1
|
Yang Y, Rao C, Yin T, Wang S, Shi H, Yan X, Zhang L, Meng X, Gu W, Du Y, Hong F. Application and underlying mechanism of acupuncture for the nerve repair after peripheral nerve injury: remodeling of nerve system. Front Cell Neurosci 2023; 17:1253438. [PMID: 37941605 PMCID: PMC10627933 DOI: 10.3389/fncel.2023.1253438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Peripheral nerve injury (PNI) is a structural event with harmful consequences worldwide. Due to the limited intrinsic regenerative capacity of the peripheral nerve in adults, neural restoration after PNI is difficult. Neurological remodeling has a crucial effect on the repair of the form and function during the regeneration of the peripheral nerve after the peripheral nerve is injured. Several studies have demonstrated that acupuncture is effective for PNI-induced neurologic deficits, and the potential mechanisms responsible for its effects involve the nervous system remodeling in the process of nerve repair. Moreover, acupuncture promotes neural regeneration and axon sprouting by activating related neurotrophins retrograde transport, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), N-cadherin, and MicroRNAs. Peripheral nerve injury enhances the perceptual response of the central nervous system to pain, causing central sensitization and accelerating neuronal cell apoptosis. Together with this, the remodeling of synaptic transmission function would worsen pain discomfort. Neuroimaging studies have shown remodeling changes in both gray and white matter after peripheral nerve injury. Acupuncture not only reverses the poor remodeling of the nervous system but also stimulates the release of neurotrophic substances such as nerve growth factors in the nervous system to ameliorate pain and promote the regeneration and repair of nerve fibers. In conclusion, the neurological remodeling at the peripheral and central levels in the process of acupuncture treatment accelerates nerve regeneration and repair. These findings provide novel insights enabling the clinical application of acupuncture in the treatment of PNI.
Collapse
Affiliation(s)
- Yongke Yang
- Beilun District People’s Hospital, Ningbo, China
| | - Chang Rao
- Tianjin Union Medical Center, Tianjin, China
| | - Tianlong Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaokang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiyan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin Yan
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, China
| | - Lili Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianggang Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenlong Gu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Hong
- Beilun District People’s Hospital, Ningbo, China
| |
Collapse
|
2
|
Dougherty MC, Shibata SB, Clark JJ, Canady FJ, Yates CW, Hansen MR. Reduction of sporadic and neurofibromatosis type 2-associated vestibular schwannoma growth in vitro and in vivo after treatment with the c-Jun N-terminal kinase inhibitor AS602801. J Neurosurg 2022; 138:962-971. [PMID: 36087315 DOI: 10.3171/2022.7.jns22934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Vestibular schwannomas (VSs) are benign nerve sheath tumors that result from mutation in the tumor suppressor gene NF2, with functional loss of the protein merlin. The authors have previously shown that c-Jun N-terminal kinase (JNK) is constitutively active in human VS cells and plays a central role in their survival by suppressing accumulation of mitochondrial superoxides, implicating JNK inhibitors as a potential systemic treatment for VS. Thus, the authors hypothesized that the adenosine 5'-triphosphate-competitive JNK inhibitor AS602801 would demonstrate antitumor activity in multiple VS models. METHODS Treatment with AS602801 was tested in primary human VS cultures, human VS xenografts, and a genetic mouse model of schwannoma (Postn-Cre;Nf2flox/flox). Primary human VS cell cultures were established from freshly obtained surgical tumor specimens; treatment group media was enriched with AS602801. VS xenograft tumors were established in male athymic nude mice from freshly collected human tumor. Four weeks postimplantation, a pretreatment MRI scan was obtained, followed by 65 days of AS602801 (n = 18) or vehicle control (n = 19) treatment. Posttreatment MRI scans were used to measure final tumor volume. Tumors were then harvested. Finally, Postn-Cre;Nf2flox/flox mice were treated with AS602801 (n = 10) or a vehicle (n = 13) for 65 days. Posttreatment auditory brainstem responses were obtained. Dorsal root ganglia from Postn-Cre;Nf2flox/flox mice were then harvested. In all models, schwannoma identity was confirmed with anti-S100 staining, cell proliferation was measured with the EdU assay, and cell death was measured with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. All protocols were approved by the local institutional review board and Institutional Animal Care and Use Committees. RESULTS Treatment with AS602801 decreased cell proliferation and increased apoptosis in primary human VS cultures. The systemic administration of AS602801 in mice with human VS xenografts reduced tumor volume and cell proliferation. Last, the AS602801-treated Postn-Cre;Nf2flox/flox mice demonstrated decreased cell proliferation in glial cells in the dorsal root ganglia. However, AS602801 did not significantly delay hearing loss in Postn-Cre;Nf2flox/flox mice up to 3 months posttreatment. CONCLUSIONS The data suggest that JNK inhibition with AS602801 suppresses growth of sporadic and neurofibromatosis type 2-associated VSs. As such, AS602801 is a potential systemic therapy for VS and warrants further investigation.
