1
|
Gonzalez-Ortiz F, Karikari TK, Taylor-Te Vruchte D, Shepherd D, Kirsebom BE, Fladby T, Platt F, Blennow K. Plasma phosphorylated-tau217 is increased in Niemann-Pick disease type C. Brain Commun 2024; 6:fcae375. [PMID: 39502943 PMCID: PMC11535543 DOI: 10.1093/braincomms/fcae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/15/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Niemann-Pick disease type C and Alzheimer's disease are distinct neurodegenerative disorders that share the presence of neurofibrillary tangle pathology. In this multicentre study, we measured plasma phosphorylated-tau217 in controls (n = 60), Niemann-Pick disease type C (n = 71) and Alzheimer's disease (n = 30 positive for amyloid and negative for tau in CSF [A+T-] and n = 30 positive for both [A+T+]). Annual Severity Increment Score and Lysotracker measurements were evaluated in the Niemann-Pick disease type C group to estimate the rate of progression and lysosomal enlargement, respectively. In the cross-sectional analysis, plasma phosphorylated-tau217 was increased in Niemann-Pick disease type C compared with controls (2.52 ± 1.93 versus 1.02 ± 0.34 pg/mL, respectively, P < 0.001) and inversely correlated with age at disease onset (R = -0.54, P < 0.001). In the longitudinal analysis, plasma phosphorylated-tau217 was associated with disease progression determined by Annual Severity Increment Score (R = 0.48, P < 0.001) and lysosomal enlargement (R = 0.26, P = 0.004). We found no differences between A+T- Alzheimer's disease and Niemann-Pick disease type C (2.67 ± 1.18 versus 2.52 ± 1. 93 pg/mL, P = 0.31); however, A+T+ Alzheimer's disease had significantly higher levels than Niemann-Pick disease type C (3.26 ± 1.36 versus 2.52 ± 1.93 pg/mL, P = 0.001). Our findings suggest that plasma p-tau217 can increase in brain disorders with isolated tau pathology. Plasma p-tau217 associations with disease progression and severity make it a potential marker in Niemann-Pick disease type C.
Collapse
Affiliation(s)
- Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43180, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | | | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, 9019, Norway
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, 9031, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, 1478, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, 0316, Norway
| | - Frances Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43180, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, 75013, France
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Papini N, Giussani P, Tringali C. Metformin Lysosomal Targeting: A Novel Aspect to Be Investigated for Metformin Repurposing in Neurodegenerative Diseases? Int J Mol Sci 2024; 25:8884. [PMID: 39201569 PMCID: PMC11354325 DOI: 10.3390/ijms25168884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Metformin is a widely employed drug in type 2 diabetes. In addition to warranting good short- and long-term glycemic control, metformin displays many intriguing properties as protection against cardiovascular and neurodegenerative diseases, anti-tumorigenic and longevity promotion. In addition to being a low-cost drug, metformin is generally well tolerated. However, despite the enthusiastic drive to aliment these novel studies, many contradictory results suggest the importance of better elucidating the complexity of metformin action in different tissues/cells to establish its possible employment in neurodegenerative diseases. This review summarises recent data identifying lysosomal-dependent processes and lysosomal targets, such as endosomal Na+/H+ exchangers, presenilin enhancer 2 (PEN2), the lysosomal pathway leading to AMP-activated protein kinase (AMPK) activation, and the transcription factor EB (TFEB), modulated by metformin. Lysosomal dysfunctions resulting in autophagic and lysosomal acidification and biogenesis impairment appear to be hallmarks of many inherited and acquired neurodegenerative diseases. Lysosomes are not yet seen as a sort of cellular dump but are crucial in determining key signalling paths and processes involved in the clearance of aggregated proteins. Thus, the possibility of pharmacologically modulating them deserves great interest. Despite the potentiality of metformin in this context, many additional important issues, such as dosing, should be addressed in the future.
Collapse
Affiliation(s)
| | | | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, 20054 Segrate, MI, Italy; (N.P.); (P.G.)
| |
Collapse
|
3
|
Javanshad R, Nguyen TTA, Azaria RD, Li W, Edmison D, Gong LW, Gowrishankar S, Lieberman AP, Schultz ML, Cologna SM. Endogenous Protein-Protein Interaction Network of the NPC Cholesterol Transporter 1 in the Cerebral Cortex. J Proteome Res 2024; 23:3174-3187. [PMID: 38686625 DOI: 10.1021/acs.jproteome.3c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
NPC intracellular cholesterol transporter 1 (NPC1) is a multipass, transmembrane glycoprotein mostly recognized for its key role in facilitating cholesterol efflux. Mutations in the NPC1 gene result in Niemann-Pick disease, type C (NPC), a fatal, lysosomal storage disease. Due to the progressively expanding implications of NPC1-related disorders, we investigated endogenous NPC1 protein-protein interactions in the mouse cortex and human-derived iPSCs neuronal models of the disease through coimmunoprecipitation-coupled with LC-MS based proteomics. The current study investigated protein-protein interactions specific to the wild-type and the most prevalent NPC1 mutation (NPC1I1061T) while filtering out any protein interactor identified in the Npc1-/- mouse model. Additionally, the results were matched across the two species to map the parallel interactome of wild-type and mutant NPC1I1061T. Most of the identified wild-type NPC1 interactors were related to cytoskeleton organization, synaptic vesicle activity, and translation. We found many putative NPC1 interactors not previously reported, including two SCAR/WAVE complex proteins that regulate ARP 2/3 complex actin nucleation and multiple membrane proteins important for neuronal activity at synapse. Moreover, we identified proteins important in trafficking specific to wild-type and mutant NPC1I1061T. Together, the findings are essential for a comprehensive understanding of NPC1 biological functions in addition to its classical role in sterol efflux.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Ruth D Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Daisy Edmison
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Mark L Schultz
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
4
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
5
|
Begley D, Gabathuler R, Pastores G, Garcia-Cazorla A, Ardigò D, Scarpa M, Tomanin R, Tosi G. Challenges and opportunities in neurometabolic disease treatment with enzyme delivery. Expert Opin Drug Deliv 2024; 21:817-828. [PMID: 38963225 DOI: 10.1080/17425247.2024.2375388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Neurometabolic disorders remain challenging to treat, largely due to the limited availability of drugs that can cross the blood-brain barrier (BBB) and effectively target brain impairment. Key reasons for inadequate treatment include a lack of coordinated knowledge, few studies on BBB status in these diseases, and poorly designed therapies. AREAS COVERED This paper provides an overview of current research on neurometabolic disorders and therapeutic options, focusing on the treatment of neurological involvement. It highlights the limitations of existing therapies, describes innovative protocols recently developed, and explores new opportunities for therapy design and testing, some of which are already under investigation. The goal is to guide researchers toward innovative and potentially more effective treatments. EXPERT OPINION Advancing research on neurometabolic diseases is crucial for designing effective treatment strategies. The field suffers from a lack of collaboration, and a strong collective effort is needed to enhance synergy, increase knowledge, and develop a new therapeutic paradigm for neurometabolic disorders.
Collapse
Affiliation(s)
- David Begley
- Blood-Brain Barrier Group, King's College London, Strand, London, UK
| | | | | | - Angeles Garcia-Cazorla
- Neurometabolic Unit. Department of Neurology, Hospital Sant Joan de Déu, CIBERER and MetabERN, Barcelona, Spain
| | | | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, Udine University Hospital, Udine, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Dept. of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Giovanni Tosi
- Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Fang XX, Wei P, Zhao K, Sheng ZC, Song BL, Yin L, Luo J. Fatty acid-binding proteins 3, 7, and 8 bind cholesterol and facilitate its egress from lysosomes. J Cell Biol 2024; 223:e202211062. [PMID: 38429999 PMCID: PMC10909654 DOI: 10.1083/jcb.202211062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/22/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024] Open
Abstract
Cholesterol from low-density lipoprotein (LDL) can be transported to many organelle membranes by non-vesicular mechanisms involving sterol transfer proteins (STPs). Fatty acid-binding protein (FABP) 7 was identified in our previous study searching for new regulators of intracellular cholesterol trafficking. Whether FABP7 is a bona fide STP remains unknown. Here, we found that FABP7 deficiency resulted in the accumulation of LDL-derived cholesterol in lysosomes and reduced cholesterol levels on the plasma membrane. A crystal structure of human FABP7 protein in complex with cholesterol was resolved at 2.7 Å resolution. In vitro, FABP7 efficiently transported the cholesterol analog dehydroergosterol between the liposomes. Further, the silencing of FABP3 and 8, which belong to the same family as FABP7, caused robust cholesterol accumulation in lysosomes. These two FABP proteins could transport dehydroergosterol in vitro as well. Collectively, our results suggest that FABP3, 7, and 8 are a new class of STPs mediating cholesterol egress from lysosomes.
Collapse
Affiliation(s)
- Xian-Xiu Fang
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Pengcheng Wei
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kai Zhao
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zhao-Chen Sheng
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lei Yin
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Luo
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Vicente M, Addo-Osafo K, Vossel K. Latest advances in mechanisms of epileptic activity in Alzheimer's disease and dementia with Lewy Bodies. Front Neurol 2024; 15:1277613. [PMID: 38390593 PMCID: PMC10882721 DOI: 10.3389/fneur.2024.1277613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) stand as the prevailing sources of neurodegenerative dementia, impacting over 55 million individuals across the globe. Patients with AD and DLB exhibit a higher prevalence of epileptic activity compared to those with other forms of dementia. Seizures can accompany AD and DLB in early stages, and the associated epileptic activity can contribute to cognitive symptoms and exacerbate cognitive decline. Aberrant neuronal activity in AD and DLB may be caused by several mechanisms that are not yet understood. Hyperexcitability could be a biomarker for early detection of AD or DLB before the onset of dementia. In this review, we compare and contrast mechanisms of network hyperexcitability in AD and DLB. We examine the contributions of genetic risk factors, Ca2+ dysregulation, glutamate, AMPA and NMDA receptors, mTOR, pathological amyloid beta, tau and α-synuclein, altered microglial and astrocytic activity, and impaired inhibitory interneuron function. By gaining a deeper understanding of the molecular mechanisms that cause neuronal hyperexcitability, we might uncover therapeutic approaches to effectively ease symptoms and slow down the advancement of AD and DLB.
Collapse
Affiliation(s)
- Mariane Vicente
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Kwaku Addo-Osafo
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Arora R, Babbar R, Dabra A, Chopra B, Deswal G, Grewal AS. Marine-derived Compounds: A Powerful Platform for the Treatment of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:166-181. [PMID: 38305396 DOI: 10.2174/0118715249269050231129103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a debilitating form of dementia that primarily affects cholinergic neurons in the brain, significantly reducing an individual's capacity for learning and creative skills and ultimately resulting in an inability to carry out even basic daily tasks. As the elderly population is exponentially increasing, the disease has become a significant concern for society. Therefore, neuroprotective substances have garnered considerable interest in addressing this universal issue. Studies have shown that oxidative damage to neurons contributes to the pathophysiological processes underlying AD progression. In AD, tau phosphorylation and glutamate excitotoxicity may play essential roles, but no permanent cure for AD is available. The existing therapies only manage the early symptoms of AD and often come with numerous side effects and toxicities. To address these challenges, researchers have turned to nature and explored various sources such as plants, animals, and marine organisms. Many historic holy books from different cultures emphasize that adding marine compounds to the regular diet enhances brain function and mitigates its decline. Consequently, researchers have devoted significant time to identifying potentially active neuroprotective substances from marine sources. Marine-derived compounds are gaining recognition due to their abundant supply of diverse chemical compounds with biological and pharmacological potential and unique mechanisms of action. Several studies have reported that plants exhibit multitarget potential in treating AD. In light of this, the current study focuses on marine-derived components with excellent potential for treating this neurodegenerative disease.
