1
|
Iwamoto N, Liu Y, Frank-Kamenetsky M, Maguire A, Tseng WC, Taborn K, Kothari N, Akhtar A, Bowman K, Shelke JD, Lamattina A, Hu XS, Jang HG, Kandasamy P, Liu F, Longo K, Looby R, Meena, Metterville J, Pan Q, Purcell-Estabrook E, Shimizu M, Prakasha PS, Standley S, Upadhyay H, Yang H, Yin Y, Zhao A, Francis C, Byrne M, Dale E, Verdine GL, Vargeese C. Preclinical evaluation of stereopure antisense oligonucleotides for allele-selective lowering of mutant HTT. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102246. [PMID: 39027419 PMCID: PMC11255113 DOI: 10.1016/j.omtn.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in one copy of the HTT gene (mutant HTT, mHTT). The unaffected HTT gene encodes wild-type HTT (wtHTT) protein, which supports processes important for the health and function of the central nervous system. Selective lowering of mHTT for the treatment of HD may provide a benefit over nonselective HTT-lowering approaches, as it aims to preserve the beneficial activities of wtHTT. Targeting a heterozygous single-nucleotide polymorphism (SNP) where the targeted variant is on the mHTT gene is one strategy for achieving allele-selective activity. Herein, we investigated whether stereopure phosphorothioate (PS)- and phosphoryl guanidine (PN)-containing oligonucleotides can direct allele-selective mHTT lowering by targeting rs362273 (SNP3). We demonstrate that our SNP3-targeting molecules are potent, durable, and selective for mHTT in vitro and in vivo in mouse models. Through comparisons with a surrogate for the nonselective investigational compound tominersen, we also demonstrate that allele-selective molecules display equivalent potency toward mHTT with improved durability while sparing wtHTT. Our preclinical findings support the advancement of WVE-003, an investigational allele-selective compound currently in clinical testing (NCT05032196) for the treatment of patients with HD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ali Akhtar
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | - Fangjun Liu
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Ken Longo
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Meena
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Qianli Pan
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Hailin Yang
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Yuan Yin
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | - Mike Byrne
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Elena Dale
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Gregory L. Verdine
- Department of Stem Cell and Regenerative Biology, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
2
|
Ballios BG, Mandola A, Tayyib A, Tumber A, Garkaby J, Vong L, Heon E, Roifman CM, Vincent A. Deep phenotypic characterization of the retinal dystrophy in patients with RNU4ATAC-associated Roifman syndrome. Eye (Lond) 2023; 37:3734-3742. [PMID: 37225827 PMCID: PMC10697969 DOI: 10.1038/s41433-023-02581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE To characterize the retinal phenotype in RNU4ATAC-associated Roifman syndrome. METHODS Ten patients (including 8 males) with molecularly confirmed Roifman syndrome underwent detailed ophthalmologic evaluation including fundus imaging, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography (SD-OCT), and electroretinography (ERG). Six patients had follow-up eye exams. All patients also underwent comprehensive examination for features of extra-retinal Roifman syndrome. RESULTS All patients had biallelic RNU4ATAC variants. Nyctalopia was common (7/10). Visual acuity at presentation ranged from 20/20 to 20/200 (Age Range: 5-41 years). Retinal exam revealed features of generalized retinopathy with mid-peripheral pigment epithelial changes. A para or peri-foveal ring of hyper-autofluorescence was the commonest FAF abnormality noted (6/8). The SD-OCT demonstrated relative preservation of the foveal ellipsoid zone in six cases; associated features included cystoid changes (5/10) and posterior staphyloma (3/10). The ERG was abnormal in all patients; nine showed generalized rod-cone dystrophy, whilst one patient with sectoral retinal involvement only had isolated rod dystrophy (20 years old). On follow-up examination (Mean duration: 8.16 years), progressive loss of visual acuity (2/6), mid-peripheral retinal atrophy (3/6) or shortening of ellipsoid zone width (1/6) were observed. CONCLUSION This study has characterized the retinal phenotype in RNU4ATAC-associated Roifman syndrome. Retinal involvement is universal, early-onset, and overall, the retinal and FAF features are consistent with rod-cone degeneration that is slowly progressive over time. The sub-foveal retinal ultrastructure is relatively preserved in majority of patients. Phenotypic variability independent of age exists, and more study of allelic- and sex-based determinants of disease severity are necessary.