Collapse
Affiliation(s)
| | - Seiji B Shibata
- 2Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa; and
| | - J Jason Clark
- 2Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa; and
| | - Franklin J Canady
- 2Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa; and
| | - Charles W Yates
- 3Department of Otolaryngology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marlan R Hansen
- 2Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
3
|
Prabhakar S, Beauchamp RL, Cheah PS, Yoshinaga A, Haidar EA, Lule S, Mani G, Maalouf K, Stemmer-Rachamimov A, Jung DH, Welling DB, Giovannini M, Plotkin SR, Maguire CA, Ramesh V, Breakefield XO. Gene replacement therapy in a schwannoma mouse model of neurofibromatosis type 2. Mol Ther Methods Clin Dev 2022; 26:169-180. [PMID: 35846573 PMCID: PMC9263409 DOI: 10.1016/j.omtm.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Loss of function of the neurofibromatosis type 2 (NF2) tumor suppressor gene leads to the formation of schwannomas, meningiomas, and ependymomas, comprising ∼50% of all sporadic cases of primary nervous system tumors. NF2 syndrome is an autosomal dominant condition, with bi-allelic inactivation of germline and somatic alleles resulting in loss of function of the encoded protein merlin and activation of mammalian target of rapamycin (mTOR) pathway signaling in NF2-deficient cells. Here we describe a gene replacement approach through direct intratumoral injection of an adeno-associated virus vector expressing merlin in a novel human schwannoma model in nude mice. In culture, the introduction of an AAV1 vector encoding merlin into CRISPR-modified human NF2-null arachnoidal cells (ACs) or Schwann cells (SCs) was associated with decreased size and mTORC1 pathway activation consistent with restored merlin activity. In vivo, a single injection of AAV1-merlin directly into human NF2-null SC-derived tumors growing in the sciatic nerve of nude mice led to regression of tumors over a 10-week period, associated with a decrease in dividing cells and an increase in apoptosis, in comparison with vehicle. These studies establish that merlin re-expression via gene replacement in NF2-null schwannomas is sufficient to cause tumor regression, thereby potentially providing an effective treatment for NF2.
Collapse
Affiliation(s)
- Shilpa Prabhakar
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Roberta L. Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pike See Cheah
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Molecular Imaging Research, Massachusetts General Hospital, 25 Shattuck St, Boston, MA 02115, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, JALAN UNIVERSITI 1 Serdang, 43400 Seri Kembangan, Selangor, Malaysia
| | - Akiko Yoshinaga
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Edwina Abou Haidar
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sevda Lule
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Gayathri Mani
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Katia Maalouf
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - David H. Jung
- Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02114, USA
| | - D. Bradley Welling
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear and Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02114, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Scott R. Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Casey A. Maguire
- Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Vijaya Ramesh
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xandra O. Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
4
|
Dougherty MC, Shibata SB, Hansen MR. The biological underpinnings of radiation therapy for vestibular schwannomas: Review of the literature. Laryngoscope Investig Otolaryngol 2021; 6:458-468. [PMID: 34195368 PMCID: PMC8223465 DOI: 10.1002/lio2.553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Radiation therapy is a mainstay in the treatment of numerous neoplasms. Numerous publications have reported good clinical outcomes for primary radiation therapy for Vestibular Schwannomas (VS). However, there are relatively few pathologic specimens of VSs available to evaluate post-radiation, which has led to a relative dearth in research on the cellular mechanisms underlying the effects of radiation therapy on VSs. METHODS Here we review the latest literature on the complex biological effects of radiation therapy on these benign tumors-including resistance to oxidative stress, mechanisms of DNA damage repair, alterations in normal growth factor pathways, changes in surrounding vasculature, and alterations in immune responses following radiation. RESULTS Although VSs are highly radioresistant, radiotherapy is often successful in arresting their growth. CONCLUSION By better understanding the mechanisms underlying these effects, we could potentially harness such mechanisms in the future to potentiate the clinical effects of radiotherapy on VSs. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Mark C. Dougherty