Collapse
Affiliation(s)
- Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Abhishek Dabra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Geeta Deswal
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
9
|
Del Tredici K, Schön M, Feldengut S, Ghebremedhin E, Kaufman SK, Wiesner D, Roselli F, Mayer B, Amunts K, Braak H. Early CA2 Tau Inclusions Do Not Distinguish an Age-Related Tauopathy from Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:1333-1353. [PMID: 39302368 DOI: 10.3233/jad-240483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Neuropathologic studies of brains from autopsy series show tau inclusions (pretangles, neuropils threads, neurofibrillary tangles) are detectable more than a decade before amyloid-β (Aβ) deposition in Alzheimer's disease (AD) and develop in a characteristic manner that forms the basis for AD staging. An alternative position views pathological tau without Aβ deposition as a 'primary age-related tauopathy' (PART) rather than prodromal AD. Recently, an early focus of tau inclusions in the Ammon's horn second sector (CA2) with relative sparing of CA1 that occurs before tau inclusions develop in the entorhinal cortex (EC) was proposed as an additional feature of PART. Objective To test the 'definite PART' hypothesis. Methods We used AT8-immunohistochemistry in 100μm sections to examine the EC, transentorhinal cortex (TRE), and Ammon's horn in 325 brains with tau inclusions lacking Aβ deposits (average age at death 66.7 years for females, 66.4 years for males). Results 100% of cases displayed tau inclusions in the TRE. In 89% of cases, the CA1 tau rating was greater than or equal to that in CA2. In 25%, CA2 was devoid of tau inclusions. Only 4% displayed a higher tau score in CA2 than in the TRE, EC, and CA1. The perforant path also displayed early tau changes. APOE genotyping was available for 199/325 individuals. Of these, 44% had an ɛ4 allele that placed them at greater risk for developing later NFT stages and, therefore, clinical AD. Conclusions Our new findings call into question the PART hypothesis and are consistent with the idea that our cases represent prodromal AD.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Estifanos Ghebremedhin
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah K Kaufman
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiko Braak
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
10
|
Bruno F, Laganà V, Di Lorenzo R, Bruni AC, Maletta R. Calabria as a Genetic Isolate: A Model for the Study of Neurodegenerative Diseases. Biomedicines 2022; 10:biomedicines10092288. [PMID: 36140389 PMCID: PMC9496333 DOI: 10.3390/biomedicines10092288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Although originally multi-ethnic in its structure, nowadays the Calabria region of southern Italy represents an area with low genetic heterogeneity and a high level of consanguinity that allows rare mutations to be maintained due to the founder effect. A complex research methodology—ranging from clinical activity to the genealogical reconstruction of families/populations across the centuries, the creation of databases, and molecular/genetic research—was modelled on the characteristics of the Calabrian population for more than three decades. This methodology allowed the identification of several novel genetic mutations or variants associated with neurodegenerative diseases. In addition, a higher prevalence of several hereditary neurodegenerative diseases has been reported in this population, such as Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, Niemann–Pick type C disease, spinocerebellar ataxia, Creutzfeldt–Jakob disease, and Gerstmann–Straussler–Scheinker disease. Here, we summarize and discuss the results of research data supporting the view that Calabria could be considered as a genetic isolate and could represent a model, a sort of outdoor laboratory—similar to very few places in the world—useful for the advancement of knowledge on neurodegenerative diseases.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Valentina Laganà
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | | | - Amalia C. Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| |
Collapse
|
11
|
Hwang K, Vaknalli RN, Addo-Osafo K, Vicente M, Vossel K. Tauopathy and Epilepsy Comorbidities and Underlying Mechanisms. Front Aging Neurosci 2022; 14:903973. [PMID: 35923547 PMCID: PMC9340804 DOI: 10.3389/fnagi.2022.903973] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Tau is a microtubule-associated protein known to bind and promote assembly of microtubules in neurons under physiological conditions. However, under pathological conditions, aggregation of hyperphosphorylated tau causes neuronal toxicity, neurodegeneration, and resulting tauopathies like Alzheimer's disease (AD). Clinically, patients with tauopathies present with either dementia, movement disorders, or a combination of both. The deposition of hyperphosphorylated tau in the brain is also associated with epilepsy and network hyperexcitability in a variety of neurological diseases. Furthermore, pharmacological and genetic targeting of tau-based mechanisms can have anti-seizure effects. Suppressing tau phosphorylation decreases seizure activity in acquired epilepsy models while reducing or ablating tau attenuates network hyperexcitability in both Alzheimer's and epilepsy models. However, it remains unclear whether tauopathy and epilepsy comorbidities are mediated by convergent mechanisms occurring upstream of epileptogenesis and tau aggregation, by feedforward mechanisms between the two, or simply by coincident processes. In this review, we investigate the relationship between tauopathies and seizure disorders, including temporal lobe epilepsy (TLE), post-traumatic epilepsy (PTE), autism spectrum disorder (ASD), Dravet syndrome, Nodding syndrome, Niemann-Pick type C disease (NPC), Lafora disease, focal cortical dysplasia, and tuberous sclerosis complex. We also explore potential mechanisms implicating the role of tau kinases and phosphatases as well as the mammalian target of rapamycin (mTOR) in the promotion of co-pathology. Understanding the role of these co-pathologies could lead to new insights and therapies targeting both epileptogenic mechanisms and cognitive decline.
Collapse
|
12
|
Xiao X, Liao X, Zhou Y, Weng L, Guo L, Zhou L, Wang X, Liu X, Liu H, Bi X, Xu T, Zhu Y, Yang Q, Zhang S, Hao X, Liu Y, Zhang W, Li J, Shen L, Jiao B. Variants in the Niemann-Pick type C genes are not associated with Alzheimer's disease: A large case-control study in the Chinese Population. Neurobiol Aging 2022; 116:49-54. [DOI: 10.1016/j.neurobiolaging.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
13
|
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. The key roles of organelles and ferroptosis in Alzheimer's disease. J Neurosci Res 2022; 100:1257-1280. [PMID: 35293012 DOI: 10.1002/jnr.25033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, is a striking global health problem. Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation products and the accumulation of lethal reactive oxygen species. Strict regulation of iron metabolism is essential to ensure neuronal homeostasis. Excess and deficiency of iron are both associated with neurodegeneration. Studies have shown that oxidative stress caused by cerebral iron metabolism disorders in the body is involved in the process of AD, ferroptosis may play an important role in the pathogenesis of AD, and regulating ferroptosis is expected to be a new direction for the treatment of AD. Various organelles are closely related to ferroptosis: mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosome are involved in the regulation of ferroptosis from the aspects of iron metabolism and redox imbalance. In this review, the relationship between AD and the dysfunction of organelles (including mitochondria, endoplasmic reticulum, lysosome, and Golgi apparatus) and the role of organelles in ferroptosis of AD were reviewed to provide insights for understanding the relationship between organelles and ferroptosis in AD and the treatment of AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Dan-Dan Wen
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
14
|
Bai X, Mai M, Yao K, Zhang M, Huang Y, Zhang W, Guo X, Xu Y, Zhang Y, Qurban A, Duan L, Bu J, Zhang J, Wu J, Zhao Y, Yuan X, Zu H. The role of DHCR24 in the pathogenesis of AD: re-cognition of the relationship between cholesterol and AD pathogenesis. Acta Neuropathol Commun 2022; 10:35. [PMID: 35296367 PMCID: PMC8925223 DOI: 10.1186/s40478-022-01338-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies show that 3β-hydroxysterol-Δ24 reductase (DHCR24) has a remarked decline in the brain of AD patients. In brain cholesterol synthetic metabolism, DHCR24 is known as the heavily key synthetase in cholesterol synthesis. Moreover, mutations of DHCR24 gene result in inhibition of the enzymatic activity of DHCR24, causing brain cholesterol deficiency and desmosterol accumulation. Furthermore, in vitro studies also demonstrated that DHCR24 knockdown lead to the inhibition of cholesterol synthesis, and the decrease of plasma membrane cholesterol and intracellular cholesterol level. Obviously, DHCR24 could play a crucial role in maintaining cholesterol homeostasis via the control of cholesterol synthesis. Over the past two decades, accumulating data suggests that DHCR24 activity is downregulated by major risk factors for AD, suggesting a potential link between DHCR24 downregulation and AD pathogenesis. Thus, the brain cholesterol loss seems to be induced by the major risk factors for AD, suggesting a possible causative link between brain cholesterol loss and AD. According to previous data and our study, we further found that the reduced cholesterol level in plasma membrane and intracellular compartments by the deficiency of DHCR24 activity obviously was involved in β-amyloid generation, tau hyperphosphorylation, apoptosis. Importantly, increasing evidences reveal that the brain cholesterol loss and lipid raft disorganization are obviously linked to neuropathological impairments which are associated with AD pathogenesis. Therefore, based on previous data and research on DHCR24, we suppose that the brain cholesterol deficiency/loss might be involved in the pathogenesis of AD.
Collapse
|
15
|
Dominko K, Rastija A, Sobocanec S, Vidatic L, Meglaj S, Lovincic Babic A, Hutter-Paier B, Colombo AV, Lichtenthaler SF, Tahirovic S, Hecimovic S. Impaired Retromer Function in Niemann-Pick Type C Disease Is Dependent on Intracellular Cholesterol Accumulation. Int J Mol Sci 2021; 22:13256. [PMID: 34948052 PMCID: PMC8705785 DOI: 10.3390/ijms222413256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023] Open
Abstract
Niemann-Pick type C disease (NPC) is a rare inherited neurodegenerative disorder characterized by an accumulation of intracellular cholesterol within late endosomes and lysosomes due to NPC1 or NPC2 dysfunction. In this work, we tested the hypothesis that retromer impairment may be involved in the pathogenesis of NPC and may contribute to increased amyloidogenic processing of APP and enhanced BACE1-mediated proteolysis observed in NPC disease. Using NPC1-null cells, primary mouse NPC1-deficient neurons and NPC1-deficient mice (BALB/cNctr-Npc1m1N), we show that retromer function is impaired in NPC. This is manifested by altered transport of the retromer core components Vps26, Vps35 and/or retromer receptor sorLA and by retromer accumulation in neuronal processes, such as within axonal swellings. Changes in retromer distribution in NPC1 mouse brains were observed already at the presymptomatic stage (at 4-weeks of age), indicating that the retromer defect occurs early in the course of NPC disease and may contribute to downstream pathological processes. Furthermore, we show that cholesterol depletion in NPC1-null cells and in NPC1 mouse brains reverts retromer dysfunction, suggesting that retromer impairment in NPC is mechanistically dependent on cholesterol accumulation. Thus, we characterized retromer dysfunction in NPC and propose that the rescue of retromer impairment may represent a novel therapeutic approach against NPC.
