1
|
Saha D, Vishwakarma S, Gupta RK, Pant A, Dhyani V, Sharma S, Majumdar S, Kaur I, Giri L. Non-prophylactic resveratrol-mediated protection of neurite integrity under chronic hypoxia is associated with reduction of Cav1.2 channel expression and calcium overloading. Neurochem Int 2023; 164:105466. [PMID: 36587745 DOI: 10.1016/j.neuint.2022.105466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
Cellular hypoxia is a major cause of oxidative stress, culminating in neuronal damage in neurodegenerative diseases. Numerous ex vivo studies have implicated that hypoxia episodes leading to disruption of Ca2+ homeostasis and redox status contribute to the progression of various neuropathologies and cell death. Isolation and maintenance of primary cell culture being cost-intensive, the details of the time course relationship between Ca2+ overload, L-type Ca2+ channel function, and neurite retraction under chronic and long-term hypoxia remain undefined. In order to explore the effect of oxidative stress and Ca2+ overload on neurite length, first, we developed a 5-day-long neurite outgrowth model using N2a cell line. Second, we propose a chronic hypoxia model to investigate the modulation of the L-type Ca2+ channel (Cav1.2) and oxidative resistance gene (OXR1) expression level during the process of neurite retraction and neuronal damage over 32 h. Thirdly, we developed a framework for quantitative analysis of cytosolic Ca2+, superoxide formation, neurite length, and constriction formation in individual cells using live imaging that provides an understanding of molecular targets. Our findings suggest that an increase in cytosolic Ca2+ is a feature of an early phase of hypoxic stress. Further, we demonstrate that augmentation in the L-type channel leads to amplification in Ca2+ overload, ROS accumulation, and a reduction in neurite length during the late phase of hypoxic stress. Next, we demonstrated that non-prophylactic treatment of resveratrol leads to the reduction of calcium overloading under chronic hypoxia via lowering of L-type channel expression. Finally, we demonstrate that resveratrol-mediated reduction of Cav1.2 channel and STAT3 expression are associated with retention of neurite integrity. The proposed in vitro model assumes significance in the context of drug designing and testing that demands monitoring of neurite length and constriction formations by imaging before animal testing.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Sushma Vishwakarma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Rishikesh Kumar Gupta
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Avnika Pant
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Vaibhav Dhyani
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India; Optical Science Centre, Faculty of Science Engineering and Technology, Swinburne University of Technology, Melbourne, Australia
| | - Sarmeela Sharma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
2
|
Guan R, Yang C, Zhang J, Wang J, Chen R, Su P. Dehydroepiandrosterone alleviates hypoxia-induced learning and memory dysfunction by maintaining synaptic homeostasis. CNS Neurosci Ther 2022; 28:1339-1350. [PMID: 35703574 PMCID: PMC9344085 DOI: 10.1111/cns.13869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS Hypoxia causes plenty of pathologies in the central nervous system (CNS) including impairment of cognitive and memory function. Dehydroepiandrosterone (DHEA) has been proved to have therapeutic effects on CNS injuries by maintaining the homeostasis of synapses, yet its effect on hypoxia-induced CNS damage remains unknown. METHODS In vivo and in vitro models were established. Concentrations of glutamate and γ GABA were tested by ELISA. Levels of synapse-associated proteins were measured by western blotting. Density of dendritic protrusions of hippocampal neurons was assessed by Golgi staining. Immunofluorescence was adopted to observe the morphology of primary neurons. The novel object recognition test (NORT) and shuttle box test were used to evaluate cognition. RESULTS Dehydroepiandrosterone reversed abnormal elevation of glutamate levels, shortenings of neuronal processes, decreases in the density of dendritic protrusions, downregulation of synaptosome-associated protein (SNAP25), and impaired cognition caused by hypoxia. Hypoxia also resulted in notably downregulation of syntaxin 1A (Stx-1A). Overexpression of Stx-1A dramatically attenuated hypoxia-induced elevation of glutamate. Treatment with DHEA reversed the Stx-1A downregulation caused by hypoxic exposure. CONCLUSION Dehydroepiandrosterone may exert a protective effect on hypoxia-induced memory impairment by maintaining synaptic homeostasis. These findings offer a novel understanding of the therapeutic effect of DHEA on hypoxia-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Ruili Guan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jianyu Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Rao H, Jalali JA, Johnston TP, Koulen P. Emerging Roles of Dyslipidemia and Hyperglycemia in Diabetic Retinopathy: Molecular Mechanisms and Clinical Perspectives. Front Endocrinol (Lausanne) 2021; 12:620045. [PMID: 33828528 PMCID: PMC8020813 DOI: 10.3389/fendo.2021.620045] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a significant cause of vision loss and a research subject that is constantly being explored for new mechanisms of damage and potential therapeutic options. There are many mechanisms and pathways that provide numerous options for therapeutic interventions to halt disease progression. The purpose of the present literature review is to explore both basic science research and clinical research for proposed mechanisms of damage in diabetic retinopathy to understand the role of triglyceride and cholesterol dysmetabolism in DR progression. This review delineates mechanisms of damage secondary to triglyceride and cholesterol dysmetabolism vs. mechanisms secondary to diabetes to add clarity to the pathogenesis behind each proposed mechanism. We then analyze mechanisms utilized by both triglyceride and cholesterol dysmetabolism and diabetes to elucidate the synergistic, additive, and common mechanisms of damage in diabetic retinopathy. Gathering this research adds clarity to the role dyslipidemia has in DR and an evaluation of the current peer-reviewed basic science and clinical evidence provides a basis to discern new potential therapeutic targets.
Collapse
Affiliation(s)
- Hussain Rao
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Jonathan A. Jalali
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Thomas P. Johnston
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
4
|
Datar A, Ameeramja J, Bhat A, Srivastava R, Mishra A, Bernal R, Prost J, Callan-Jones A, Pullarkat PA. The Roles of Microtubules and Membrane Tension in Axonal Beading, Retraction, and Atrophy. Biophys J 2019; 117:880-891. [PMID: 31427070 DOI: 10.1016/j.bpj.2019.07.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/26/2019] [Indexed: 02/02/2023] Open
Abstract
Axonal beading, or the formation of a series of swellings along the axon, and retraction are commonly observed shape transformations that precede axonal atrophy in Alzheimer's disease, Parkinson's disease, and other neurodegenerative conditions. The mechanisms driving these morphological transformations are poorly understood. Here, we report controlled experiments that can induce either beading or retraction and follow the time evolution of these responses. By making quantitative analysis of the shape modes under different conditions, measurement of membrane tension, and using theoretical considerations, we argue that membrane tension is the main driving force that pushes cytosol out of the axon when microtubules are degraded, causing axonal thinning. Under pharmacological perturbation, atrophy is always retrograde, and this is set by a gradient in the microtubule stability. The nature of microtubule depolymerization dictates the type of shape transformation, vis-à-vis beading or retraction. Elucidating the mechanisms of these shape transformations may facilitate development of strategies to prevent or arrest axonal atrophy due to neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Alka Bhat
- Raman Research Institute, Bengaluru, India
| | | | | | - Roberto Bernal
- Departamento de Física, SMAT-C, Universidad de Santiago de Chile, Santiago, Chile
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, Institut Curie, 10 PSL Research University, CNRS UMR168, Paris, France; Mechanobiology Institute, National University of Singapore, Singapore
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France.
| | | |
Collapse
|