- Department of NeurosurgeryUniversity of Iowa Hospitals & ClinicsIowa CityIowaUSA
| | - Seiji B. Shibata
- Department of Otolaryngology, Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Marlan R. Hansen
- Department of Otolaryngology—Head & Neck SurgeryUniversity of Iowa Hospitals & ClinicsIowa CityIowaUSA
| |
Collapse
|
5
|
Xu Z, Orkwis JA, Harris GM. Cell Shape and Matrix Stiffness Impact Schwann Cell Plasticity via YAP/TAZ and Rho GTPases. Int J Mol Sci 2021; 22:ijms22094821. [PMID: 34062912 PMCID: PMC8124465 DOI: 10.3390/ijms22094821] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Schwann cells (SCs) are a highly plastic cell type capable of undergoing phenotypic changes following injury or disease. SCs are able to upregulate genes associated with nerve regeneration and ultimately achieve functional recovery. During the regeneration process, the extracellular matrix (ECM) and cell morphology play a cooperative, critical role in regulating SCs, and therefore highly impact nerve regeneration outcomes. However, the roles of the ECM and mechanotransduction relating to SC phenotype are largely unknown. Here, we describe the role that matrix stiffness and cell morphology play in SC phenotype specification via known mechanotransducers YAP/TAZ and RhoA. Using engineered microenvironments to precisely control ECM stiffness, cell shape, and cell spreading, we show that ECM stiffness and SC spreading downregulated SC regenerative associated proteins by the activation of RhoA and YAP/TAZ. Additionally, cell elongation promoted a distinct SC regenerative capacity by the upregulation of Rac1/MKK7/JNK, both necessary for the ECM and morphology changes found during nerve regeneration. These results confirm the role of ECM signaling in peripheral nerve regeneration as well as provide insight to the design of future biomaterials and cellular therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Jacob A. Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Greg M. Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-(513)-556-4167
| |
Collapse
|
6
|
Kersigo J, Gu L, Xu L, Pan N, Vijayakuma S, Jones T, Shibata SB, Fritzsch B, Hansen MR. Effects of Neurod1 Expression on Mouse and Human Schwannoma Cells. Laryngoscope 2021; 131:E259-E270. [PMID: 32438526 PMCID: PMC7772964 DOI: 10.1002/lary.28671] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The objective was to explore the effect of the proneuronal transcription factor neurogenic differentiation 1 (Neurod1, ND1) on Schwann cells (SC) and schwannoma cell proliferation. METHODS Using a variety of transgenic mouse lines, we investigated how expression of Neurod1 effects medulloblastoma (MB) growth, schwannoma tumor progression, vestibular function, and SC cell proliferation. Primary human vestibular schwannoma (VS) cell cultures were transduced with adenoviral vectors expressing Neurod1. Cell proliferation was assessed by 5-ethynyl-2'-deoxyuridine (EdU) uptake. STUDY DESIGN Basic science investigation. RESULTS Expression of Neurod1 reduced the growth of slow-growing but not fast-growing MB models. Gene transfer of Neurod1 in human schwannoma cultures significantly reduced cell proliferation in dose-dependent way. Deletion of the neurofibromatosis type 2 (Nf2) tumor-suppressor gene via Cre expression in SCs led to increased intraganglionic SC proliferation and mildly reduced vestibular sensory-evoked potentials (VsEP) responses compared to age-matched wild-type littermates. The effect of Neurod1-induced expression on intraganglionic SC proliferation in animals lacking Nf2 was mild and highly variable. Sciatic nerve axotomy significantly increased SC proliferation in wild-type and Nf2-null animals, and expression of Neurod1 reduced the proliferative capacity of both wild-type and Nf2-null SCs following nerve injury. CONCLUSION Expression of Neurod1 reduces slow-growing MB progression and reduces human SC proliferation in primary VS cultures. In a genetic mouse model of schwannomas, we find some effects of Neurod1 expression; however, the high variability indicates that more tightly regulated Neurod1 expression levels that mimic our in vitro data are needed to fully validate Neurod1 effects on schwannoma progression. LEVEL OF EVIDENCE NA Laryngoscope, 131:E259-E270, 2021.
