity in α-synuclein subtypes and their expression in cortical brain tissue lysates from Lewy body diseases and Alzheimer's disease. Neuropathol Appl Neurobiol 2018; 45:597-608. [PMID: 30422353 DOI: 10.1111/nan.12531] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Abstract
AIMS Lewy body diseases are neuropathologically characterized by the abnormal accumulation of α-synuclein (α-syn) protein within vulnerable neurons. Although studies have evaluated α-syn in post mortem brain tissue, previous findings have been limited by typically employing pan-α-syn antibodies that may not recognize disease-relevant forms of protein. We investigated the presence of α-syn species present in post mortem brain tissues from Lewy body disease and Alzheimer's disease. METHODS Soluble and insoluble/aggregated α-syn from frontal cortex of post mortem brain tissues form Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease (AD) and aged control cases were sequentially extracted using buffers with increasing detergent concentrations. Enzyme-linked immunosorbent assay (ELISA) was used to quantify the levels of total-, oligomeric- and phosphorylated-Ser129-α-syn (t-, o- and pS129-α-syn). ELISA data were validated by western blot and compared to histological data from the same region of the contralateral hemisphere. RESULTS There was no difference in t-α-syn levels between groups in the aqueous-soluble, detergent-soluble or urea-soluble tissue fractions. However, aqueous-soluble non-phosphorylated o-α-syn was increased not only in PD and DLB but also in AD without neocortical Lewy bodies. In PD and AD, pS129-α-syn was increased in the detergent-soluble tissue fragment and, in AD, this was positively correlated with the burden of tau pathology. Increased levels of urea-soluble pS129-α-syn were demonstrated only in DLB tissue lysates but this did not correlate with Lewy body pathological burden. CONCLUSIONS Taken together, these findings suggest that DLB have elevated levels of insoluble pS129-α-syn, but that increased levels of aqueous-soluble o-α-syn and detergent-soluble pS129-α-syn are also observed in PD and AD, suggesting different changes to α-syn across the spectrum of neurodegenerative proteopathies.
Collapse
Affiliation(s)
- N N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.,Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - D Erskine
- Ageing Research Laboratories, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - C M Morris
- Newcastle Brain Tissue Resource, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - N K Majbour
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - K Vekrellis
- Department of Neuroscience, Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - J-Y Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - O M A El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
50
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|