Collapse
Affiliation(s)
- Kristina Dominko
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (K.D.); (A.R.); (L.V.)
| | - Ana Rastija
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (K.D.); (A.R.); (L.V.)
| | - Sandra Sobocanec
- Laboratory for Mitochondrial Bioenergetics and Diabetes, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (K.D.); (A.R.); (L.V.)
| | - Sarah Meglaj
- Division of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (S.M.); (A.L.B.)
| | - Andrea Lovincic Babic
- Division of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (S.M.); (A.L.B.)
| | | | - Alessio-Vittorio Colombo
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; (A.-V.C.); (S.F.L.); (S.T.)
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; (A.-V.C.); (S.F.L.); (S.T.)
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; (A.-V.C.); (S.F.L.); (S.T.)
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (K.D.); (A.R.); (L.V.)
| |
Collapse
|
16
|
Boenzi S, Catesini G, Sacchetti E, Tagliaferri F, Dionisi-Vici C, Deodato F. Comprehensive-targeted lipidomic analysis in Niemann-Pick C disease. Mol Genet Metab 2021; 134:337-343. [PMID: 34810067 DOI: 10.1016/j.ymgme.2021.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022]
Abstract
Niemann-Pick C disease (NPC) is a lysosomal disease caused by mutations in NPC1 or NPC2 genes responsible for intracellular accumulation of free cholesterol and glycosphingolipids in a variety of tissues. We collected plasma samples from 15 NPC1 patients and 15 age-matched controls to analyze the impairment of lipid metabolism. Comprehensive-targeted quantitative lipidomic analysis was per-formed by Ion Mobility Mass Spectrometry, while oxysterols and lyso-sphingolipids, the classical NPC biomarkers, were analyzed by LC-MS/MS. Lipidomic analysis allowed the quantitation of ~1100 lipid species, belonging to 13 different classes. Statistical analysis of collected data showed a significant differentiation between NPC patients and controls. Lipid profiling showed an elevation of arachidonic acid and total diacylglycerols. Conversely, sphingomyelins, phosphatidylethano-lamines, phosphatidylcholines, cholesterylesters, and lactosylceramides were decreased. Indeed, the lipid imbalance was consistent with the increased concentrations of oxysterols and lyso-sphingolipids. Our study revealed a novel disease biosignature suggesting new potential diagnostic biomarkers. The alteration in key lipids molecules involved in inflammatory pathways and in oxidative stress regulation, provides new insights in the complex pathophysiology of the disease, still largely un-known.
Collapse
Affiliation(s)
- Sara Boenzi
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Giulio Catesini
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Sacchetti
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Tagliaferri
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, Novara, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Deodato
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
17
|
Pluvinage JV, Sun J, Claes C, Flynn RA, Haney MS, Iram T, Meng X, Lindemann R, Riley NM, Danhash E, Chadarevian JP, Tapp E, Gate D, Kondapavulur S, Cobos I, Chetty S, Pașca AM, Pașca SP, Berry-Kravis E, Bertozzi CR, Blurton-Jones M, Wyss-Coray T. The CD22-IGF2R interaction is a therapeutic target for microglial lysosome dysfunction in Niemann-Pick type C. Sci Transl Med 2021; 13:eabg2919. [PMID: 34851695 PMCID: PMC9067636 DOI: 10.1126/scitranslmed.abg2919] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lysosome dysfunction is a shared feature of rare lysosomal storage diseases and common age-related neurodegenerative diseases. Microglia, the brain-resident macrophages, are particularly vulnerable to lysosome dysfunction because of the phagocytic stress of clearing dying neurons, myelin, and debris. CD22 is a negative regulator of microglial homeostasis in the aging mouse brain, and soluble CD22 (sCD22) is increased in the cerebrospinal fluid of patients with Niemann-Pick type C disease (NPC). However, the role of CD22 in the human brain remains unknown. In contrast to previous findings in mice, here, we show that CD22 is expressed by oligodendrocytes in the human brain and binds to sialic acid–dependent ligands on microglia. Using unbiased genetic and proteomic screens, we identify insulin-like growth factor 2 receptor (IGF2R) as the binding partner of sCD22 on human myeloid cells. Targeted truncation of IGF2R revealed that sCD22 docks near critical mannose 6-phosphate–binding domains, where it disrupts lysosomal protein trafficking. Interfering with the sCD22-IGF2R interaction using CD22 blocking antibodies ameliorated lysosome dysfunction in human NPC1 mutant induced pluripotent stem cell–derived microglia-like cells without harming oligodendrocytes in vitro. These findings reinforce the differences between mouse and human microglia and provide a candidate microglia-directed immunotherapeutic to treat NPC.
Collapse
Affiliation(s)
- John V. Pluvinage
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jerry Sun
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Christel Claes
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Ryan A. Flynn
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael S. Haney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Xiangling Meng
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Rachel Lindemann
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Nicholas M. Riley
- Department of Chemistry and ChEM-H, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94304, USA
| | - Emma Danhash
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Jean Paul Chadarevian
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Emma Tapp
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - David Gate
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sravani Kondapavulur
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sundari Chetty
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anca M. Pașca
- Division of Neonatology, Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Sergiu P. Pașca
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | | | - Carolyn R. Bertozzi
- Department of Chemistry and ChEM-H, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94304, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Estimated prevalence of Niemann-Pick type C disease in Quebec. Sci Rep 2021; 11:22621. [PMID: 34799641 PMCID: PMC8604933 DOI: 10.1038/s41598-021-01966-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
Niemann–Pick type C (NP-C) disease is an autosomal recessive disease caused by variants in the NPC1 or NPC2 genes. It has a large range of symptoms depending on age of onset, thus making it difficult to diagnose. In adults, symptoms appear mainly in the form of psychiatric problems. The prevalence varies from 0.35 to 2.2 per 100,000 births depending on the country. The aim of this study is to calculate the estimated prevalence of NP-C in Quebec to determine if it is underdiagnosed in this population. The CARTaGENE database is a unique database that regroups individuals between 40 and 69 years old from metropolitan regions of Quebec. RNA-sequencing data was available for 911 individuals and exome sequencing for 198 individuals. We used a bioinformatic pipeline on those individuals to extract the variants in the NPC1/2 genes. The prevalence in Quebec was estimated assuming Hardy–Weinberg Equilibrium. Two pathogenic variants were used. The variant p.Pro543Leu was found in three heterozygous individuals that share a common haplotype, which suggests a founder French-Canadian pathogenic variant. The variant p.Ile1061Thr was found in two heterozygous individuals. Both variants have previously been reported and are usually associated with infantile onset. The estimated prevalence calculated using those two variants is 0.61:100,000 births. This study represents the first estimate of NP-C in Quebec. The estimated prevalence for NP-C is likely underestimated due to misdiagnosis or missed cases. It is therefore important to diagnose all NP-C patients to initiate early treatment.
Collapse
|
19
|
Van Hoecke L, Van Cauwenberghe C, Dominko K, Van Imschoot G, Van Wonterghem E, Castelein J, Xie J, Claeys W, Vandendriessche C, Kremer A, Borghgraef P, De Rycke R, Hecimovic S, Vandenbroucke RE. Involvement of the Choroid Plexus in the Pathogenesis of Niemann-Pick Disease Type C. Front Cell Neurosci 2021; 15:757482. [PMID: 34720883 PMCID: PMC8555471 DOI: 10.3389/fncel.2021.757482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
Niemann-Pick type C (NPC) disease, sometimes called childhood Alzheimer’s, is a rare neurovisceral lipid storage disease with progressive neurodegeneration leading to premature death. The disease is caused by loss-of-function mutations in the Npc1 or Npc2 gene which both result into lipid accumulation in the late endosomes and lysosomes. Since the disease presents with a broad heterogenous clinical spectrum, the involved disease mechanisms are still incompletely understood and this hampers finding an effective treatment. As NPC patients, who carry NPC1 mutations, have shown to share several pathological features with Alzheimer’s disease (AD) and we and others have previously shown that AD is associated with a dysfunctionality of the blood-cerebrospinal fluid (CSF) barrier located at choroid plexus, we investigated the functionality of this latter barrier in NPC1 pathology. Using NPC1–/– mice, we show that despite an increase in inflammatory gene expression in choroid plexus epithelial (CPE) cells, the blood-CSF barrier integrity is not dramatically affected. Interestingly, we did observe a massive increase in autophagosomes in CPE cells and enlarged extracellular vesicles (EVs) in CSF upon NPC1 pathology. Additionally, we revealed that these EVs exert toxic effects on brain tissue, in vitro as well as in vivo. Moreover, we observed that EVs derived from the supernatant of NPC1–/– choroid plexus explants are able to induce typical brain pathology characteristics of NPC1–/–, more specifically microgliosis and astrogliosis. Taken together, our data reveal for the first time that the choroid plexus and CSF EVs might play a role in the brain-related pathogenesis of NPC1.
Collapse
Affiliation(s)
- Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Caroline Van Cauwenberghe
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kristina Dominko
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonas Castelein
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wouter Claeys
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anna Kremer
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core Ghent, VIB, Ghent, Belgium
| | - Peter Borghgraef
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core Ghent, VIB, Ghent, Belgium
| | - Riet De Rycke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core Ghent, VIB, Ghent, Belgium.,Ghent University Expertise Centre for Transmission Electron Microscopy, Ghent, Belgium
| | - Silva Hecimovic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Cariati I, Masuelli L, Bei R, Tancredi V, Frank C, D’Arcangelo G. Neurodegeneration in Niemann-Pick Type C Disease: An Updated Review on Pharmacological and Non-Pharmacological Approaches to Counteract Brain and Cognitive Impairment. Int J Mol Sci 2021; 22:ijms22126600. [PMID: 34202978 PMCID: PMC8234817 DOI: 10.3390/ijms22126600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Niemann–Pick type C (NPC) disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol in the late endo-lysosomal system of cells. Progressive neurological deterioration and the onset of symptoms, such as ataxia, seizures, cognitive decline, and severe dementia, are pathognomonic features of the disease. In addition, different pathological similarities, including degeneration of hippocampal and cortical neurons, hyperphosphorylated tau, and neurofibrillary tangle formation, have been identified between NPC disease and other neurodegenerative pathologies. However, the underlying pathophysiological mechanisms are not yet well understood, and even a real cure to counteract neurodegeneration has not been identified. Therefore, the combination of current pharmacological therapies, represented by miglustat and cyclodextrin, and non-pharmacological approaches, such as physical exercise and appropriate diet, could represent a strategy to improve the quality of life of NPC patients. Based on this evidence, in our review we focused on the neurodegenerative aspects of NPC disease, summarizing the current knowledge on the molecular and biochemical mechanisms responsible for cognitive impairment, and suggesting physical exercise and nutritional treatments as additional non-pharmacologic approaches to reduce the progression and neurodegenerative course of NPC disease.