Collapse
Affiliation(s)
- Brian G Ballios
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Amarilla Mandola
- Division of Immunology and Allergy, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Alaa Tayyib
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jenny Garkaby
- Division of Immunology and Allergy, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Linda Vong
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
3
|
Díaz Casas A, Cordoba JJ, Ferrer BJ, Balakrishnan S, Wurm JE, Pastrana‐Ríos B, Chazin WJ. Binding by calmodulin is coupled to transient unfolding of the third FF domain of Prp40A. Protein Sci 2023; 32:e4606. [PMID: 36810829 PMCID: PMC10022492 DOI: 10.1002/pro.4606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Human pre-mRNA processing protein 40 homolog A (hPrp40A) is a splicing factor that interacts with the Huntington's disease protein huntingtin (Htt). Evidence has accumulated that both Htt and hPrp40A are modulated by the intracellular Ca2+ sensor calmodulin (CaM). Here we report characterization of the interaction of human CM with the third FF domain (FF3 ) of hPrp40A using calorimetric, fluorescence and structural approaches. Homology modeling, differential scanning calorimetry and small angle X-ray scattering (SAXS) data show FF3 forms a folded globular domain. CaM was found to bind FF3 in a Ca2+ -dependent manner with a 1:1 stoichiometry and a dissociation constant (Kd ) of 25 ± 3 μM at 25°C. NMR studies showed that both domains of CaM are engaged in binding and SAXS analysis of the FF3 -CaM complex revealed CaM occupies an extended configuration. Analysis of the FF3 sequence showed that the anchors for CaM binding must be buried in its hydrophobic core, suggesting that binding to CaM requires unfolding of FF3 . Trp anchors were proposed based on sequence analysis and confirmed by intrinsic Trp fluorescence of FF3 upon binding of CaM and substantial reductions in affinity for Trp-Ala FF3 mutants. The consensus model of the complex showed that binding to CaM binding occurs to an extended, non-globular state of the FF3 , consistent with coupling to transient unfolding of the domain. The implications of these results are discussed in the context of the complex interplay of Ca2+ signaling and Ca2+ sensor proteins in modulating Prp40A-Htt function.
Collapse
Affiliation(s)
- A. Díaz Casas
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Present address:
Department of Natural SciencesPontifical Catholic University of Puerto RicoPoncePuerto RicoUSA
| | - J. J. Cordoba
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - B. J. Ferrer
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - S. Balakrishnan
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - J. E. Wurm
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - B. Pastrana‐Ríos
- Department of ChemistryUniversity of Puerto Rico, Mayagüez CampusMayagüezPuerto RicoUSA
| | - W. J. Chazin
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
4
|
Huntingtin and Other Neurodegeneration-Associated Proteins in the Development of Intracellular Pathologies: Potential Target Search for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232415533. [PMID: 36555175 PMCID: PMC9779313 DOI: 10.3390/ijms232415533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are currently incurable. Numerous experimental data accumulated over the past fifty years have brought us closer to understanding the molecular and cell mechanisms responsible for their development. However, these data are not enough for a complete understanding of the genesis of these diseases, nor to suggest treatment methods. It turns out that many cellular pathologies developing during neurodegeneration coincide from disease to disease. These observations give hope to finding a common intracellular target(s) and to offering a universal method of treatment. In this review, we attempt to analyze data on similar cellular disorders among neurodegenerative diseases in general, and polyglutamine neurodegenerative diseases in particular, focusing on the interaction of various proteins involved in the development of neurodegenerative diseases with various cellular organelles. The main purposes of this review are: (1) to outline the spectrum of common intracellular pathologies and to answer the question of whether it is possible to find potential universal target(s) for therapeutic intervention; (2) to identify specific intracellular pathologies and to speculate about a possible general approach for their treatment.
Collapse
|
5
|
Tubulin Cytoskeleton in Neurodegenerative Diseases–not Only Primary Tubulinopathies. Cell Mol Neurobiol 2022:10.1007/s10571-022-01304-6. [DOI: 10.1007/s10571-022-01304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
AbstractNeurodegenerative diseases represent a large group of disorders characterized by gradual loss of neurons and functions of the central nervous systems. Their course is usually severe, leading to high morbidity and subsequent inability of patients to independent functioning. Vast majority of neurodegenerative diseases is currently untreatable, and only some symptomatic drugs are available which efficacy is usually very limited. To develop novel therapies for this group of diseases, it is crucial to understand their pathogenesis and to recognize factors which can influence the disease course. One of cellular structures which dysfunction appears to be relatively poorly understood in the light of neurodegenerative diseases is tubulin cytoskeleton. On the other hand, its changes, both structural and functional, can considerably influence cell physiology, leading to pathological processes occurring also in neurons. In this review, we summarize and discuss dysfunctions of tubulin cytoskeleton in various neurodegenerative diseases different than primary tubulinopathies (caused by mutations in genes encoding the components of the tubulin cytoskeleton), especially Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, prion diseases, and neuronopathic mucopolysaccharidoses. It is also proposed that correction of these disorders might attenuate the progress of specific diseases, thus, finding newly recognized molecular targets for potential drugs might become possible.
