1
|
Strohm AO, Majewska AK. Physical exercise regulates microglia in health and disease. Front Neurosci 2024; 18:1420322. [PMID: 38911597 PMCID: PMC11192042 DOI: 10.3389/fnins.2024.1420322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
There is a well-established link between physical activity and brain health. As such, the effectiveness of physical exercise as a therapeutic strategy has been explored in a variety of neurological contexts. To determine the extent to which physical exercise could be most beneficial under different circumstances, studies are needed to uncover the underlying mechanisms behind the benefits of physical activity. Interest has grown in understanding how physical activity can regulate microglia, the resident immune cells of the central nervous system. Microglia are key mediators of neuroinflammatory processes and play a role in maintaining brain homeostasis in healthy and pathological settings. Here, we explore the evidence suggesting that physical activity has the potential to regulate microglia activity in various animal models. We emphasize key areas where future research could contribute to uncovering the therapeutic benefits of engaging in physical exercise.
Collapse
Affiliation(s)
- Alexandra O. Strohm
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
2
|
Hirunagi T, Nakatsuji H, Sahashi K, Yamamoto M, Iida M, Tohnai G, Kondo N, Yamada S, Murakami A, Noda S, Adachi H, Sobue G, Katsuno M. Exercise attenuates polyglutamine-mediated neuromuscular degeneration in a mouse model of spinal and bulbar muscular atrophy. J Cachexia Sarcopenia Muscle 2024; 15:159-172. [PMID: 37937369 PMCID: PMC10834330 DOI: 10.1002/jcsm.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Spinal and bulbar muscular atrophy (SBMA) is a hereditary neuromuscular disorder caused by the expansion of trinucleotide cytosine-adenine-guanine (CAG) repeats, which encodes a polyglutamine (polyQ) tract in the androgen receptor (AR) gene. Recent evidence suggests that, in addition to motor neuron degeneration, defective skeletal muscles are also the primary contributors to the pathogenesis in SBMA. While benefits of physical exercise have been suggested in SBMA, underlying mechanism remains elusive. METHODS We investigated the effect of running exercise in a transgenic mouse model of SBMA carrying human AR with 97 expanded CAGs (AR97Q). We assigned AR97Q mice to exercise and sedentary control groups, and mice in the exercise group received 1-h forced running wheel (5 m/min) 5 days a week for 4 weeks during the early stage of the disease. Motor function (grip strength and rotarod performance) and survival of each group were analysed, and histopathological and biological features in skeletal muscles and motor neurons were evaluated. RESULTS AR97Q mice in the exercise group showed improvement in motor function (~40% and ~50% increase in grip strength and rotarod performance, respectively, P < 0.05) and survival (median survival 23.6 vs. 16.7 weeks, P < 0.05) with amelioration of neuronal and muscular histopathology (~1.4-fold and ~2.8-fold increase in motor neuron and muscle fibre size, respectively, P < 0.001) compared to those in the sedentary group. Nuclear accumulation of polyQ-expanded AR in skeletal muscles and motor neurons was suppressed in the mice with exercise compared to the sedentary mice (~50% and ~30% reduction in 1C2-positive cells in skeletal muscles and motor neurons, respectively, P < 0.05). We found that the exercise activated 5'-adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibited mammalian target of rapamycin pathway that regulates protein synthesis in skeletal muscles of SBMA mice. Pharmacological activation of AMPK inhibited protein synthesis and reduced polyQ-expanded AR proteins in C2C12 muscle cells. CONCLUSIONS Our findings suggest the therapeutic potential of exercise-induced effect via AMPK activation in SBMA.