Collapse
Affiliation(s)
- Ida Cariati
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
21
|
Tegeder I, Kögel D. When lipid homeostasis runs havoc: Lipotoxicity links lysosomal dysfunction to autophagy. Matrix Biol 2021; 100-101:99-117. [DOI: 10.1016/j.matbio.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
|
22
|
Griñán-Ferré C, Companys-Alemany J, Jarné-Ferrer J, Codony S, González-Castillo C, Ortuño-Sahagún D, Vilageliu L, Grinberg D, Vázquez S, Pallàs M. Inhibition of Soluble Epoxide Hydrolase Ameliorates Phenotype and Cognitive Abilities in a Murine Model of Niemann Pick Type C Disease. Int J Mol Sci 2021; 22:3409. [PMID: 33810307 PMCID: PMC8036710 DOI: 10.3390/ijms22073409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a rare autosomal recessive inherited childhood neurodegenerative disease characterized by the accumulation of cholesterol and glycosphingolipids, involving the autophagy-lysosome system. Inhibition of soluble epoxide hydrolase (sEH), an enzyme that metabolizes epoxy fatty acids (EpFAs) to 12-diols, exerts beneficial effects in modulating inflammation and autophagy, critical features of the NPC disease. This study aims to evaluate the effects of UB-EV-52, an sEH inhibitor (sEHi), in an NPC mouse model (Npc) by administering it for 4 weeks (5 mg/kg/day). Behavioral and cognitive tests (open-field test (OF)), elevated plus maze (EPM), novel object recognition test (NORT) and object location test (OLT) demonstrated that the treatment produced an improvement in short- and long-term memory as well as in spatial memory. Furthermore, UB-EV-52 treatment increased body weight and lifespan by 25% and reduced gene expression of the inflammatory markers (i.e., Il-1β and Mcp1) and enhanced oxidative stress (OS) markers (iNOS and Hmox1) in the treated Npc mice group. As for autophagic markers, surprisingly, we found significantly reduced levels of LC3B-II/LC3B-I ratio and significantly reduced brain protein levels of lysosomal-associated membrane protein-1 (LAMP-1) in treated Npc mice group compared to untreated ones in hippocampal tissue. Lipid profile analysis showed a significant reduction of lipid storage in the liver and some slight changes in homogenated brain tissue in the treated NPC mice compared to the untreated groups. Therefore, our results suggest that pharmacological inhibition of sEH ameliorates most of the characteristic features of NPC mice, demonstrating that sEH can be considered a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (C.G.-F.); (J.C.-A.); (J.J.-F.)
| | - Júlia Companys-Alemany
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (C.G.-F.); (J.C.-A.); (J.J.-F.)
| | - Júlia Jarné-Ferrer
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (C.G.-F.); (J.C.-A.); (J.J.-F.)
| | - Sandra Codony
- Laboratory of Medicinal Chemistry (CSIC, Associated Unit), Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (S.C.); (S.V.)
| | - Celia González-Castillo
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan, 45201 Jalisco, Mexico;
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Jalisco 44340, Mexico;
| | - Lluïsa Vilageliu
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.V.); (D.G.)
- Institut de Biomedicina de la UB (IBUB)-Institut de Recerca Sant Joan de Déu (IRSJD), 08028 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), 08028 Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.V.); (D.G.)
- Institut de Biomedicina de la UB (IBUB)-Institut de Recerca Sant Joan de Déu (IRSJD), 08028 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), 08028 Barcelona, Spain
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC, Associated Unit), Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (S.C.); (S.V.)
| | - Mercè Pallàs
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (C.G.-F.); (J.C.-A.); (J.J.-F.)
| |
Collapse
|
23
|
Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in microglia. Nat Commun 2021; 12:1158. [PMID: 33627648 PMCID: PMC7904859 DOI: 10.1038/s41467-021-21428-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Niemann-Pick type C disease is a rare neurodegenerative disorder mainly caused by mutations in NPC1, resulting in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is a prominent pathological feature, direct consequences of NPC1 loss on microglial function remain not fully characterized. We discovered pathological proteomic signatures and phenotypes in NPC1-deficient murine models and demonstrate a cell autonomous function of NPC1 in microglia. Loss of NPC1 triggers enhanced phagocytic uptake and impaired myelin turnover in microglia that precede neuronal death. Npc1−/− microglia feature a striking accumulation of multivesicular bodies and impaired trafficking of lipids to lysosomes while lysosomal degradation function remains preserved. Molecular and functional defects were also detected in blood-derived macrophages of NPC patients that provide a potential tool for monitoring disease. Our study underscores an essential cell autonomous role for NPC1 in immune cells and implies microglial therapeutic potential. Niemann-Pick type C disease is a rare childhood neurodegenerative disorder predominantly caused by mutations in NPC1, resulting in abnormal late endosomal and lysosomal defects. Here the authors show that NPC1 disruption largely impairs microglial function.
Collapse
|
24
|
Yan M, Zheng T. Role of the endolysosomal pathway and exosome release in tau propagation. Neurochem Int 2021; 145:104988. [PMID: 33582164 DOI: 10.1016/j.neuint.2021.104988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/08/2023]
Abstract
The progressive deposition of misfolded and aggregated forms of Tau protein in the brain is a pathological hallmark of tauopathies, such as Alzheimer's disease (AD) and frontotemporal degeneration (FTD). The misfolded Tau can be released into the extracellular space and internalized by neighboring cells, acting as seeds to trigger the robust conversion of soluble Tau into insoluble filamentous aggregates in a prion-like manner, ultimately contributing to the progression of the disease. However, molecular mechanisms accountable for the propagation of Tau pathology are poorly defined. We reviewed the Tau processing imbalance in endosomal, lysosomal, and exosomal pathways in AD. Increased exosome release counteracts the endosomal-lysosomal dysfunction of Tau processing but increases the number of aggregates and the propagation of Tau. This review summarizes our current understanding of the underlying tauopathy mechanisms with an emphasis on the emerging role of the endosomal-lysosomal-exosome pathways in this process. The components CHMP6, TSG101, and other components of the ESCRT complex, as well as Rab GTPase such as Rab35 and Rab7A, regulate vesicle cargoes routing from endosome to lysosome and affect Tau traffic, degradation, or secretion. Thus, the significant molecular pathways that should be potential therapeutic targets for treating tauopathies are determined.
Collapse
Affiliation(s)
- Minli Yan
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, 310009, China
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, 310009, China.
| |
Collapse
|
25
|
Burbulla LF, Mc Donald JM, Valdez C, Gao F, Bigio EH, Krainc D. Modeling Brain Pathology of Niemann-Pick Disease Type C Using Patient-Derived Neurons. Mov Disord 2021; 36:1022-1027. [PMID: 33438272 DOI: 10.1002/mds.28463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is a rare autosomal-recessive lysosomal storage disease that is also associated with progressive neurodegeneration. NPC shares many pathological features with Alzheimer's disease, including neurofibrillary tangles, axonal spheroids, β-amyloid deposition, and dystrophic neurites. Here, we examined if these pathological features could be detected in induced pluripotent stem cell (iPSC)-derived neurons from NPC patients. METHODS Brain tissues from 8 NPC patients and 5 controls were analyzed for histopathological and biochemical markers of pathology. To model disease in culture, iPSCs from NPC patients and controls were differentiated into cortical neurons. RESULTS We found hyperphosphorylated tau, altered processing of amyloid precursor protein, and increased Aβ42 in NPC postmortem brains and in iPSC-derived cortical neurons from NPC patients. CONCLUSION Our findings demonstrated that the main pathogenic phenotypes typically found in NPC brains were also observed in patient-derived neurons, providing a useful model for further mechanistic and therapeutic studies of NPC. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jessica M Mc Donald
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Clarissa Valdez
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Fanding Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Eileen H Bigio
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
26
|
Völkner C, Liedtke M, Hermann A, Frech MJ. Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Niemann-Pick Type C1. Int J Mol Sci 2021; 22:E710. [PMID: 33445799 PMCID: PMC7828283 DOI: 10.3390/ijms22020710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
The lysosomal storage disorders Niemann-Pick disease Type C1 (NPC1) and Type C2 (NPC2) are rare diseases caused by mutations in the NPC1 or NPC2 gene. Both NPC1 and NPC2 are proteins responsible for the exit of cholesterol from late endosomes and lysosomes (LE/LY). Consequently, mutations in one of the two proteins lead to the accumulation of unesterified cholesterol and glycosphingolipids in LE/LY, displaying a disease hallmark. A total of 95% of cases are due to a deficiency of NPC1 and only 5% are caused by NPC2 deficiency. Clinical manifestations include neurological symptoms and systemic symptoms, such as hepatosplenomegaly and pulmonary manifestations, the latter being particularly pronounced in NPC2 patients. NPC1 and NPC2 are rare diseases with the described neurovisceral clinical picture, but studies with human primary patient-derived neurons and hepatocytes are hardly feasible. Obviously, induced pluripotent stem cells (iPSCs) and their derivatives are an excellent alternative for indispensable studies with these affected cell types to study the multisystemic disease NPC1. Here, we present a review focusing on studies that have used iPSCs for disease modeling and drug discovery in NPC1 and draw a comparison to commonly used NPC1 models.
Collapse
Affiliation(s)
- Christin Völkner
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
| | - Maik Liedtke
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Moritz J. Frech
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
| |
Collapse
|
27
|
Bruni AC, Bernardi L, Gabelli C. From beta amyloid to altered proteostasis in Alzheimer's disease. Ageing Res Rev 2020; 64:101126. [PMID: 32683041 DOI: 10.1016/j.arr.2020.101126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age related neurodegenerative disorder causing severe disability and important socio-economic burden, but with no cure available to date. To disentangle this puzzling disease genetic studies represented an important way for the comprehension of pathogenic mechanisms. Abnormal processing and accumulation of amyloid-β peptide (Aβ) has been considered the main cause and trigger factor of the disease. The amyloid cascade theory has fallen into crisis because the failure of several anti-amyloid drugs trials and because of the simple equation AD = abnormal Aβ deposition is not always the case. We now know that multiple neurodegenerative diseases share common pathogenic mechanisms leading to accumulation of misfolded protein species. Genome Wide Association studies (GWAS) led to the identification of large numbers of DNA common variants (SNPs) distributed on different chromosomes and modulating the Alzheimer's risk. GWAS genes fall into several common pathways such as immune system and neuroinflammation, lipid metabolism, synaptic dysfunction and endocytosis, all of them addressing to novel routes for different pathogenic mechanisms. Other hints could be derived from epidemiological and experimental studies showing some lifestyles may have a major role in the pathogenesis of many age-associated diseases by modifying cell metabolism, proteostasis and microglia mediated neuroinflammation.