Collapse
|
6
|
Gómez-Jaramillo L, Cano-Cano F, González-Montelongo MDC, Campos-Caro A, Aguilar-Diosdado M, Arroba AI. A New Perspective on Huntington's Disease: How a Neurological Disorder Influences the Peripheral Tissues. Int J Mol Sci 2022; 23:6089. [PMID: 35682773 PMCID: PMC9181740 DOI: 10.3390/ijms23116089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a toxic, aggregation-prone expansion of CAG repeats in the HTT gene with an age-dependent progression that leads to behavioral, cognitive and motor symptoms. Principally affecting the frontal cortex and the striatum, mHTT disrupts many cellular functions. In fact, increasing evidence shows that peripheral tissues are affected by neurodegenerative diseases. It establishes an active crosstalk between peripheral tissues and the brain in different neurodegenerative diseases. This review focuses on the current knowledge of peripheral tissue effects in HD animal and cell experimental models and identifies biomarkers and mechanisms involved or affected in the progression of the disease as new therapeutic or early diagnostic options. The particular changes in serum/plasma, blood cells such as lymphocytes, immune blood cells, the pancreas, the heart, the retina, the liver, the kidney and pericytes as a part of the blood-brain barrier are described. It is important to note that several changes in different mouse models of HD present differences between them and between the different ages analyzed. The understanding of the impact of peripheral organ inflammation in HD may open new avenues for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Laura Gómez-Jaramillo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Fátima Cano-Cano
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - María del Carmen González-Montelongo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Antonio Campos-Caro
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Manuel Aguilar-Diosdado
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Departamento de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Ana I. Arroba
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| |
Collapse
|
7
|
Robichaux MA, Nguyen V, Chan F, Kailasam L, He F, Wilson JH, Wensel TG. Subcellular localization of mutant P23H rhodopsin in an RFP fusion knock-in mouse model of retinitis pigmentosa. Dis Model Mech 2022; 15:274688. [PMID: 35275162 PMCID: PMC9092655 DOI: 10.1242/dmm.049336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
The P23H mutation in rhodopsin (Rho), the rod visual pigment, is the most common allele associated with autosomal-dominant retinitis pigmentosa (adRP). The fate of misfolded mutant Rho in rod photoreceptors has yet to be elucidated. We generated a new mouse model, in which the P23H-Rho mutant allele is fused to the fluorescent protein Tag-RFP-T (P23HhRhoRFP). In heterozygotes, outer segments formed, and wild-type (WT) rhodopsin was properly localized, but mutant P23H-Rho protein was mislocalized in the inner segments. Heterozygotes exhibited slowly progressing retinal degeneration. Mislocalized P23HhRhoRFP was contained in greatly expanded endoplasmic reticulum (ER) membranes. Quantification of mRNA for markers of ER stress and the unfolded protein response revealed little or no increases. mRNA levels for both the mutant human rhodopsin allele and the WT mouse rhodopsin were reduced, but protein levels revealed selective degradation of the mutant protein. These results suggest that the mutant rods undergo an adaptative process that prolongs survival despite unfolded protein accumulation in the ER. The P23H-Rho-RFP mouse may represent a useful tool for the future study of the pathology and treatment of P23H-Rho and adRP. This article has an associated First Person interview with the first author of the paper. Summary: A mouse line with a knock-in of the human rhodopsin gene altered to contain the P23H mutation and a red fluorescent protein fusion provides a new model for autosomal-dominant retinitis pigmentosa.