Collapse
Affiliation(s)
- Tomoki Hirunagi
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hideaki Nakatsuji
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kentaro Sahashi
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikiyasu Yamamoto
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Madoka Iida
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Genki Tohnai
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Aichi Medical UniversityNagakuteJapan
| | - Naohide Kondo
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinichiro Yamada
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Ayuka Murakami
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Seiya Noda
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of NeurologyNational Hospital Organization Suzuka HospitalSuzukaJapan
| | - Hiroaki Adachi
- Department of NeurologyUniversity of Occupational and Environmental Health School of MedicineKitakyushuJapan
| | - Gen Sobue
- Aichi Medical UniversityNagakuteJapan
| | - Masahisa Katsuno
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of Clinical Research EducationNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
3
|
Clark ML, Abimanyi-Ochom J, Le H, Long B, Orr C, Khanh-Dao Le L. A systematic review and meta-analysis of depression and apathy frequency in adult-onset Huntington's disease. Neurosci Biobehav Rev 2023; 149:105166. [PMID: 37054804 DOI: 10.1016/j.neubiorev.2023.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Depression and apathy are associated with decreased functional capacity in Huntington's disease (HD) but frequency of depression and apathy in HD is largely unknown. Systematic literature searching was conducted across 21 databases until 30 June 2021. Inclusion criteria was limited to clinician-rated assessments of depression and apathy and adult-onset HD. Inverse-variance heterogeneity meta-analyses were conducted exploring depression and apathy frequency within individuals from families affected by HD, and within individuals with confirmed HD gene-positive status. Screening identified 289 articles for full-text review; nine remained for meta-analysis. Depression frequency in the lifetime in adults affected by or at-risk for HD was 38%, I2 = 99%. Apathy frequency in the lifetime in adults affected by or at-risk for HD was 40%, I2 = 96%. The robustness of the findings improved when limiting the analysis to gene-positive individuals only where apathy was found to be slightly more common than depression, 48% and 43% respectively. Future studies may consider reporting results from juvenile-onset HD and adult-onset HD cohorts separately to further explore phenotypic profiles.
Collapse
Affiliation(s)
- Melanie L Clark
- Deakin University, Deakin Health Economics, School of Health and Social Development, Geelong, Victoria, 3220, Australia; Neurosciences Unit, North Metropolitan Health Services Mental Health Public Health Dental Services, Perth, Western Australia; Perron Institute for Neurological and Translational Science, Perth, Western Australia.
| | - Julie Abimanyi-Ochom
- Deakin University, Deakin Health Economics, School of Health and Social Development, Geelong, Victoria, 3220, Australia; Deakin University, Institute for Health Transformation, Faculty of Health, Geelong, Victoria, 3220, Australia
| | - Ha Le
- Deakin University, Deakin Health Economics, School of Health and Social Development, Geelong, Victoria, 3220, Australia; Deakin University, Institute for Health Transformation, Faculty of Health, Geelong, Victoria, 3220, Australia
| | - Brian Long
- Neurosciences Unit, North Metropolitan Health Services Mental Health Public Health Dental Services, Perth, Western Australia
| | - Carolyn Orr
- Neurosciences Unit, North Metropolitan Health Services Mental Health Public Health Dental Services, Perth, Western Australia; Perron Institute for Neurological and Translational Science, Perth, Western Australia
| | - Long Khanh-Dao Le
- Health Economics Division, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Andrews SC, Kämpf L, Curtin D, Hinder M, Wenderoth N, Stout JC, Coxon JP. A single bout of moderate-intensity aerobic exercise improves motor learning in premanifest and early Huntington's disease. Front Psychol 2023; 14:1089333. [PMID: 36968757 PMCID: PMC10032374 DOI: 10.3389/fpsyg.2023.1089333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction Cardiorespiratory exercise has emerged as a promising candidate to modify disease progression in Huntington's disease (HD). In animal models, exercise has been found to alter biomarkers of neuroplasticity and delay evidence of disease, and some interventions-including exercise-have shown benefits in human HD patients. In healthy human populations, increasing evidence suggests that even a single bout of exercise can improve motor learning. In this pilot study, we investigated the effect of a single bout of moderate intensity aerobic exercise on motor skill learning in presymptomatic and early manifest HD patients. Methods Participants were allocated to either an exercise (n = 10) or control (n = 10) group. They performed either 20 min of moderate intensity cycling or rest before practicing a novel motor task, the sequential visual isometric pinch force task (SVIPT). After 1 week, the retention of the SVIPT was measured in both groups. Results We found that the exercise group performed significantly better during initial task acquisition. There were no significant differences in offline memory consolidation between groups, but total skill gain across both acquisition and retention sessions was greater in the group who exercised. The better performance of the exercise group was driven by improvements in accuracy, rather than speed. Discussion We have shown that a single bout of moderate intensity aerobic exercise can facilitate motor skill learning in people with HD gene-expansion. More research is needed to investigate the underlying neural mechanisms and to further explore the potential for neurocognitive and functional benefits of exercise for people with HD.