Collapse
Affiliation(s)
- Amalia C Bruni
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy.
| | - Livia Bernardi
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Carlo Gabelli
- Regional Brain Aging Centre, Azienda Ospedale Università Di Padova, Padova Italy
| |
Collapse
|
28
|
Braak H, Del Tredici K. From the Entorhinal Region via the Prosubiculum to the Dentate Fascia: Alzheimer Disease-Related Neurofibrillary Changes in the Temporal Allocortex. J Neuropathol Exp Neurol 2020; 79:163-175. [PMID: 31913466 PMCID: PMC6970449 DOI: 10.1093/jnen/nlz123] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
The pathological process underlying Alzheimer disease (AD) unfolds predominantly in the cerebral cortex with the gradual appearance and regional progression of abnormal tau. Intraneuronal tau pathology progresses from the temporal transentorhinal and entorhinal regions into neocortical fields/areas of the temporal allocortex. Here, based on 95 cases staged for AD-related neurofibrillary changes, we propose an ordered progression of abnormal tau in the temporal allocortex. Initially, abnormal tau was limited to distal dendritic segments followed by tau in cell bodies of projection neurons of the transentorhinal/entorhinal layer pre-α. Next, abnormal distal dendrites accumulated in the prosubiculum and extended into the CA1 stratum oriens and lacunosum. Subsequently, altered dendrites developed in the CA2/CA3 stratum oriens and stratum lacunosum-moleculare, combined with tau-positive thorny excrescences of CA3/CA4 mossy cells. Finally, granule cells of the dentate fascia became involved. Such a progression might recapitulate a sequence of transsynaptic spreading of abnormal tau from 1 projection neuron to the next: From pre-α cells to distal dendrites in the prosubiculum and CA1; then, from CA1 or prosubicular pyramids to CA2 principal cells and CA3/CA4 mossy cells; finally, from CA4 mossy cells to dentate granule cells. The lesions are additive: Those from the previous steps persist.
Collapse
Affiliation(s)
- Heiko Braak
- From the Department of Neurology, Clinical Neuroanatomy, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Kelly Del Tredici
- From the Department of Neurology, Clinical Neuroanatomy, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
29
|
Yañez MJ, Marín T, Balboa E, Klein AD, Alvarez AR, Zanlungo S. Finding pathogenic commonalities between Niemann-Pick type C and other lysosomal storage disorders: Opportunities for shared therapeutic interventions. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165875. [PMID: 32522631 DOI: 10.1016/j.bbadis.2020.165875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Lysosomal storage disorders (LSDs) are diseases characterized by the accumulation of macromolecules in the late endocytic system and are caused by inherited defects in genes that encode mainly lysosomal enzymes or transmembrane lysosomal proteins. Niemann-Pick type C disease (NPCD), a LSD characterized by liver damage and progressive neurodegeneration that leads to early death, is caused by mutations in the genes encoding the NPC1 or NPC2 proteins. Both proteins are involved in the transport of cholesterol from the late endosomal compartment to the rest of the cell. Loss of function of these proteins causes primary cholesterol accumulation, and secondary accumulation of other lipids, such as sphingolipids, in lysosomes. Despite years of studying the genetic and molecular bases of NPCD and related-lysosomal disorders, the pathogenic mechanisms involved in these diseases are not fully understood. In this review we will summarize the pathogenic mechanisms described for NPCD and we will discuss their relevance for other LSDs with neurological components such as Niemann- Pick type A and Gaucher diseases. We will particularly focus on the activation of signaling pathways that may be common to these three pathologies with emphasis on how the intra-lysosomal accumulation of lipids leads to pathology, specifically to neurological impairments. We will show that although the primary lipid storage defect is different in these three LSDs, there is a similar secondary accumulation of metabolites and activation of signaling pathways that can lead to common pathogenic mechanisms. This analysis might help to delineate common pathological mechanisms and therapeutic targets for lysosomal storage diseases.
Collapse
Affiliation(s)
- M J Yañez
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - T Marín
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Balboa
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - A R Alvarez
- Laboratory of Cell Signaling, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile; CARE UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Sullivan SE, Liao M, Smith RV, White C, Lagomarsino VN, Xu J, Taga M, Bennett DA, De Jager PL, Young-Pearse TL. Candidate-based screening via gene modulation in human neurons and astrocytes implicates FERMT2 in Aβ and TAU proteostasis. Hum Mol Genet 2020; 28:718-735. [PMID: 30371777 DOI: 10.1093/hmg/ddy376] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
Large-scale 'omic' studies investigating the pathophysiological processes that lead to Alzheimer's disease (AD) dementia have identified an increasing number of susceptibility genes, many of which are poorly characterized and have not previously been implicated in AD. Here, we evaluated the utility of human induced pluripotent stem cell-derived neurons and astrocytes as tools to systematically test AD-relevant cellular phenotypes following perturbation of candidate genes identified by genome-wide studies. Lentiviral-mediated delivery of shRNAs was used to modulate expression of 66 genes in astrocytes and 52 genes in induced neurons. Five genes (CNN2, GBA, GSTP1, MINT2 and FERMT2) in neurons and nine genes (CNN2, ITGB1, MINT2, SORL1, VLDLR, NPC1, NPC2, PSAP and SCARB2) in astrocytes significantly altered extracellular amyloid-β (Aβ) levels. Knockdown of AP3M2, CNN2, GSTP1, NPC1, NPC2, PSAP and SORL1 reduced interleukin-6 levels in astrocytes. Only knockdown of FERMT2 led to a reduction in the proportion of TAU that is phosphorylated. Further, CRISPR-Cas9 targeting of FERMT2 in both familial AD (fAD) and fAD-corrected human neurons validated the findings of reduced extracellular Aβ. Interestingly, FERMT2 reduction had no effect on the Aβ42:40 ratio in corrected neurons and a reduction of phospho-tau, but resulted in an elevation in Aβ42:40 ratio and no reduction in phospho-tau in fAD neurons. Taken together, this study has prioritized 15 genes as being involved in contributing to Aβ accumulation, phosphorylation of tau and/or cytokine secretion, and, as illustrated with FERMT2, it sets the stage for further cell-type-specific dissection of the role of these genes in AD.
Collapse
Affiliation(s)
- Sarah E Sullivan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meichen Liao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert V Smith
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles White
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Valentina N Lagomarsino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jishu Xu
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA.,Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Hetmańczyk-Sawicka K, Iwanicka-Nowicka R, Fogtman A, Cieśla J, Włodarski P, Żyżyńska-Granica B, Filocamo M, Dardis A, Peruzzo P, Bednarska-Makaruk M, Koblowska M, Ługowska A. Changes in global gene expression indicate disordered autophagy, apoptosis and inflammatory processes and downregulation of cytoskeletal signalling and neuronal development in patients with Niemann-Pick C disease. Neurogenetics 2020; 21:105-119. [PMID: 31927669 DOI: 10.1007/s10048-019-00600-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022]
Abstract
Changes in gene expression profiles were investigated in 23 patients with Niemann-Pick C1 disease (NPC). cDNA expression microarrays with subsequent validation by qRT-PCR were used. Comparison of NPC to control samples revealed upregulation of genes involved in inflammation (MMP3, THBS4), cytokine signalling (MMP3), extracellular matrix degradation (MMP3, CTSK), autophagy and apoptosis (CTSK, GPNMB, PTGIS), immune response (AKR1C3, RCAN2, PTGIS) and processes of neuronal development (RCAN2). Downregulated genes were associated with cytoskeletal signalling (ACTG2, CNN1); inflammation and oxidative stress (CNN1); inhibition of cell proliferation, migration and differentiation; ERK-MAPK pathway (COL4A1, COL4A2, CPA4); cell adhesion (IGFBP7); autophagy and apoptosis (CDH2, IGFBP7, COL4A2); neuronal function and development (CSRP1); and extracellular matrix stability (PLOD2). When comparing NPC and Gaucher patients together versus controls, upregulation of SERPINB2 and IL13RA2 and downregulation of CSRP1 and CNN1 were characteristic. Notably, in NPC patients, the expression of PTGIS is upregulated while the expression of PLOD2 is downregulated when compared to Gaucher patients or controls and potentially could serve to differentiate these patients. Interestingly, in NPC patients with (i) jaundice, splenomegaly and cognitive impairment/psychomotor delay-the expression of ACTG2 was especially downregulated; (ii) ataxia-the expression of ACTG2 and IGFBP5 was especially downregulated; and (iii) VSGP, dysarthria, dysphagia and epilepsy-the expression of AKR1C3 was especially upregulated while the expression of ACTG2 was downregulated. These results indicate disordered apoptosis, autophagy and cytoskeleton remodelling as well as upregulation of immune response and inflammation to play an important role in the pathogenesis of NPC in humans.
Collapse
Affiliation(s)
| | - Roksana Iwanicka-Nowicka
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Włodarski
- Center for Preclinical Research, Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Żyżyńska-Granica
- Department of Biochemistry, Second Faculty of Medicine with the English Division and the Physiotherapy Division, Medical University of Warsaw, Warsaw, Poland
| | - Mirella Filocamo
- Laboratorio di Genetica Molecolare e Biobanche, Istituto G. Gaslini, L.go G. Gaslini, 16147, Genoa, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Department of Laboratory Medicine, Academic Hospital "Santa Maria della Misericordia" Udine, Udine, Italy
| | - Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, Department of Laboratory Medicine, Academic Hospital "Santa Maria della Misericordia" Udine, Udine, Italy
| | | | - Marta Koblowska
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
32
|
Arenas F, Castro F, Nuñez S, Gay G, Garcia-Ruiz C, Fernandez-Checa JC. STARD1 and NPC1 expression as pathological markers associated with astrogliosis in post-mortem brains from patients with Alzheimer's disease and Down syndrome. Aging (Albany NY) 2020; 12:571-592. [PMID: 31902793 PMCID: PMC6977657 DOI: 10.18632/aging.102641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/23/2019] [Indexed: 05/07/2023]
Abstract
Alzheimer´s disease (AD) is a progressive neurodegenerative disorder of complex etiology, while Down syndrome (DS) is considered a genetically determined form of AD. Alterations in cholesterol homeostasis have been linked to AD although the role in this association is not well understood. Increased expression of STARD1 and NPC1, which are involved in intracellular cholesterol trafficking, has been reported in experimental AD models but not in patients with AD. Here we analyzed endolysosomal/mitochondrial cholesterol homeostasis, expression of NPC1 and STARD1 and correlation with pathological markers of AD in cortex and hippocampus from post-mortem brains from patients with AD and DS. NPC1 expression was observed in hippocampus from patients with AD and DS. Moreover, STARD1 expression increased in hippocampus and cortex from patients with AD and DS, respectively, and its immunoreactivity discriminated controls from AD or DS with a better accuracy than Aβ42. Hippocampal areas stained with the recombinant GST-PFO probe showed increased mitochondrial cholesterol within astrocytes of brains from patients with AD and DS-brains compared to controls. Lysosomal cholesterol accumulation within hippocampal astrocytes was higher in DS than in AD. These data revealed increased intracellular cholesterol loading in hippocampus from patient with AD and DS and suggest that STARD1 could be a potential pre-clinical marker associated with early stages of AD pathology.