Collapse
Affiliation(s)
- Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.,Departments of Ophthalmology and Biochemistry, West Virginia University, 108 Biomedical Road, Morgantown, WV 26506, USA
| | - Vy Nguyen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Fung Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Lavanya Kailasam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - John H Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
8
|
Grotz S, Schäfer J, Wunderlich KA, Ellederova Z, Auch H, Bähr A, Runa-Vochozkova P, Fadl J, Arnold V, Ardan T, Veith M, Santamaria G, Dhom G, Hitzl W, Kessler B, Eckardt C, Klein J, Brymova A, Linnert J, Kurome M, Zakharchenko V, Fischer A, Blutke A, Döring A, Suchankova S, Popelar J, Rodríguez-Bocanegra E, Dlugaiczyk J, Straka H, May-Simera H, Wang W, Laugwitz KL, Vandenberghe LH, Wolf E, Nagel-Wolfrum K, Peters T, Motlik J, Fischer MD, Wolfrum U, Klymiuk N. Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes. EMBO Mol Med 2022; 14:e14817. [PMID: 35254721 PMCID: PMC8988205 DOI: 10.15252/emmm.202114817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 01/17/2023] Open
Abstract
Usher syndrome (USH) is the most common form of monogenic deaf-blindness. Loss of vision is untreatable and there are no suitable animal models for testing therapeutic strategies of the ocular constituent of USH, so far. By introducing a human mutation into the harmonin-encoding USH1C gene in pigs, we generated the first translational animal model for USH type 1 with characteristic hearing defect, vestibular dysfunction, and visual impairment. Changes in photoreceptor architecture, quantitative motion analysis, and electroretinography were characteristics of the reduced retinal virtue in USH1C pigs. Fibroblasts from USH1C pigs or USH1C patients showed significantly elongated primary cilia, confirming USH as a true and general ciliopathy. Primary cells also proved their capacity for assessing the therapeutic potential of CRISPR/Cas-mediated gene repair or gene therapy in vitro. AAV-based delivery of harmonin into the eye of USH1C pigs indicated therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Sophia Grotz
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Kirsten A Wunderlich
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Hannah Auch
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Petra Runa-Vochozkova
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Janet Fadl
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Vanessa Arnold
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Taras Ardan
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Miroslav Veith
- Ophthalmology Clinic, University Hospital Kralovske Vinohrady, Praha, Czech Republic
| | - Gianluca Santamaria
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Georg Dhom
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Wolfgang Hitzl
- Biostatistics and Data Science, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kessler
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Christian Eckardt
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Joshua Klein
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Anna Brymova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Mayuko Kurome
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Valeri Zakharchenko
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Fischer
- Veterinary Faculty, Small Animal Clinics, LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anna Döring
- Veterinary Faculty, Small Animal Clinics, LMU Munich, Munich, Germany
| | - Stepanka Suchankova
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Jiri Popelar
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Eduardo Rodríguez-Bocanegra
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Julia Dlugaiczyk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Hans Straka
- Faculty of Biology, LMU Munich, Planegg, Germany
| | - Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, JGU Mainz, Mainz, Germany
| | - Weiwei Wang
- Grousbeck Gene Therapy Center, Mass Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Karl-Ludwig Laugwitz
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Mass Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany.,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Tobias Peters
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - M Dominik Fischer
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK.,Nuffield Laboratory of Ophthalmology, NDCN, University of Oxford, Oxford, UK
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| |
Collapse
|
9
|
Mustafa R, Rawas C, Mannal N, Kreiner G, Spittau B, Kamińska K, Yilmaz R, Pötschke C, Kirsch J, Liss B, Tucker KL, Parlato R. Targeted Ablation of Primary Cilia in Differentiated Dopaminergic Neurons Reduces Striatal Dopamine and Responsiveness to Metabolic Stress. Antioxidants (Basel) 2021; 10:antiox10081284. [PMID: 34439532 PMCID: PMC8389284 DOI: 10.3390/antiox10081284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Primary cilia (PC) are microtubule-based protrusions of the cell membrane transducing molecular signals during brain development. Here, we report that PC are required for maintenance of Substantia nigra (SN) dopaminergic (DA) neurons highly vulnerable in Parkinson's disease (PD). Targeted blockage of ciliogenesis in differentiated DA neurons impaired striato-nigral integrity in adult mice. The relative number of SN DA neurons displaying a typical auto-inhibition of spontaneous activity in response to dopamine was elevated under control metabolic conditions, but not under metabolic stress. Strikingly, in the absence of PC, the remaining SN DA neurons were less vulnerable to the PD neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP). Our data indicate conserved PC-dependent neuroadaptive responses to DA lesions in the striatum. Moreover, PC control the integrity and dopamine response of a subtype of SN DA neurons. These results reinforce the critical role of PC as sensors of metabolic stress in PD and other disorders of the dopamine system.