Collapse
Affiliation(s)
- Jennifer Kersigo
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Lintao Gu
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
- Decibel Pharmaceutical, Boston, Massachusetts, U.S.A
| | - Linjing Xu
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Ning Pan
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
- Department of Special Education & Communication Disorders, University of Nebraska, Lincoln, Nebraska, U.S.A
| | - Sarath Vijayakuma
- Department of Otolaryngology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Timothy Jones
- Department of Otolaryngology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Seiji B Shibata
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Bernd Fritzsch
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Marlan R Hansen
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| |
Collapse
|
7
|
Qin T, Yuan Z, Yu J, Fu X, Deng X, Fu Q, Ma Z, Ma S. Saikosaponin-d impedes hippocampal neurogenesis and causes cognitive deficits by inhibiting the survival of neural stem/progenitor cells via neurotrophin receptor signaling in mice. Clin Transl Med 2020; 10:e243. [PMID: 33377633 PMCID: PMC7752162 DOI: 10.1002/ctm2.243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Neural stem/progenitor cells (NPCs) are multipotent stem cells in the central nervous system. Damage to NPCs has been demonstrated to cause adverse effects on neurogenesis and to contribute to neurological diseases. Our previous research suggested that saikosaponin-d (SSd), a cytostatic drug belonging to the bioactive triterpenoid saponins, exhibited neurotoxicity by inhibiting hippocampal neurogenesis, but the underlying mechanism remained elusive. This study was performed to clarify the role of SSd in cognitive function and the mechanism by which SSd induced damage to hippocampal neurogenesis and NPCs. Our results indicated that SSd caused hippocampus-dependent cognitive deficits and inhibited hippocampal neurogenesis by reducing the numbers of newborn neurons in mice. RNA sequencing analysis revealed that SSd-induced neurotoxicity in the hippocampus involved neurotrophin receptor-interacting MAGE (NRAGE)/neurotrophin receptor interacting factor (NRIF)/p75NTR -associated cell death executor (NADE) cell signaling activated by the p75 neurotrophin receptor (p75NTR ). Mechanistic studies showed that a short hairpin RNA targeting p75NTR intracellular domain reversed SSd-increased NRAGE/NRIF/NADE signaling and the c-Jun N-terminal kinase/caspase apoptotic pathway, subsequently contributing to the survival of NPCs, as well as cell proliferation and differentiation. The addition of recombinant brain-derived neurotrophic factor (BDNF) ameliorated the SSd-induced inhibition of BDNF/Tyrosine kinase receptor B (TrkB) neurotrophic signaling, but did not affect SSd-activated pro-BDNF/p75NTR signaling. Moreover, the SSd-induced elevation of cytosolic Ca2+ concentration was responsible for damage to NPCs. The extracellular Ca2+ chelator ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), rather than the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM), attenuated SSd-induced cytosolic Ca2+ dysfunction and SSd-disordered TrkB/p75NTR signaling. Overall, this study demonstrated a new mechanism for the neurotoxic effect of SSd, which has emerging implications for pharmacological research of SSd and provides a better understanding of neurotoxicity induced by cytostatic drugs.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical UniversityNanjingChina
| | - Ziqiao Yuan
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Jiayu Yu
- Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical UniversityNanjingChina
| | - Xinxin Fu
- Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical UniversityNanjingChina
| | - Xueyang Deng
- Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical UniversityNanjingChina
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical UniversityNanjingChina
| | - Zhanqiang Ma
- Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical UniversityNanjingChina
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical UniversityNanjingChina
- Qinba Traditional Chinese Medicine Resources Research and Development CenterAnKang UniversityAnkangChina
| |
Collapse
|
8
|
Yuan M, Yang X, Duscher D, Xiong H, Ren S, Xu X, Wang C, Chen J, Liu Y, Machens HG, Chen Z. Overexpression of microRNA-21-5p prevents the oxidative stress-induced apoptosis of RSC96 cells by suppressing autophagy. Life Sci 2020; 256:118022. [PMID: 32610163 DOI: 10.1016/j.lfs.2020.118022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
Abstract