Collapse
Affiliation(s)
- Sophie C. Andrews
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Healthy Brain Ageing Research Group, Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Lydia Kämpf
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Dylan Curtin
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Mark Hinder
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Julie C. Stout
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - James P. Coxon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Effects of lifespan-extending interventions on cognitive healthspan. Expert Rev Mol Med 2022; 25:e2. [PMID: 36377361 DOI: 10.1017/erm.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ageing is known to be the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. They are currently incurable and worsen over time, which has broad implications in the context of lifespan and healthspan extension. Adding years to life and even to physical health is suboptimal or even insufficient, if cognitive ageing is not adequately improved. In this review, we will examine how interventions that have the potential to extend lifespan in animals affect the brain, and if they would be able to thwart or delay the development of cognitive dysfunction and/or neurodegeneration. These interventions range from lifestyle (caloric restriction, physical exercise and environmental enrichment) through pharmacological (nicotinamide adenine dinucleotide precursors, resveratrol, rapamycin, metformin, spermidine and senolytics) to epigenetic reprogramming. We argue that while many of these interventions have clear potential to improve cognitive health and resilience, large-scale and long-term randomised controlled trials are needed, along with studies utilising washout periods to determine the effects of supplementation cessation, particularly in aged individuals.
Collapse
|
6
|
Effects of Exercise on Skeletal Muscle Pathophysiology in Huntington's Disease. J Funct Morphol Kinesiol 2022; 7:jfmk7020040. [PMID: 35645302 PMCID: PMC9149967 DOI: 10.3390/jfmk7020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is a rare, hereditary, and progressive neurodegenerative disease, characterized by involuntary choreatic movements with cognitive and behavioral disturbances. In order to mitigate impairments in motor function, physical exercise was integrated in HD rehabilitative interventions, showing to be a powerful tool to ameliorate the quality of life of HD-affected patients. This review aims to describe the effects of physical exercise on HD-related skeletal muscle disorders in both murine and human models. We performed a literature search using PubMed, Scopus, and Web of Science databases on the role of physical activity in mouse models of HD and human patients. Fifteen publications fulfilled the criteria and were included in the review. Studies performed on mouse models showed a controversial role played by exercise, whereas in HD-affected patients, physical activity appeared to have positive effects on gait, motor function, UHDMRS scale, cognitive function, quality of life, postural stability, total body mass, fatty acid oxidative capacity, and VO2 max. Physical activity seems to be feasible, safe, and effective for HD patients. However, further studies with longer follow-up and larger cohorts of patients will be needed to draw firm conclusions on the positive effects of exercise for HD patients.