Collapse
Affiliation(s)
- Rasem Mustafa
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Chahinaz Rawas
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Nadja Mannal
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland;
| | - Björn Spittau
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Katarzyna Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland;
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348 Kraków, Poland
| | - Rüstem Yilmaz
- Mannheim Center for Translational Neuroscience, Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Medical Faculty, University of Heidelberg, 68167 Mannheim, Germany;
| | - Christina Pötschke
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
| | - Birgit Liss
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
- Linacre College and New College, University of Oxford, Oxford OX1 2JD, UK
| | - Kerry L. Tucker
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
- Department of Biomedical Sciences, College of Osteopathic Medicine, Biddeford, ME 04005, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| | - Rosanna Parlato
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
- Mannheim Center for Translational Neuroscience, Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Medical Faculty, University of Heidelberg, 68167 Mannheim, Germany;
- Correspondence: ; Tel.: +49-621-3835-611
| |
Collapse
|
10
|
Goodliffe J, Rubakovic A, Chang W, Pathak D, Luebke J. Structural and functional features of medium spiny neurons in the BACHDΔN17 mouse model of Huntington's Disease. PLoS One 2020; 15:e0234394. [PMID: 32574176 PMCID: PMC7310706 DOI: 10.1371/journal.pone.0234394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/26/2020] [Indexed: 11/25/2022] Open
Abstract
In the BACHD mouse model of Huntington’s disease (HD), deletion of the N17 domain of the Huntingtin gene (BACHDΔN17, Q97) has been reported to lead to nuclear accumulation of mHTT and exacerbation of motor deficits, neuroinflammation and striatal atrophy (Gu et al., 2015). Here we characterized the effect of N17 deletion on dorsolateral striatal medium spiny neurons (MSNs) in BACHDΔN17 (Q97) and BACWTΔN17 (Q31) mice by comparing them to MSNs in wildtype (WT) mice. Mice were characterized on a series of motor tasks and subsequently whole cell patch clamp recordings with simultaneous biocytin filling of MSNs in in vitro striatal slices from these mice were used to comprehensively assess their physiological and morphological features. Key findings include that: Q97 mice exhibit impaired gait and righting reflexes but normal tail suspension reflexes and normal coats while Q31 mice do not differ from WT; intrinsic membrane and action potential properties are altered -but differentially so- in MSNs from Q97 and from Q31 mice; excitatory and inhibitory synaptic currents exhibit higher amplitudes in Q31 but not Q97 MSNs, while excitatory synaptic currents occur at lower frequency in Q97 than in WT and Q31 MSNs; there is a reduced total dendritic length in Q31 -but not Q97- MSNs compared to WT, while spine density and number did not differ in MSNs in the three groups. The findings that Q31 MSNs differed from Q97 and WT neurons with regard to some physiological features and structurally suggest a novel role of the N17 domain in the function of WT Htt. The motor phenotype seen in Q97 mice was less robust than that reported in an earlier study (Gu et al., 2015), and the alterations to MSN physiological properties were largely consistent with changes reported previously in a number of other mouse models of HD. Together this study indicates that N17 plays a role in the modulation of the properties of MSNs in both mHtt and WT-Htt mice, but does not markedly exacerbate HD-like pathogenesis in the BACHD model.
Collapse
Affiliation(s)
- Joseph Goodliffe
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| | - Anastasia Rubakovic
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Wayne Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Dhruba Pathak
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jennifer Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
11
|
Taran AS, Shuvalova LD, Lagarkova MA, Alieva IB. Huntington's Disease-An Outlook on the Interplay of the HTT Protein, Microtubules and Actin Cytoskeletal Components. Cells 2020; 9:E1514. [PMID: 32580314 PMCID: PMC7348758 DOI: 10.3390/cells9061514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease is a severe and currently incurable neurodegenerative disease. An autosomal dominant mutation in the Huntingtin gene (HTT) causes an increase in the polyglutamine fragment length at the protein N-terminus. The consequence of the mutation is the death of neurons, mostly striatal neurons, leading to the occurrence of a complex of motor, cognitive and emotional-volitional personality sphere disorders in carriers. Despite intensive studies, the functions of both mutant and wild-type huntingtin remain poorly understood. Surprisingly, there is the selective effect of the mutant form of HTT even on nervous tissue, whereas the protein is expressed ubiquitously. Huntingtin plays a role in cell physiology and affects cell transport, endocytosis, protein degradation and other cellular and molecular processes. Our experimental data mining let us conclude that a significant part of the Huntingtin-involved cellular processes is mediated by microtubules and other cytoskeletal cell structures. The review attempts to look at unresolved issues in the study of the huntingtin and its mutant form, including their functions affecting microtubules and other components of the cell cytoskeleton.
Collapse
Affiliation(s)
- Aleksandra S. Taran
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninsky Gory, 119992 Moscow, Russia; (A.S.T.); (L.D.S.)