AIM We aim to study the anti-apoptotic effect of microRNA-21-5p (miR-21-5p) in the oxidative stress-induced apoptosis of Schwann cells and the relevant mechanism in this research, laying a foundation for the treatment of peripheral neuropathy (PNP). METHODS AND MATERIALS The oxidative stress model was established by using hydrogen peroxide (H2O2). ROS level were detected by DCFH-DA (2,7-Dichlorodi-hydrofluorescein diacetate). Western blot and fluorescence staining were used to detect the apoptosis and autophagy level. The miR-21-5p overexpression model was established by transfection of miR-21-5p mimics into RSC96 cells. Five groups of control group, H2O2 group, H2O2 + chloroquine (CQ) group, H2O2 + miR-21-5p mimics group, and H2O2 + miR-21-5p mimics+rapamycin (RAPA) group were included in our experiment. KEY FINDINGS Compared with control group, miR-21-5p was decreased in H2O2-treated RSC96 cells, while autophagy and apoptosis were both promoted. The result revealed that apoptosis was probably triggered by activation of autophagy in H2O2-treated group. In order to verify the relationship between autophagy and apoptosis more accurately, we used CQ to inhibit autophagy. Compared with H2O2-treated group, autophagy and apoptosis were both weakened in H2O2 + CQ group. Subsequently, we found the antiapoptotic effect of miR-21-5p in this model, overexpression of miR-21-5p prevented cells from being damaged by oxidative stress, it induced the decrease of PTEN and the level of autophagy, leading to decreased level of apoptosis. SIGNIFICANCE The identified relationship between miR-21-5p, apoptosis, and autophagy promotes us to find a new mechanism to improve the treatment for PNP.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Wang Y, Zhang Y, Li X, Zhang Q. The progress of biomaterials in peripheral nerve repair and regeneration. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Repair and regeneration of the injured peripheral nerve (PN) is a challenging issue in clinics. Although the regeneration outcome of large PN defects is currently unsatisfactory, recently, the study of PN repair has considerably progressed. In particular, biomaterials for repairing PNs, such as nerve guidance conduits and nerve repair membranes, have been well developed. Herein, we summarize the anatomy of the PN, the pathophysiological features of the nerve injury, and the repair process post injury. Then, we highlight the progress in the development of natural and synthetic biomaterials and summarize the applications, advantages, and disadvantages of these materials. These materials can be used as nerve repair membranes and nerve conduits in the field of PN repair. Finally, we discuss the challenges encountered and development strategies for PN repair in the future.
Collapse
|
10
|
Proteomics analysis of Schwann cell-derived exosomes: a novel therapeutic strategy for central nervous system injury. Mol Cell Biochem 2019; 457:51-59. [PMID: 30830528 PMCID: PMC6548868 DOI: 10.1007/s11010-019-03511-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Abstract
Exosomes are nanometer-sized vesicles involved in intercellular communication, and they are released by various cell types. To learn about exosomes produced by Schwann cells (SCs) and to explore their potential function in repairing the central nervous system (CNS), we isolated exosomes from supernatants of SCs by ultracentrifugation, characterized them by electron microscopy and immunoblotting and determined their protein profile using proteomic analysis. The results demonstrated that Schwann cell-derived exosomes (SCDEs) were, on average, 106.5 nm in diameter, round, and had cup-like concavity and expressed exosome markers CD9 and Alix but not tumor susceptibility gene (TSG) 101. We identified a total of 433 proteins, among which 398 proteins overlapped with the ExoCarta database. According to their specific functions, we identified 12 proteins that are closely related to CNS repair and classified them by different potential mechanisms, such as axon regeneration and inflammation inhibition. Gene Oncology analysis indicated that SCDEs are mainly involved in signal transduction and cell communication. Biological pathway analysis showed that pathways are mostly involved in exosome biogenesis, formation, uptake and axon regeneration. Among the pathways, the neurotrophin, PI3K-Akt and cAMP signaling pathways played important roles in CNS repair. Our study isolated SCDEs, unveiled their contents, presented potential neurorestorative proteins and pathways and provided a rich proteomics data resource that will be valuable for future studies of the functions of individual proteins in neurodegenerative diseases.