Collapse
Affiliation(s)
- Fabian Arenas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fernanda Castro
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Susana Nuñez
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Gay
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jose C. Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
33
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
34
|
Esposito M, Dubbioso R, Tozza S, Iodice R, Aiello M, Nicolai E, Cavaliere C, Salvatore M, Santoro L, Manganelli F. In vivo evidence of cortical amyloid deposition in the adult form of Niemann Pick type C. Heliyon 2019; 5:e02776. [PMID: 31844711 PMCID: PMC6895717 DOI: 10.1016/j.heliyon.2019.e02776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 11/24/2022] Open
Abstract
Background Niemann Pick disease type C (NPC) is a lysosomal lipid storage disorder presenting visceral and neurological impairment with cognitive decline. Neurodegeneration in NPC is associated to deposition of amyloid-β and abnormal tau aggregations likewise Alzheimer disease (AD). Dementia is also related to intracortical circuiting abnormalities that can be detected by neurophysiological procedures both in NPC and in AD. Aim of this study is to find the in vivo evidence of amyloid deposition in NPC patients with cognitive impairment and to investigate the pathophysiology of dementia according to similarities with AD. Methods Two sisters affected by NPC and cognitive decline underwent neuropsychological tests, PET scans with 18F- Florbetaben and neurophysiological protocols to assess cortex excitability by means of transcranial magnetic stimulation (TMS), such as short-latency afferent inhibition (SAI), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Results Both patients presented a multidomain cognitive impairment. 18F- Florbetaben uptake was detected in brain frontal areas, while SAI and SICI were abnormal in both patients. Discussion Cognitive impairment in NPC is associated to cortical amyloid deposition as revealed by 18F- Florbetaben PET scan. Amyloid imaging data, together with specific abnormalities found at TMS studies, suggest similar mechanisms underlying NPC and AD dementia.
Collapse
Affiliation(s)
- Marcello Esposito
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
| | - Raffaele Dubbioso
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
- Corresponding author.
| | - Stefano Tozza
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
| | - Rosa Iodice
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
| | - Marco Aiello
- IRCCS SDN, Via Emanuele Gianturco 113, 80143, Napoli, Italy
| | | | | | | | - Lucio Santoro
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
| | - Fiore Manganelli
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
| |
Collapse
|
35
|
Schneider SA, Tahirovic S, Hardy J, Strupp M, Bremova-Ertl T. Do heterozygous mutations of Niemann-Pick type C predispose to late-onset neurodegeneration: a review of the literature. J Neurol 2019; 268:2055-2064. [PMID: 31701332 DOI: 10.1007/s00415-019-09621-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND/METHODS Monogenic diseases are important models for the study of neurodegenerative diseases, such as Parkinson's disease (PD) and dementia. Notably, for some disorders, homozygosity is associated with a complex metabolic disease, while heterozygosity predisposes to late-onset neurodegeneration. For instance, biallelic glucocerebrosidase gene mutations cause Gaucher's disease, while heterozygous mutations are a common genetic risk factor for late-onset PD. Little is known about similar risks of related diseases, such as Niemann-Pick type C (NPC). Given that both conditions map into related, i.e., lysosomal, pathways, we hypothesize a similar risk of single-NPC gene mutations. Indeed, there is increasing evidence based on clinical observations in humans and animal studies. Here we review the current knowledge of NPC heterozygosity. RESULTS Family history studies suggest a high proportion of late-onset neurodegenerative diseases in NPC families. We identified 19 cases with heterozygous NPC mutations in the literature who presented with a neurodegenerative disease, including levodopa-responsive PD, atypical parkinsonism (PSP, CBD), dystonia or dementia with a mean age at onset of about 57 years (range 8-87). Consistent splenomegaly and mildly abnormal filipin staining results have also been reported in heterozygous gene mutation carriers. Imaging and pathological data support this notion. DISCUSSION/CONCLUSION This finding has wider implications in so far as NPC-related forms of Parkinsonian syndromes, dementia, motor neuron disease and other neurodegenerative disorders may benefit from NPC-mechanistic therapies, in particular related to lysosomal dysfunction. Further research is warranted to generate systematic data of heterozygous mutation carriers, including longitudinal data.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University, Marchioninistr 15, 81377, Munich, Germany.
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Within the Helmholtz Association, Feodor-Lynen-Strasse 17, Munich, Germany
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Michael Strupp
- Department of Neurology, Ludwig-Maximilians-University, Marchioninistr 15, 81377, Munich, Germany
| | - Tatiana Bremova-Ertl
- Department of Neurology, Ludwig-Maximilians-University, Marchioninistr 15, 81377, Munich, Germany.,Department of Neurology, Inselspital, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
36
|
Houben T, Penders J, Oligschlaeger Y, Dos Reis IAM, Bonder MJ, Koonen DP, Fu J, Hofker MH, Shiri-Sverdlov R. Hematopoietic Npc1 mutation shifts gut microbiota composition in Ldlr -/- mice on a high-fat, high-cholesterol diet. Sci Rep 2019; 9:14956. [PMID: 31628414 PMCID: PMC6802207 DOI: 10.1038/s41598-019-51525-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
While the link between diet-induced changes in gut microbiota and lipid metabolism in metabolic syndrome (MetS) has been established, the contribution of host genetics is rather unexplored. As several findings suggested a role for the lysosomal lipid transporter Niemann-Pick type C1 (NPC1) in macrophages during MetS, we here explored whether a hematopoietic Npc1 mutation, induced via bone marrow transplantation, influences gut microbiota composition in low-density lipoprotein receptor knockout (Ldlr-/-) mice fed a high-fat, high-cholesterol (HFC) diet for 12 weeks. Ldlr-/- mice fed a HFC diet mimic a human plasma lipoprotein profile and show features of MetS, providing a model to explore the role of host genetics on gut microbiota under MetS conditions. Fecal samples were used to profile the microbial composition by 16 s ribosomal RNA gene sequencing. The hematopoietic Npc1 mutation shifted the gut microbiota composition and increased microbial richness and diversity. Variations in plasma lipid levels correlated with microbial diversity and richness as well as with several bacterial genera. This study suggests that host genetic influences on lipid metabolism affect the gut microbiome under MetS conditions. Future research investigating the role of host genetics on gut microbiota might therefore lead to identification of diagnostic and therapeutic targets for MetS.
Collapse
Affiliation(s)
- Tom Houben
- Departments of Molecular Genetics and Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - John Penders
- Departments of Molecular Genetics and Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
| | - Yvonne Oligschlaeger
- Departments of Molecular Genetics and Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Inês A Magro Dos Reis
- Departments of Molecular Genetics and Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Marc-Jan Bonder
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Debby P Koonen
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marten H Hofker
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronit Shiri-Sverdlov
- Departments of Molecular Genetics and Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
37
|
DelBove CE, Strothman CE, Lazarenko RM, Huang H, Sanders CR, Zhang Q. Reciprocal modulation between amyloid precursor protein and synaptic membrane cholesterol revealed by live cell imaging. Neurobiol Dis 2019; 127:449-461. [PMID: 30885793 PMCID: PMC6588454 DOI: 10.1016/j.nbd.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The amyloid precursor protein (APP) has been extensively studied because of its association with Alzheimer's disease (AD). However, APP distribution across different subcellular membrane compartments and its function in neurons remains unclear. We generated an APP fusion protein with a pH-sensitive green fluorescent protein at its ectodomain and a pH-insensitive blue fluorescent protein at its cytosolic domain and used it to measure APP's distribution, subcellular trafficking, and cleavage in live neurons. This reporter, closely resembling endogenous APP, revealed only a limited correlation between synaptic activities and APP trafficking. However, the synaptic surface fraction of APP was increased by a reduction in membrane cholesterol levels, a phenomenon that involves APP's cholesterol-binding motif. Mutations at or near binding sites not only reduced both the surface fraction of APP and membrane cholesterol levels in a dominant negative manner, but also increased synaptic vulnerability to moderate membrane cholesterol reduction. Our results reveal reciprocal modulation of APP and membrane cholesterol levels at synaptic boutons.
Collapse
Affiliation(s)
- Claire E DelBove
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Claire E Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America
| | - Roman M Lazarenko
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, United States of America
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, United States of America; Department of Medicine, Vanderbilt University Medical Center, United States of America
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, United States of America; Brain Institute, Florida Atlantic University, United States of America.
| |
Collapse
|
38
|
Hammond N, Munkacsi AB, Sturley SL. The complexity of a monogenic neurodegenerative disease: More than two decades of therapeutic driven research into Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1109-1123. [PMID: 31002946 DOI: 10.1016/j.bbalip.2019.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 12/17/2022]
Abstract
Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.
Collapse
Affiliation(s)
- Natalie Hammond
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| | - Stephen L Sturley
- Department of Biology, Barnard College-Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
39
|
Psychiatric and Cognitive Symptoms Associated with Niemann-Pick Type C Disease: Neurobiology and Management. CNS Drugs 2019; 33:125-142. [PMID: 30632019 DOI: 10.1007/s40263-018-0599-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Niemann-Pick disease type C (NPC) is a lysosomal storage disorder that presents with a spectrum of clinical manifestations from infancy and childhood or in early or mid-adulthood. Progressive neurological symptoms including ataxia, dystonia and vertical gaze palsy are a hallmark of the disease, and psychiatric symptoms such as psychosis and mood disorders are common. These latter symptoms often present early in the course of NPC and thus these patients are often diagnosed with a major psychotic or affective disorder before neurological and cognitive signs present and the diagnosis is revised. The commonalities and characteristics of psychotic symptoms in both NPC and schizophrenia may share neuronal pathways and mechanisms and provide potential targets for research in both disorders. The neurobiology of NPC and its relationship to the pattern of neuropsychiatric and cognitive symptoms is described in this review. A number of neurobiological models are proposed as mechanisms by which NPC causes psychiatric and cognitive symptoms, informed from models proposed in schizophrenia and other metabolic disorders. There are a number of symptomatic and illness-modifying treatments for NPC currently available. The current evidence is discussed; focussing on two medications which have shown promise, miglustat and hydroxypropyl-β-cyclodextrin.
Collapse
|
40
|
van Weering JRT, Scheper W. Endolysosome and Autolysosome Dysfunction in Alzheimer's Disease: Where Intracellular and Extracellular Meet. CNS Drugs 2019; 33:639-648. [PMID: 31165364 PMCID: PMC6647502 DOI: 10.1007/s40263-019-00643-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Disturbed proteostasis as reflected by a massive accumulation of misfolded protein aggregates is a central feature in Alzheimer's disease. Proteostatic disturbances may be caused by a shift in protein production and clearance. Whereas rare genetic causes of the disease affect the production side, sporadic cases appear to be directed by dysfunction in protein clearance. This review focusses on the involvement of lysosome-mediated clearance. Autophagy is a degradational system where intracellular components are degraded by lysosomal organelles. In addition, "outside-to-inside" trafficking through the endosomes converges with the autolysosomal pathway, thereby bringing together intracellular and extracellular components. Recent findings demonstrate that disturbance in the endo- and autolysosomal pathway induces "inside-to-outside" communication via induction of unconventional secretion, which may bear relevance to the spreading of disease pathology through the brain. The involvement of these pathways in the pathogenesis of the disease is discussed with an outlook to the opportunities it provides for diagnostics as well as therapeutic interventions.