| | - Lilia D. Shuvalova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninsky Gory, 119992 Moscow, Russia; (A.S.T.); (L.D.S.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Maria A. Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Irina B. Alieva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninsky Gory, 119992 Moscow, Russia
| |
Collapse
|
12
|
Mustafa R, Kreiner G, Kamińska K, Wood AEJ, Kirsch J, Tucker KL, Parlato R. Targeted Depletion of Primary Cilia in Dopaminoceptive Neurons in a Preclinical Mouse Model of Huntington's Disease. Front Cell Neurosci 2019; 13:565. [PMID: 31920562 PMCID: PMC6936315 DOI: 10.3389/fncel.2019.00565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Multiple pathomechanisms triggered by mutant Huntingtin (mHTT) underlie progressive degeneration of dopaminoceptive striatal neurons in Huntington’s disease (HD). The primary cilium is a membrane compartment that functions as a hub for various pathways that are dysregulated in HD, for example, dopamine (DA) receptor transmission and the mechanistic target of rapamycin (mTOR) pathway. The roles of primary cilia (PC) for the maintenance of striatal neurons and in HD progression remain unknown. Here, we investigated PC defects in vulnerable striatal neurons in a progressive model of HD, the mHTT-expressing knock-in zQ175 mice. We found that PC length is affected in striatal but not in cortical neurons, in association with the accumulation of mHTT. To explore the role of PC, we generated conditional mutant mice lacking IFT88, a component of the anterograde intraflagellar transport-B complex lacking PC in dopaminoceptive neurons. This mutation preserved the expression of the dopamine 1 receptor (D1R), and the survival of striatal neurons, but resulted in a mild increase of DA metabolites in the striatum, suggesting an imbalance of ciliary DA receptor transmission. Conditional loss of PC in zQ175 mice did not trigger astrogliosis, however, mTOR signaling was more active and resulted in a more pronounced accumulation of nuclear inclusions containing mHTT. Further studies will be required of aged mice to determine the role of aberrant ciliary function in more advanced stages of HD.
Collapse
Affiliation(s)
- Rasem Mustafa
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,Institute of Anatomy and Cell Biology, Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.,Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Amelia-Elise J Wood
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Kerry L Tucker
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,Institute of Anatomy and Cell Biology, Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Satir P, Satir BH. The conserved ancestral signaling pathway from cilium to nucleus. J Cell Sci 2019; 132:132/15/jcs230441. [PMID: 31375541 DOI: 10.1242/jcs.230441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Many signaling molecules are localized to both the primary cilium and nucleus. Localization of specific transmembrane receptors and their signaling scaffold molecules in the cilium is necessary for correct physiological function. After a specific signaling event, signaling molecules leave the cilium, usually in the form of an endocytic vesicle scaffold, and move to the nucleus, where they dissociate from the scaffold and enter the nucleus to affect gene expression. This ancient pathway probably arose very early in eukaryotic evolution as the nucleus and cilium co-evolved. Because there are similarities in molecular composition of the nuclear and ciliary pores the entry and exit of proteins in both organelles rely on similar mechanisms. In this Hypothesis, we propose that the pathway is a dynamic universal cilia-based signaling pathway with some variations from protists to man. Everywhere the cilium functions as an important organelle for molecular storage of certain key receptors and selection and concentration of their associated signaling molecules that move from cilium to nucleus. This could also have important implications for human diseases such as Huntington disease.
Collapse
Affiliation(s)
- Peter Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461 .,B&P Nanobiology Consultants, 7 Byfield Lane, Greenwich, CT 06830, USA
| | - Birgit H Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461.,B&P Nanobiology Consultants, 7 Byfield Lane, Greenwich, CT 06830, USA
| |
Collapse
|
14
|
Cilia and development. Curr Opin Genet Dev 2019; 56:15-21. [DOI: 10.1016/j.gde.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 01/01/2023]
|
15
|
Affiliation(s)
- Varun Kumar
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Tang BL. Unconventional Secretion and Intercellular Transfer of Mutant Huntingtin. Cells 2018; 7:cells7060059. [PMID: 29904030 PMCID: PMC6025013 DOI: 10.3390/cells7060059] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
The mechanism of intercellular transmission of pathological agents in neurodegenerative diseases has received much recent attention. Huntington’s disease (HD) is caused by a monogenic mutation in the gene encoding Huntingtin (HTT). Mutant HTT (mHTT) harbors a CAG repeat extension which encodes an abnormally long polyglutamine (polyQ) repeat at HTT’s N-terminus. Neuronal pathology in HD is largely due to the toxic gain-of-function by mHTT and its proteolytic products, which forms both nuclear and cytoplasmic aggregates that perturb nuclear gene transcription, RNA splicing and transport as well cellular membrane dynamics. The neuropathological effects of mHTT have been conventionally thought to be cell-autonomous in nature. Recent findings have, however, indicated that mHTT could be secreted by neurons, or transmitted from one neuronal cell to another via different modes of unconventional secretion, as well as via tunneling nanotubes (TNTs). These modes of transmission allow the intercellular spread of mHTT and its aggregates, thus plausibly promoting neuropathology within proximal neuronal populations and between neurons that are connected within neural circuits. Here, the various possible modes for mHTT’s neuronal cell exit and intercellular transmission are discussed.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, 117597 Singapore, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, 117456 Singapore, Singapore.