Collapse
|
11
|
Photopolymerized Microfeatures Guide Adult Spiral Ganglion and Dorsal Root Ganglion Neurite Growth. Otol Neurotol 2018; 39:119-126. [PMID: 29227456 DOI: 10.1097/mao.0000000000001622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HYPOTHESIS Microtopographical patterns generated by photopolymerization of methacrylate polymer systems will direct growth of neurites from adult neurons, including spiral ganglion neurons (SGNs). BACKGROUND Cochlear implants (CIs) provide hearing perception to patients with severe to profound hearing loss. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by spread of the electrical currents in the inner ear. Directing the regrowth of SGN peripheral processes towards stimulating electrodes could help reduce current spread and improve spatial resolution provided by the CI. Previous work has demonstrated that micro- and nano-scale patterned surfaces precisely guide the growth of neurites from a variety of neonatal neurons including SGNs. Here, we sought to determine the extent to which adult neurons likewise respond to these topographical surface features. METHODS Photopolymerization was used to fabricate methacrylate polymer substrates with micropatterned surfaces of varying amplitudes and periodicities. Dissociated adult dorsal root ganglion neurons (DRGNs) and SGNs were cultured on these surfaces and the alignment of the neurite processes to the micropatterns was determined. RESULTS Neurites from both adult DRGNs and SGNs significantly aligned to the patterned surfaces similar to their neonatal counterparts. Further DRGN and SGN neurite alignment increased as the amplitude of the microfeatures increased. Decreased pattern periodicity also improved neurite alignment. CONCLUSION Microscale surface topographic features direct the growth of adult SGN neurites. Topographical features could prove useful for guiding growth of SGN peripheral axons towards a CI electrode array.
Collapse
|
12
|
He B, Wu F, Fan L, Li XH, Liu Y, Liu YJ, Ding WJ, Deng M, Zhou Y. Carboxymethylated chitosan protects Schwann cells against hydrogen peroxide-induced apoptosis by inhibiting oxidative stress and mitochondria dependent pathway. Eur J Pharmacol 2018; 825:48-56. [DOI: 10.1016/j.ejphar.2018.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/10/2018] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
|
13
|
Bex1 attenuates neuronal apoptosis in rat intracerebral hemorrhage model. Pathol Res Pract 2018; 214:527-535. [DOI: 10.1016/j.prp.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/27/2018] [Accepted: 02/14/2018] [Indexed: 12/15/2022]
|
14
|
Nf2 Mutation in Schwann Cells Delays Functional Neural Recovery Following Injury. Neuroscience 2018; 374:205-213. [PMID: 29408605 DOI: 10.1016/j.neuroscience.2018.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/21/2022]
Abstract
Merlin is the protein product of the NF2 tumor suppressor gene. Germline NF2 mutation leads to neurofibromatosis type 2 (NF2), characterized by multiple intracranial and spinal schwannomas. Patients with NF2 also frequently develop peripheral neuropathies. While the role of merlin in SC neoplasia is well established, its role in SC homeostasis is less defined. Here we explore the role of merlin in SC responses to nerve injury and their ability to support axon regeneration. We performed sciatic nerve crush in wild-type (WT) and in P0SchΔ39-121 transgenic mice that express a dominant negative Nf2 isoform in SCs. Recovery of nerve function was assessed by measuring mean contact paw area on a pressure pad 7, 21, 60, and 90 days following nerve injury and by nerve conduction assays at 90 days following injury. After 90 days, the nerves were harvested and axon regeneration was quantified stereologically. Myelin ultrastructure was analyzed by electron microscopy. Functional studies showed delayed nerve regeneration in Nf2 mutant mice compared to the WT mice. Delayed neural recovery correlated with a reduced density of regenerated axons and increased endoneurial space in mutants compared to WT mice. Nevertheless, functional and nerve conduction measures ultimately recovered to similar levels in WT and Nf2 mutant mice, while there was a small (∼17%) reduction in the percent of regenerated axons in the Nf2 mutant mice. The data suggest that merlin function in SCs regulates neural ultrastructure and facilitates neural regeneration, in addition to its role in SC neoplasia.