Collapse
|
7
|
Zhuo W, Lundquist AJ, Donahue EK, Guo Y, Phillips D, Petzinger GM, Jakowec MW, Holschneider DP. A mind in motion: Exercise improves cognitive flexibility, impulsivity and alters dopamine receptor gene expression in a Parkinsonian rat model. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100039. [DOI: 10.1016/j.crneur.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/06/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
|
8
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
9
|
Motor cortex plasticity response to acute cardiorespiratory exercise and intermittent theta-burst stimulation is attenuated in premanifest and early Huntington’s disease. Sci Rep 2022; 12:1104. [PMID: 35058470 PMCID: PMC8776762 DOI: 10.1038/s41598-021-04378-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
AbstractHuntington’s disease (HD) mouse models suggest that cardiovascular exercise may enhance neuroplasticity and delay disease signs, however, the effects of exercise on neuroplasticity in people with HD are unknown. Using a repeated-measures experimental design, we compared the effects of a single bout of high-intensity exercise, moderate-intensity exercise, or rest, on motor cortex synaptic plasticity in 14 HD CAG-expanded participants (9 premanifest and 5 early manifest) and 20 CAG-healthy control participants, using transcranial magnetic stimulation. Measures of cortico-motor excitability, short-interval intracortical inhibition and intracortical facilitation were obtained before and after a 20-min bout of either high-intensity interval exercise, moderate-intensity continuous exercise, or rest, and again after intermittent theta burst stimulation (iTBS). HD participants showed less inhibition at baseline compared to controls. Whereas the control group showed increased excitability and facilitation following high-intensity exercise and iTBS, the HD group showed no differences in neuroplasticity responses following either exercise intensity or rest, with follow-up Bayesian analyses providing consistent evidence that these effects were absent in the HD group. These findings indicate that exercise-induced synaptic plasticity mechanisms in response to acute exercise may be attenuated in HD, and demonstrate the need for future research to further investigate exercise and plasticity mechanisms in people with HD.
Collapse
|
10
|
Ben Haim L, Escartin C. Astrocytes and neuropsychiatric symptoms in neurodegenerative diseases: Exploring the missing links. Curr Opin Neurobiol 2021; 72:63-71. [PMID: 34628361 DOI: 10.1016/j.conb.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
Neurodegenerative diseases (NDs) are characterized by primary symptoms, such as cognitive or motor deficits. In addition, the presence of neuropsychiatric symptoms (NPS) in patients with ND is being increasingly acknowledged as an important disease feature. Yet, their neurobiological basis remains unclear and mostly centered on neurons while overlooking astrocytes, which are crucial regulators of neuronal function underlying complex behaviors. In this opinion article, we briefly review evidence for NPS in ND and discuss their experimental assessment in preclinical models. We then present recent studies showing that astrocyte-specific dysfunctions can lead to NPS. Because many astrocyte alterations are also observed in ND, we suggest that they might underlie ND-associated NPS. We argue that there is a need for dedicated preclinical studies assessing astrocyte-based therapeutic strategies targeting NPS in the context of ND.
Collapse
Affiliation(s)
- Lucile Ben Haim
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France.
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
11
|
Chuang CL, Demontis F. Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Res Rev 2021; 69:101358. [PMID: 33979693 DOI: 10.1016/j.arr.2021.101358] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that is caused by expansion of cytosine/adenosine/guanine repeats in the huntingtin (HTT) gene, which leads to a toxic, aggregation-prone, mutant HTT-polyQ protein. Beyond the well-established mechanisms of HD progression in the central nervous system, growing evidence indicates that also peripheral tissues are affected in HD and that systemic signaling originating from peripheral tissues can influence the progression of HD in the brain. Herein, we review the systemic manifestation of HD in peripheral tissues, and the impact of systemic signaling on HD pathogenesis. Mutant HTT induces a body wasting syndrome (cachexia) primarily via its activity in skeletal muscle, bone, adipose tissue, and heart. Additional whole-organism effects induced by mutant HTT include decline in systemic metabolic homeostasis, which stems from derangement of pancreas, liver, gut, hypothalamic-pituitary-adrenal axis, and circadian functions. In addition to spreading via the bloodstream and a leaky blood brain barrier, HTT-polyQ may travel long distance via its uptake by neurons and its axonal transport from the peripheral to the central nervous system. Lastly, signaling factors that are produced and/or secreted in response to therapeutic interventions such as exercise or in response to mutant HTT activity in peripheral tissues may impact HD. In summary, these studies indicate that HD is a systemic disease that is influenced by intertissue signaling and by the action of pathogenic HTT in peripheral tissues. We propose that treatment strategies for HD should include the amelioration of HD symptoms in peripheral tissues. Moreover, harnessing signaling between peripheral tissues and the brain may provide a means for reducing HD progression in the central nervous system.