| |
Collapse
|
17
|
Knapp J, VanNasdale DA, Ramsey K, Racine J. Retinal dysfunction in a presymptomatic patient with Huntington's disease. Doc Ophthalmol 2018; 136:213-221. [PMID: 29691705 DOI: 10.1007/s10633-018-9632-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Huntington's disease (HD) is an autosomal dominant, neurodegenerative disorder characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. Studies have shown retinal abnormalities in patients and mouse models with HD; however, to our knowledge, no prior research papers evaluated retinal structure and function in a presymptomatic patient with HD. The aim of this report is to present a case of retinal dysfunction in a presymptomatic patient with HD. METHODS We investigated retinal structure and function in a 25-year-old male who tested positive for the gene that causes HD, but did not have any symptoms normally associated with HD. Vision and ocular testing included a comprehensive dilated ophthalmic examination, 24-2 full-threshold Humphrey visual field, spectral-domain optical coherence tomography (SD-OCT), fundus photography, full-field electroretinogram (ERG), and multifocal electroretinogram (mfERG). RESULTS Visual electrophysiology testing showed rod and cone functional anomalies in both eyes. Full-field ERG amplitudes were subnormal in both eyes for the dark-adapted (DA) 0.01 ERG, DA 3 ERG, DA 3 oscillatory potentials (OPs), DA 10 ERG, light-adapted (LA) 3 ERG, and LA 30 Hz flicker, but peak times for the six standard ERG responses were not significantly different from normals. mfERGs revealed functional anomalies of the central retina with attenuated P1 amplitudes for five of the six concentric rings in the right eye and all six rings in the left eye. mfERG P1 peak times were normal at all eccentricities. Dilated fundus examination, SD-OCT, and fundus photography were unremarkable in both eyes. The visual field was normal in the right eye, but there was a mild paracentral field defect in the left eye. CONCLUSIONS Our results illustrate that the ERG and mfERG detected early retinal dysfunction in a presymptomatic patient with HD consistent with electroretinogram findings in animal models of HD. However, our report was limited to one patient and additional studies are needed to verify whether the ERG and/or mfERG can uncover neural dysfunction before motor, behavioral, and cognitive abnormalities are discernible in patients with HD.
Collapse
Affiliation(s)
- Jonelle Knapp
- The Ohio State University College of Optometry, 338 West 10th Avenue, Columbus, OH, 43210, USA.
| | - Dean A VanNasdale
- The Ohio State University College of Optometry, 338 West 10th Avenue, Columbus, OH, 43210, USA
| | - Keith Ramsey
- The Ohio State University College of Optometry, 338 West 10th Avenue, Columbus, OH, 43210, USA
| | - Julie Racine
- Department of Ophthalmology, Nationwide Children's Hospital, 555 South 18th Street, Suite D, Columbus, OH, 43205, USA
| |
Collapse
|
18
|
Youn YH, Han YG. Primary Cilia in Brain Development and Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:11-22. [PMID: 29030052 PMCID: PMC5745523 DOI: 10.1016/j.ajpath.2017.08.031] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 01/20/2023]
Abstract
The primary cilium, a sensory appendage that is present in most mammalian cells, plays critical roles in signaling pathways and cell cycle progression. Mutations that affect the structure or function of primary cilia result in ciliopathies, a group of developmental and degenerative diseases that affect almost all organs and tissues. Our understanding of the constituents, development, and function of primary cilia has advanced considerably in recent years, revealing pathogenic mechanisms that potentially underlie ciliopathies. In the brain, the primary cilia are crucial for early patterning, neurogenesis, neuronal maturation and survival, and tumorigenesis, mostly through regulating cell cycle progression, Hedgehog signaling, and WNT signaling. We review these advances in our knowledge of primary cilia, focusing on brain development, and discuss the mechanisms that may underlie brain abnormalities in ciliopathies.