Collapse
|
15
|
Wise AK, Pujol R, Landry TG, Fallon JB, Shepherd RK. Structural and Ultrastructural Changes to Type I Spiral Ganglion Neurons and Schwann Cells in the Deafened Guinea Pig Cochlea. J Assoc Res Otolaryngol 2017; 18:751-769. [PMID: 28717876 DOI: 10.1007/s10162-017-0631-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/21/2017] [Indexed: 01/03/2023] Open
Abstract
Sensorineural hearing loss is commonly caused by damage to cochlear sensory hair cells. Coinciding with hair cell degeneration, the peripheral fibres of type I spiral ganglion neurons (SGNs) that normally form synaptic connections with the inner hair cell gradually degenerate. We examined the time course of these degenerative changes in type I SGNs and their satellite Schwann cells at the ultrastructural level in guinea pigs at 2, 6, and 12 weeks following aminoglycoside-induced hearing loss. Degeneration of the peripheral fibres occurred prior to the degeneration of the type I SGN soma and was characterised by shrinkage of the fibre followed by retraction of the axoplasm, often leaving a normal myelin lumen devoid of axoplasmic content. A statistically significant reduction in the cross-sectional area of peripheral fibres was evident as early as 2 weeks following deafening (p < 0.001, ANOVA). This was followed by a decrease in type I SGN density within Rosenthal's canal that was statistically significant 6 weeks following deafening (p < 0.001, ANOVA). At any time point examined, few type I SGN soma were observed undergoing degeneration, implying that once initiated, soma degeneration was rapid. While there was a significant reduction in soma area as well as changes to the morphology of the soma, the ultrastructure of surviving type I SGN soma appeared relatively normal over the 12-week period following deafening. Satellite Schwann cells exhibited greater survival traits than their type I SGN; however, on loss of neural contact, they reverted to a non-myelinating phenotype, exhibiting an astrocyte-like morphology with the formation of processes that appeared to be searching for new neural targets. In 6- and 12-week deafened cochlea, we observed cellular interaction between Schwann cell processes and residual SGNs that distorted the morphology of the SGN soma. Understanding the response of SGNs, Schwann cells, and the complex relationship between them following aminoglycoside deafening is important if we are to develop effective therapeutic techniques designed to rescue SGNs.
Collapse
Affiliation(s)
- Andrew K Wise
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia.
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia.
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia.
| | - Remy Pujol
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
- INSERM Unit 1051, INM, Montpellier, France
| | - Thomas G Landry
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
| | - James B Fallon
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia
| | - Robert K Shepherd
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration. J Neurosci 2017; 37:4255-4269. [PMID: 28320842 PMCID: PMC5413174 DOI: 10.1523/jneurosci.3481-16.2017] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 11/21/2022] Open
Abstract
After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal parts of injured nerves repair, Schwann cells gradually lose regeneration-supporting features and eventually die. Identification of signals that sustain repair cells is therefore an important goal. We have found that in mice the transcription factor STAT3 protects these cells from death and contributes to maintaining the molecular and morphological repair phenotype that promotes axonal regeneration. Defining the molecular mechanisms that maintain repair Schwann cells is an essential step toward developing therapeutic strategies that improve nerve regeneration and functional recovery.
Collapse
|
17
|
Stepp MA, Tadvalkar G, Hakh R, Pal-Ghosh S. Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves. Glia 2016; 65:851-863. [PMID: 27878997 DOI: 10.1002/glia.23102] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022]
Abstract
The eye is innervated by neurons derived from both the central nervous system and peripheral nervous system (PNS). While much is known about retinal neurobiology and phototransduction, less attention has been paid to the innervation of the eye by the PNS and the roles it plays in maintaining a functioning visual system. The ophthalmic branch of the trigeminal ganglion contains somas of neurons that innervate the cornea. These nerves provide sensory functions for the cornea and are referred to as intraepithelial corneal nerves (ICNs) consisting of subbasal nerves and their associated intraepithelial nerve terminals. ICNs project for several millimeters within the corneal epithelium without Schwann cell support. Here, we present evidence for the hypothesis that corneal epithelial cells function as glial cells to support the ICNs. Much of the data supporting this hypothesis is derived from studies of corneal development and the reinnervation of the ICNs in the rodent and rabbit cornea after superficial wounds. Corneal epithelial cells activate in response to injury via mechanisms similar to those induced in Schwann cells during Wallerian Degeneration. Corneal epithelial cells phagocytize distal axon fragments within hours of ICN crush wounds. During aging, the proteins, lipids, and mitochondria within the ICNs become damaged in a process exacerbated by UV light. We propose that ICNs shed their aged and damaged termini and continuously elongate to maintain their density. Available evidence points to new unexpected roles for corneal epithelial cells functioning as surrogate Schwann cells for the ICNs during homeostasis and in response to injury. GLIA 2017;65:851-863.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| | - Raymond Hakh
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| |
Collapse
|
18
|
Cheng E, Hansen MR. Schwannomas provide insight into the role of p75(NTR) and merlin in Schwann cells following nerve injury and during regeneration. Neural Regen Res 2016; 11:73-4. [PMID: 26981085 PMCID: PMC4774233 DOI: 10.4103/1673-5374.175045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Elise Cheng
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Marlan R Hansen
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|