Collapse
|
12
|
Effects of exercise on proactive interference in memory: potential neuroplasticity and neurochemical mechanisms. Psychopharmacology (Berl) 2020; 237:1917-1929. [PMID: 32488351 DOI: 10.1007/s00213-020-05554-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Proactive interference occurs when consolidated memory traces inhibit new learning. This kind of interference decreases the efficiency of new learning and also causes memory errors. Exercise has been shown to facilitate some types of cognitive function; however, whether exercise reduces proactive interference to enhance learning efficiency is not well understood. Thus, this review discusses the effects of exercise on proactive memory interference and explores potential mechanisms, such as neurogenesis and neurochemical changes, mediating any effect.
Collapse
|
13
|
Rodrigues FB, Quinn L, Wild EJ. Huntington's Disease Clinical Trials Corner: January 2019. J Huntingtons Dis 2020; 8:115-125. [PMID: 30776019 DOI: 10.3233/jhd-190001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this edition of the Huntington's Disease Clinical Trials Corner we expand on the GENERATION-HD1 and PACE-HD trials, and we list all currently registered and ongoing clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- Filipe B Rodrigues
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, UK.,Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, PT.,Clinical Pharmacology Unit, Instituto de Medicina Molecular, Lisbon, PT
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teachers College, Columbia University, USA
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
14
|
Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:53-73. [PMID: 31921481 PMCID: PMC6943779 DOI: 10.1016/j.jshs.2019.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Background In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This review summarizes the exercise interventions used in studies involving mice as they are related to special diseases or physiological status. To further understand the effects of exercise interventions in treating or preventing diseases, it is important to establish a template for exercise interventions that can be used in future exercise-related studies. Methods PubMed was used as the data resource for articles. To identify studies related to the effectiveness of exercise interventions for treating various diseases and organ functions in mice, we used the following search language: (exercise [Title] OR training [Title] OR physical activity [Title]) AND (mice [title/abstract] OR mouse [title/abstract] OR mus [title/abstract]). To limit the range of search results, we included 2 filters: one that limited publication dates to "in 10 years" and one that sorted the results as "best match". Then we grouped the commonly used exercise methods according to their similarities and differences. We then evaluated the effectiveness of the exercise interventions for their impact on diseases and organ functions in 8 different systems. Results A total of 331 articles were included in the analysis procedure. The articles were then segmented into 8 systems for which the exercise interventions were used in targeting and treating disorders: motor system (60 studies), metabolic system (45 studies), cardio-cerebral vascular system (58 studies), nervous system (74 studies), immune system (32 studies), respiratory system (7 studies), digestive system (1 study), and the system related to the development of cancer (54 studies). The methods of exercise interventions mainly involved the use of treadmills, voluntary wheel-running, forced wheel-running, swimming, and resistance training. It was found that regardless of the specific exercise method used, most of them demonstrated positive effects on various systemic diseases and organ functions. Most diseases were remitted with exercise regardless of the exercise method used, although some diseases showed the best remission effects when a specific method was used. Conclusion Our review strongly suggests that exercise intervention is a cornerstone in disease prevention and treatment in mice. Because exercise interventions in humans typically focus on chronic diseases, national fitness, and body weight loss, and typically have low intervention compliance rates, it is important to use mice models to investigate the molecular mechanisms underlying the health benefits from exercise interventions in humans.