Collapse
Affiliation(s)
- Yong Ha Youn
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Young-Goo Han
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
19
|
Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:105-145. [DOI: 10.1016/bs.pmbts.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Abstract
Stroke is the fifth leading cause of death and disability in the United States. According to World Heart Federation, every year, 15 million people suffer from stroke worldwide out of which nearly 6 million people die and another 5 million people are disabled. Out of many organs affected after stroke, one of them is eye. Majority of the stroke victims suffer vision loss due to stroke-induced retinal damage. However, stroke-induced retinal damage and microvascular changes have not been given paramount importance in understanding stroke pathophysiology and predicting its occurrence. Retinal imaging can be a very powerful tool to understand and predict stroke. This review will highlight the importance of retinal changes in predicting occurrence of stroke, major retinal changes, the relationship between retinal diseases and stroke and moreover, molecular mechanisms delineating the stroke induced-retinal changes and therapeutics associated with it.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Ophthalmology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Leinonen H, Tanila H. Vision in laboratory rodents-Tools to measure it and implications for behavioral research. Behav Brain Res 2017; 352:172-182. [PMID: 28760697 DOI: 10.1016/j.bbr.2017.07.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 02/09/2023]
Abstract
Mice and rats are nocturnal mammals and their vision is specialized for detection of motion and contrast in dim light conditions. These species possess a large proportion of UV-sensitive cones in their retinas and the majority of their optic nerve axons target superior colliculus rather than visual cortex. Therefore, it was a widely held belief that laboratory rodents hardly utilize vision during day-time behavior. This dogma is being questioned as accumulating evidence suggests that laboratory rodents are able to perform complex visual functions, such as perceiving subjective contours, and that declined vision may affect their performance in many behavioral tasks. For instance, genetic engineering may have unexpected consequences on vision as mouse models of Alzheimer's and Huntington's diseases have declined visual function. Rodent vision can be tested in numerous ways using operant training or reflex-based behavioral tasks, or alternatively using electrophysiological recordings. In this article, we will first provide a summary of visual system and explain its characteristics unique to rodents. Then, we present well-established techniques to test rodent vision, with an emphasis on pattern vision: visual water test, optomotor reflex test, pattern electroretinography and pattern visual evoked potentials. Finally, we highlight the importance of visual phenotyping in rodents. As the number of genetically engineered rodent models and volume of behavioral testing increase simultaneously, the possibility of visual dysfunctions needs to be addressed. Neglect in this matter potentially leads to crude biases in the field of neuroscience and beyond.
Collapse
Affiliation(s)
- Henri Leinonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Neulaniementie 2, 70211 Kuopio, Finland
| |
Collapse
|
22
|
Krizova J, Stufkova H, Rodinova M, Macakova M, Bohuslavova B, Vidinska D, Klima J, Ellederova Z, Pavlok A, Howland DS, Zeman J, Motlik J, Hansikova H. Mitochondrial Metabolism in a Large-Animal Model of Huntington Disease: The Hunt for Biomarkers in the Spermatozoa of Presymptomatic Minipigs. NEURODEGENER DIS 2017. [PMID: 28633139 DOI: 10.1159/000475467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Huntington disease (HD) is a fatal neurodegenerative disorder involving reduced muscle coordination, mental and behavioral changes, and testicular degeneration. In order to further clarify the decreased fertility and penetration ability of the spermatozoa of transgenic HD minipig boars (TgHD), we applied a set of mitochondrial metabolism (MM) parameter measurements to this promising biological material, which can be collected noninvasively in longitudinal studies. OBJECTIVE We aimed to optimize methods for MM measurements in spermatozoa and to establish possible biomarkers of HD in TgHD spermatozoa expressing the N-terminal part of mutated human huntingtin. METHODS Semen samples from 12 TgHD and wild-type animals, aged 12-65 months, were obtained repeatedly during the study. Respiration was measured by polarography, MM was assessed by the detection of oxidation of radiolabeled substrates (mitochondrial energy-generating system; MEGS), and the content of the oxidative phosphorylation system subunits was detected by Western blot. Three possibly interfering factors were statistically analyzed: the effect of HD, generation and aging. RESULTS We found 5 MM parameters which were significantly diminished in TgHD spermatozoa and propose 3 specific MEGS incubations and complex I-dependent respiration as potential biomarkers of HD in TgHD spermatozoa. CONCLUSIONS Our results suggest a link between the gain of toxic function of mutated huntingtin in TgHD spermatozoa and the observed MM and/or glycolytic impairment. We determined 4 biomarkers useful for HD phenotyping and experimental therapy monitoring studies in TgHD minipigs.
Collapse
Affiliation(s)
- Jana Krizova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shi L, Koll F, Arnaiz O, Cohen J. The Ciliary Protein IFT57 in the Macronucleus of Paramecium. J Eukaryot Microbiol 2017; 65:12-27. [DOI: 10.1111/jeu.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Lei Shi
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
- Department of Biochemical and Molecular Biology; School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang 453003 China
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| | - Jean Cohen
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| |
Collapse
|
24
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
25
|
|
26
|
Intracellular localization of α-tubulin acetyltransferase ATAT1 in rat ciliated cells. Med Mol Morphol 2015; 49:133-43. [DOI: 10.1007/s00795-015-0132-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/12/2015] [Indexed: 11/26/2022]
|