Collapse
Affiliation(s)
- Jan R. T. van Weering
- 0000 0004 1754 9227grid.12380.38Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,0000000084992262grid.7177.6Department of Clinical Genetics, Amsterdam University Medical Centers Location VUmc, Amsterdam, Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. .,Department of Clinical Genetics, Amsterdam University Medical Centers Location VUmc, Amsterdam, Netherlands. .,Alzheimer Center, Amsterdam University Medical Centers Location VUmc, Amsterdam, Netherlands.
| |
Collapse
|
41
|
BACE1-cleavage of Sez6 and Sez6L is elevated in Niemann-Pick type C disease mouse brains. PLoS One 2018; 13:e0200344. [PMID: 29979789 PMCID: PMC6034874 DOI: 10.1371/journal.pone.0200344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
It is intriguing that a rare, inherited lysosomal storage disorder Niemann-Pick type C (NPC) shares similarities with Alzheimer’s disease (AD). We have previously reported an enhanced processing of β-amyloid precursor protein (APP) by β-secretase (BACE1), a key enzyme in the pathogenesis of AD, in NPC1-null cells. In this work, we characterized regional and temporal expression and processing of the recently identified BACE1 substrates seizure protein 6 (Sez6) and seizure 6-like protein (Sez6L), and APP, in NPC1-/- (NPC1) and NPC1+/+ (wt) mouse brains. We analysed 4-weeks old brains to detect the earliest changes associated with NPC, and 10-weeks of age to identify changes at terminal disease stage. Sez6 and Sez6L were selected due to their predominant cleavage by BACE1, and their potential role in synaptic function that may contribute to presentation of seizures and/or motor impairments in NPC patients. While an enhanced BACE1-cleavage of all three substrates was detected in NPC1 vs. wt-mouse brains at 4-weeks of age, at 10-weeks increased proteolysis by BACE1 was observed for Sez6L in the cortex, hippocampus and cerebellum of NPC1-mice. Interestingly, both APP and Sez6L were found to be expressed in Purkinje neurons and their immunostaining was lost upon Purkinje cell neurodegeneration in 10-weeks old NPC1 mice. Furthermore, in NPC1- vs. wt-mouse primary cortical neurons, both Sez6 and Sez6L showed increased punctuate staining within the endolysosomal pathway as well as increased Sez6L and BACE1-positive puncta. This indicates that a trafficking defect within the endolysosomal pathway may play a key role in enhanced BACE1-proteolysis in NPC disease. Overall, our findings suggest that enhanced proteolysis by BACE1 could be a part of NPC disease pathogenesis. Understanding the basic biology of BACE1 and the functional impact of cleavage of its substrates is important to better evaluate the therapeutic potential of BACE1 against AD and, possibly, NPC disease.
Collapse
|
42
|
Johnen A, Pawlowski M, Duning T. Distinguishing neurocognitive deficits in adult patients with NP-C from early onset Alzheimer's dementia. Orphanet J Rare Dis 2018; 13:91. [PMID: 29871644 PMCID: PMC5989447 DOI: 10.1186/s13023-018-0833-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NP-C) is a rare, progressive neurodegenerative disease caused by mutations in the NPC1 or the NPC2 gene. Neurocognitive deficits are common in NP-C, particularly in patients with the adolescent/adult-onset form. As a disease-specific therapy is available, it is important to distinguish clinically between the cognitive profiles in NP-C and primary dementia (e.g., early Alzheimer's disease; eAD). METHODS In a prospective observational study, we directly compared the neurocognitive profiles of patients with confirmed NP-C (n = 7) and eAD (n = 15). All patients underwent neurocognitive assessment using dementia screening tests (mini-mental status examination [MMSE] and frontal assessment battery [FAB]) and an extensive battery of tests assessing verbal memory, visuoconstructive abilities, visual memory, executive functions and verbal fluency. RESULTS Overall cognitive impairment (MMSE) was significantly greater in eAD vs. NP-C (p = 0.010). The frequency of patients classified as cognitively 'impaired' was also significantly greater in eAD vs. NP-C (p = 0.025). Patients with NP-C showed relatively preserved verbal memory, but frequent impairment in visual memory, visuoconstruction, executive functions and in particular, verbal fluency. In the eAD group, a wider profile of more frequent and more severe neurocognitive deficits was seen, primarily featuring severe verbal and visual memory deficits along with major executive impairment. Delayed verbal memory recall was a particularly strong distinguishing factor between the two groups. CONCLUSION A combination of detailed yet easy-to-apply neurocognitive tests assessing verbal memory, executive functions and verbal fluency may help distinguish NP-C cases from those with primary dementia due to eAD.
Collapse
Affiliation(s)
- Andreas Johnen
- Department of Neurology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Matthias Pawlowski
- Department of Neurology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Thomas Duning
- Department of Neurology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| |
Collapse
|
43
|
Barbero-Camps E, Roca-Agujetas V, Bartolessis I, de Dios C, Fernández-Checa JC, Marí M, Morales A, Hartmann T, Colell A. Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy 2018; 14:1129-1154. [PMID: 29862881 PMCID: PMC6103708 DOI: 10.1080/15548627.2018.1438807] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Macroautophagy/autophagy failure with the accumulation of autophagosomes is an early neuropathological feature of Alzheimer disease (AD) that directly affects amyloid beta (Aβ) metabolism. Although loss of presenilin 1 function has been reported to impair lysosomal function and prevent autophagy flux, the detailed mechanism leading to autophagy dysfunction in AD remains to be elucidated. The resemblance between pathological hallmarks of AD and Niemann-Pick Type C disease, including endosome-lysosome abnormalities and impaired autophagy, suggests cholesterol accumulation as a common link. Using a mouse model of AD (APP-PSEN1-SREBF2 mice), expressing chimeric mouse-human amyloid precursor protein with the familial Alzheimer Swedish mutation (APP695swe) and mutant presenilin 1 (PSEN1-dE9), together with a dominant-positive, truncated and active form of SREBF2/SREBP2 (sterol regulatory element binding factor 2), we demonstrated that high brain cholesterol enhanced autophagosome formation, but disrupted its fusion with endosomal-lysosomal vesicles. The combination of these alterations resulted in impaired degradation of Aβ and endogenous MAPT (microtubule associated protein tau), and stimulated autophagy-dependent Aβ secretion. Exacerbated Aβ-induced oxidative stress in APP-PSEN1-SREBF2 mice, due to cholesterol-mediated depletion of mitochondrial glutathione/mGSH, is critical for autophagy induction. In agreement, in vivo mitochondrial GSH recovery with GSH ethyl ester, inhibited autophagosome synthesis by preventing the oxidative inhibition of ATG4B deconjugation activity exerted by Aβ. Moreover, cholesterol-enrichment within the endosomes-lysosomes modified the levels and membrane distribution of RAB7A and SNAP receptors (SNAREs), which affected its fusogenic ability. Accordingly, in vivo treatment with 2-hydroxypropyl-β-cyclodextrin completely rescued these alterations, making it a potential therapeutic tool for AD.
Collapse
Affiliation(s)
- Elisabet Barbero-Camps
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Vicente Roca-Agujetas
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Isabel Bartolessis
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Cristina de Dios
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Departament de Biomedicina, Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Jose C Fernández-Checa
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,d Liver Unit , Hospital Clinic, CIBEREHD , Barcelona , Spain , Research Center for Alcoholic Liver and Pancreatic Diseases , Keck School of Medicine of the University of Southern California , Los Angeles , CA , USA
| | - Montserrat Marí
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Albert Morales
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Tobias Hartmann
- e Experimental Neurology , Saarland University , Homburg/Saar , Germany
| | - Anna Colell
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,b Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| |
Collapse
|
44
|
Endosomal-Lysosomal Cholesterol Sequestration by U18666A Differentially Regulates Amyloid Precursor Protein (APP) Metabolism in Normal and APP-Overexpressing Cells. Mol Cell Biol 2018. [PMID: 29530923 DOI: 10.1128/mcb.00529-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amyloid β (Aβ) peptide, derived from amyloid precursor protein (APP), plays a critical role in the development of Alzheimer's disease. Current evidence indicates that altered levels or subcellular distribution of cholesterol can regulate Aβ production and clearance, but it remains unclear how cholesterol sequestration within the endosomal-lysosomal (EL) system can influence APP metabolism. Thus, we evaluated the effects of U18666A, which triggers cholesterol redistribution within the EL system, on mouse N2a cells expressing different levels of APP in the presence or absence of extracellular cholesterol and lipids provided by fetal bovine serum (FBS). Our results reveal that U18666A and FBS differentially increase the levels of APP and its cleaved products, the α-, β-, and η-C-terminal fragments, in N2a cells expressing normal levels of mouse APP (N2awt), higher levels of human wild-type APP (APPwt), or "Swedish" mutant APP (APPsw). The cellular levels of Aβ1-40/Aβ1-42 were markedly increased in U18666A-treated APPwt and APPsw cells. Our studies further demonstrate that APP and its cleaved products are partly accumulated in the lysosomes, possibly due to decreased clearance. Finally, we show that autophagy inhibition plays a role in mediating U18666A effects. Collectively, these results suggest that altered levels and distribution of cholesterol and lipids can differentially regulate APP metabolism depending on the nature of APP expression.
Collapse
|
45
|
Cupidi C, Frangipane F, Gallo M, Clodomiro A, Colao R, Bernardi L, Anfossi M, Conidi ME, Vasso F, Curcio SAM, Mirabelli M, Smirne N, Torchia G, Muraca MG, Puccio G, Di Lorenzo R, Zampieri S, Romanello M, Dardis A, Maletta RG, Bruni AC. Role of Niemann-Pick Type C Disease Mutations in Dementia. J Alzheimers Dis 2018; 55:1249-1259. [PMID: 27792009 DOI: 10.3233/jad-160214] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Several neurological and systemic diseases can cause dementia, beyond Alzheimer's disease. Rare genetic causes are often responsible for dementia with atypical features. Recently, mutations causative for Niemann-Pick type C disease (NPC) have also been implicated in neurodegenerative diseases. NPC is an autosomal recessive lipid storage disorder caused by mutations in NPC1 and NPC2 genes. In adults, clinical presentation mimicking other neurodegenerative diseases makes diagnosis difficult. Recent evidence suggests that heterozygous mutations in NPC genes may take on etiological significance. OBJECTIVE To investigate the presence of NPC1 and NPC2 mutations in adults affected by neurodegenerative dementia plus. METHODS We performed a genetic screening on 50 patients using a wide clinical and biochemical approach to characterize the phenotype of mutated patients. RESULTS Sequencing analysis revealed four different and known heterozygous mutations in NPC1 and NPC2 genes. Patient 1 carried the p. F284LfsX26 in NPC1 and was affected by progressive supranuclear palsy-like syndrome. The remaining three patients showed a corticobasal syndrome and harbored the c.441+1G>A variant of NPC2 (patient 2), the missense p.N222 S mutation associated with the c.1947+8G>C variant in the splice region of intron 12 in NPC1 (patient 3), and the p.V30M mutation in NPC2 (patient 4), respectively. Filipin staining was abnormal in patients 1 and 2. mRNA analysis revealed an altered splicing of the NPC2 gene in patient 2. CONCLUSIONS Heterozygous mutations of NPC1 and NPC2 genes could contribute to dementia plus, at least in a subset of patients. We highlight the occurrence of NPC1 and NPC2 heterozygous variants in dementia-plus as pathological event.