Collapse
Affiliation(s)
- Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - He Huang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Treadmill exercise rescues mitochondrial function and motor behavior in the CAG140 knock-in mouse model of Huntington's disease. Chem Biol Interact 2020; 315:108907. [DOI: 10.1016/j.cbi.2019.108907] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
16
|
Intensive treadmill exercise increases expression of hypoxia-inducible factor 1α and its downstream transcript targets: a potential role in neuroplasticity. Neuroreport 2019; 30:619-627. [PMID: 31045849 DOI: 10.1097/wnr.0000000000001239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exercise and other forms of physical activity lead to the activation of specific motor and cognitive circuits within the mammalian brain. These activated neuronal circuits are subjected to increased metabolic demand and must respond to transient but significant reduction in available oxygen. The transcription factor hypoxia-inducible factor 1α (HIF-1α) is a regulatory mediator of a wide spectrum of genes involved in metabolism, synaptogenesis, and blood flow. The purpose of this study was to begin to explore the potential relationship between exercise in the form of running on a motorized treadmill and the activation of genes involved in exercise-dependent neuroplasticity to begin to elucidate the underlying molecular mechanisms involved. Mice were subjected to treadmill exercise and striatal tissues analyzed with a commercial microarray designed to identify transcripts whose expression is altered by exposure to hypoxia, a condition occurring in cells under a high metabolic demand. Several candidate genes were identified, and a subset involved in metabolism and angiogenesis were selected to elucidate their temporal and regional patterns of expression with exercise. Transcript analysis included Hif1a (hypoxia-inducible factor 1α), Ldha (lactate dehydrogenase A), Slc2a1 (glucose transporter 1), Slc16a1 (monocarboxylate transporter 1), Slc16a7 (monocarboxylate transporter 2), and Vegf (vascular endothelial growth factor). Overall these results indicate that several genes involved in the elevated metabolic response with exercise are consistent with increased expression of HIF-1α suggesting a regulatory role for HIF-1α in exercise-enhanced neuroplasticity. Furthermore, these increases in gene expression appear regionally specific; occurring with brain regions we have previously shown to be sites for increased cerebral blood flow with activity. Such findings are beginning to lay down a working hypothesis that specific forms of exercise lead to circuit specific neuronal activation and can identify a potentially novel therapeutic approach to target dysfunctional behaviors subserved by such circuitry.
Collapse
|
17
|
Restored presynaptic synaptophysin and cholinergic inputs contribute to the protective effects of physical running on spatial memory in aged mice. Neurobiol Dis 2019; 132:104586. [DOI: 10.1016/j.nbd.2019.104586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 01/16/2023] Open
|
18
|
Nair RR, Corrochano S, Gasco S, Tibbit C, Thompson D, Maduro C, Ali Z, Fratta P, Arozena AA, Cunningham TJ, Fisher EMC. Uses for humanised mouse models in precision medicine for neurodegenerative disease. Mamm Genome 2019; 30:173-191. [PMID: 31203387 PMCID: PMC6759662 DOI: 10.1007/s00335-019-09807-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disease encompasses a wide range of disorders afflicting the central and peripheral nervous systems and is a major unmet biomedical need of our time. There are very limited treatments, and no cures, for most of these diseases, including Alzheimer's Disease, Parkinson's Disease, Huntington Disease, and Motor Neuron Diseases. Mouse and other animal models provide hope by analysing them to understand pathogenic mechanisms, to identify drug targets, and to develop gene therapies and stem cell therapies. However, despite many decades of research, virtually no new treatments have reached the clinic. Increasingly, it is apparent that human heterogeneity within clinically defined neurodegenerative disorders, and between patients with the same genetic mutations, significantly impacts disease presentation and, potentially, therapeutic efficacy. Therefore, stratifying patients according to genetics, lifestyle, disease presentation, ethnicity, and other parameters may hold the key to bringing effective therapies from the bench to the clinic. Here, we discuss genetic and cellular humanised mouse models, and how they help in defining the genetic and environmental parameters associated with neurodegenerative disease, and so help in developing effective precision medicine strategies for future healthcare.
Collapse
Affiliation(s)
- Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Silvia Corrochano
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Samanta Gasco
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Charlotte Tibbit
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - David Thompson
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Zeinab Ali
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Abraham Acevedo Arozena
- Unidad de Investigación Hospital Universitario de Canarias, FUNCANIS, Instituto de Tecnologías Biomédicas ULL, and CIBERNED, La Laguna, 38320, Tenerife, Spain
| | | | - Elizabeth M C Fisher
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK.