Collapse
Affiliation(s)
- Chiara Cupidi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Maura Gallo
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Livia Bernardi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Maria Anfossi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Franca Vasso
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Maria Mirabelli
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Nicoletta Smirne
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Giusi Torchia
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Gianfranco Puccio
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Stefania Zampieri
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Milena Romanello
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | | | | |
Collapse
|
46
|
Benussi A, Cotelli MS, Padovani A, Borroni B. Recent neuroimaging, neurophysiological, and neuropathological advances for the understanding of NPC. F1000Res 2018; 7:194. [PMID: 29511534 PMCID: PMC5814740 DOI: 10.12688/f1000research.12361.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Niemann–Pick disease type C (NPC) is a rare autosomal recessive lysosomal storage disorder with extensive biological, molecular, and clinical heterogeneity. Recently, numerous studies have tried to shed light on the pathophysiology of the disease, highlighting possible disease pathways common to other neurodegenerative disorders, such as Alzheimer’s disease and frontotemporal dementia, and identifying possible candidate biomarkers for disease staging and response to treatment. Miglustat, which reversibly inhibits glycosphingolipid synthesis, has been licensed in the European Union and elsewhere for the treatment of NPC in both children and adults. A number of ongoing clinical trials might hold promise for the development of new treatments for NPC. The objective of the present work is to review and evaluate recent literature data in order to highlight the latest neuroimaging, neurophysiological, and neuropathological advances for the understanding of NPC pathophysiology. Furthermore, ongoing developments in disease-modifying treatments will be briefly discussed.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia BS, Italy
| | | | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia BS, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia BS, Italy
| |
Collapse
|
47
|
Kosicek M, Gudelj I, Horvatic A, Jovic T, Vuckovic F, Lauc G, Hecimovic S. N-glycome of the Lysosomal Glycocalyx is Altered in Niemann-Pick Type C Disease (NPC) Model Cells. Mol Cell Proteomics 2018; 17:631-642. [PMID: 29367433 DOI: 10.1074/mcp.ra117.000129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence implicates lysosomal dysfunction in the pathogenesis of neurodegenerative diseases, including the rare inherited lysosomal storage disorders (LSDs) and the most common neurodegenerative diseases, such as Alzheimer's and Parkinson's disease (AD and PD). Although the triggers of the lysosomal impairment may involve the accumulated macromolecules or dysfunction of the lysosomal enzymes, the role of the lysosomal glycocalyx in the lysosomal (dys)function has not been studied. The goal of this work was to analyze whether there are changes in the lysosomal glycocalyx in a cellular model of a LSD Niemann-Pick type C disease (NPC). Using the ferrofluid nanoparticles we isolated lysosomal organelles from NPC1-null and CHOwt cells. The magnetically isolated lysosomal fractions were enriched with the lysosomal marker protein LAMP1 and showed the key features of NPC disease: 3-fold higher cholesterol content and 4-5 fold enlarged size of the particles compared with the lysosomal fractions of wt cells. These lysosomal fractions were further processed to isolate lysosomal membrane proteins using Triton X-114 and their N-glycome was analyzed by HILIC-UPLC. N-glycans presented in each chromatographic peak were elucidated using MALDI-TOF/TOF-MS. We detected changes in the N-glycosylation pattern of the lysosomal glycocalyx of NPC1-null versus wt cells which involved high-mannose and sialylated N-glycans. To the best of our knowledge this study is the first to report N-glycome profiling of the lysosomal glycocalyx in NPC disease cellular model and the first to report the specific changes in the lysosomal glycocalyx in NPC1-null cells. We speculate that changes in the lysosomal glycocalyx may contribute to lysosomal (dys)function. Further glycome profiling of the lysosomal glycocalyx in other LSDs as well as the most common neurodegenerative diseases, such as AD and PD, is necessary to better understand the role of the lysosomal glycocalyx and to reveal its potential contribution in lysosomal dysfunction leading to neurodegeneration.
Collapse
Affiliation(s)
- Marko Kosicek
- From the ‡Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Gudelj
- §Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Anita Horvatic
- ¶ERA Chair team, Internal Diseases Clinic, University of Zagreb, Faculty of Veterinary Medicine, Heinzelova 55, 10000 Zagreb, Croatia
| | - Tanja Jovic
- From the ‡Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.,‖University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Frano Vuckovic
- §Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- §Genos Glycoscience Research Laboratory, Zagreb, Croatia.,‖University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Silva Hecimovic
- From the ‡Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia;
| |
Collapse
|
48
|
Dougherty M, Lazar J, Klein JC, Diaz K, Gobillot T, Grunblatt E, Hasle N, Lawrence D, Maurano M, Nelson M, Olson G, Srivatsan S, Shendure J, Keene CD, Bird T, Horwitz MS, Marshall DA. Genome sequencing in a case of Niemann-Pick type C. Cold Spring Harb Mol Case Stud 2017; 2:a001222. [PMID: 27900365 PMCID: PMC5111003 DOI: 10.1101/mcs.a001222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adult-onset Niemann–Pick disease type C (NPC) is an infrequent presentation of a rare neurovisceral lysosomal lipid storage disorder caused by autosomal recessive mutations in NPC1 (∼95%) or NPC2 (∼5%). Our patient was diagnosed at age 33 when he presented with a 10-yr history of difficulties in judgment, concentration, speech, and coordination. A history of transient neonatal jaundice and splenomegaly with bone marrow biopsy suggesting a lipid storage disorder pointed to NPC; biochemical (“variant” level cholesterol esterification) and ultrastructural studies in adulthood confirmed the diagnosis. Genetic testing revealed two different missense mutations in the NPC1 gene—V950M and N1156S. Symptoms progressed over >20 yr to severe ataxia and spasticity, dementia, and dysphagia with aspiration leading to death. Brain autopsy revealed mild atrophy of the cerebrum and cerebellum. Microscopic examination showed diffuse gray matter deposition of balloon neurons, mild white matter loss, extensive cerebellar Purkinje cell loss with numerous “empty baskets,” and neurofibrillary tangles predominantly in the hippocampal formation and transentorhinal cortex. We performed whole-genome sequencing to examine whether the patient harbored variants outside of the NPC1 locus that could have contributed to his late-onset phenotype. We focused analysis on genetic modifiers in pathways related to lipid metabolism, longevity, and neurodegenerative disease. We identified no rare coding variants in any of the pathways examined nor was the patient enriched for genome-wide association study (GWAS) single-nucleotide polymorphisms (SNPs) associated with longevity or altered lipid metabolism. In light of these findings, this case provides support for the V950M variant being sufficient for adult-onset NPC disease.
Collapse
Affiliation(s)
- Max Dougherty
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA;; Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA
| | - John Lazar
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA;; Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Jason C Klein
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA;; Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Karina Diaz
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Theodore Gobillot
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Eli Grunblatt
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Nicholas Hasle
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Daniel Lawrence
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Megan Maurano
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Maria Nelson
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Gregory Olson
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Sanjay Srivatsan
- University of Washington School of Medicine, Seattle, Washington 98195, USA;; Medical Scientist Training Program (MSTP), University of Washington, Seattle, Washington 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA;; Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas Bird
- Department of Neurology, University of Washington, Seattle, Washington 98105, USA;; Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Marshall S Horwitz
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Desiree A Marshall
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
49
|
Arenas F, Garcia-Ruiz C, Fernandez-Checa JC. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration. Front Mol Neurosci 2017; 10:382. [PMID: 29204109 PMCID: PMC5698305 DOI: 10.3389/fnmol.2017.00382] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cholesterol is a critical component of membrane bilayers where it plays key structural and functional roles by regulating the activity of diverse signaling platforms and pathways. Particularly enriched in brain, cholesterol homeostasis in this organ is singular with respect to other tissues and exhibits a heterogeneous regulation in distinct brain cell populations. Due to the key role of cholesterol in brain physiology and function, alterations in cholesterol homeostasis and levels have been linked to brain diseases and neurodegeneration. In the case of Alzheimer disease (AD), however, this association remains unclear with evidence indicating that either increased or decreased total brain cholesterol levels contribute to this major neurodegenerative disease. Here, rather than analyzing the role of total cholesterol levels in neurodegeneration, we focus on the contribution of intracellular cholesterol pools, particularly in endolysosomes and mitochondria through its trafficking via specialized membrane domains delineated by the contacts between endoplasmic reticulum and mitochondria, in the onset of prevalent neurodegenerative diseases such as AD, Parkinson disease, and Huntington disease as well as in lysosomal disorders like Niemann-Pick type C disease. We dissect molecular events associated with intracellular cholesterol accumulation, especially in mitochondria, an event that results in impaired mitochondrial antioxidant defense and function. A better understanding of the mechanisms involved in the distribution of cholesterol in intracellular compartments may shed light on the role of cholesterol homeostasis disruption in neurodegeneration and may pave the way for specific intervention opportunities.
Collapse
Affiliation(s)
- Fabian Arenas
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- Liver Unit and Hospital Clinic I Provincial, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red, CIBEREHD, Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- Liver Unit and Hospital Clinic I Provincial, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red, CIBEREHD, Barcelona, Spain
- Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States
| | - Jose C. Fernandez-Checa
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- Liver Unit and Hospital Clinic I Provincial, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red, CIBEREHD, Barcelona, Spain
- Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States
| |
Collapse
|
50
|
Hassan S, Sidransky E, Tayebi N. The role of epigenetics in lysosomal storage disorders: Uncharted territory. Mol Genet Metab 2017; 122:10-18. [PMID: 28918065 DOI: 10.1016/j.ymgme.2017.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
The study of the contribution of epigenetic mechanisms, including DNA methylation, histone modifications, and microRNAs, to human disease has enhanced our understanding of different cellular processes and diseased states, as well as the effect of environmental factors on phenotypic outcomes. Epigenetic studies may be particularly relevant in evaluating the clinical heterogeneity observed in monogenic disorders. The lysosomal storage disorders are Mendelian disorders characterized by a wide spectrum of associated phenotypes, ranging from neonatal presentations to symptoms that develop in late adulthood. Some lack a tight genotype/phenotype correlation. While epigenetics may explain some of the discordant phenotypes encountered in patients with the same lysosomal storage disorder, especially among patients sharing the same genotype, to date, few studies have focused on these mechanisms. We review three common epigenetic mechanisms, DNA methylation, histone modifications, and microRNAs, and highlight their applications to phenotypic variation and therapeutics. Three specific lysosomal storage diseases, Gaucher disease, Fabry disease, and Niemann-Pick type C disease are presented as prototypical disorders with vast clinical heterogeneity that may be impacted by epigenetics. Our goal is to motivate researchers to consider epigenetics as a mechanism to explain the complexities of biological functions and pathologies of these rare disorders.
Collapse
Affiliation(s)
- Shahzeb Hassan
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, United States
| | - Ellen Sidransky
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, United States.
| | - Nahid Tayebi
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, United States
| |
Collapse
|