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
19
|
Galts CP, Bettio LE, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev 2019; 102:56-84. [DOI: 10.1016/j.neubiorev.2019.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
|
20
|
Rangel-Barajas C, Rebec GV. Overview of Huntington's Disease Models: Neuropathological, Molecular, and Behavioral Differences. ACTA ACUST UNITED AC 2019; 83:e47. [PMID: 30040221 DOI: 10.1002/cpns.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transgenic mouse models of Huntington's disease (HD), a neurodegenerative condition caused by a single gene mutation, have been transformative in their ability to reveal the molecular processes and pathophysiological mechanisms underlying the HD behavioral phenotype. Three model categories have been generated depending on the genetic context in which the mutation is expressed: truncated, full-length, and knock-in. No single model, however, broadly replicates the behavioral symptoms and massive neuronal loss that occur in human patients. The disparity between model and patient requires careful consideration of what each model has to offer when testing potential treatments. Although the translation of animal data to the clinic has been limited, each model can make unique contributions toward an improved understanding of the neurobehavioral underpinnings of HD. Thus, conclusions based on data obtained from more than one model are likely to have the most success in the search for new treatment targets. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - George V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
21
|
Antidepressant Effects of Probucol on Early-Symptomatic YAC128 Transgenic Mice for Huntington's Disease. Neural Plast 2018; 2018:4056383. [PMID: 30186318 PMCID: PMC6112232 DOI: 10.1155/2018/4056383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/28/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a trinucleotide expansion in the HD gene, resulting in an extended polyglutamine tract in the protein huntingtin. HD is traditionally viewed as a movement disorder, but cognitive and neuropsychiatric symptoms also contribute to the clinical presentation. Depression is one of the most common psychiatric disturbances in HD, present even before manifestation of motor symptoms. Diagnosis and treatment of depression in HD-affected individuals are essential aspects of clinical management in this population, especially owing to the high risk of suicide. This study investigated whether chronic administration of the antioxidant probucol improved motor and affective symptoms as well as hippocampal neurogenic function in the YAC128 transgenic mouse model of HD during the early- to mild-symptomatic stages of disease progression. The motor performance and affective symptoms were monitored using well-validated behavioral tests in YAC128 mice and age-matched wild-type littermates at 2, 4, and 6 months of age, after 1, 3, or 5 months of treatment with probucol (30 mg/kg/day via water supplementation, starting on postnatal day 30). Endogenous markers were used to assess the effect of probucol on cell proliferation (Ki-67 and proliferation cell nuclear antigen (PCNA)) and neuronal differentiation (doublecortin (DCX)) in the hippocampal dentate gyrus (DG). Chronic treatment with probucol reduced the occurrence of depressive-like behaviors in early- and mild-symptomatic YAC128 mice. Functional improvements were not accompanied by increased progenitor cell proliferation and neuronal differentiation. Our findings provide evidence that administration of probucol may be of clinical benefit in the management of early- to mild-symptomatic HD.
Collapse
|
22
|
Conformation Polymorphism of Polyglutamine Proteins. Trends Biochem Sci 2018; 43:424-435. [PMID: 29636213 DOI: 10.1016/j.tibs.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/29/2023]
Abstract
Expanded polyglutamine (polyQ) stretches within endogenous proteins cause at least nine human diseases. The structural basis of polyQ pathogenesis is the key to understanding fundamental mechanisms of these diseases, but it remains unclear and controversial due to a lack of polyQ protein structures at the single-atom level. Various hypotheses have been proposed to explain the structure-cytotoxicity relationship of pathogenic proteins with polyQ expansion, largely based on indirect evidence. Here we review these hypotheses and their supporting evidence, along with additional insights from recent structural biology and chemical biology studies, with a focus on Huntingtin (HTT), the most extensively studied polyQ disease protein. Lastly, we propose potential novel strategies that may further clarify the conformation-cytotoxicity relationship of polyQ proteins.
Collapse
|
23
|
Reiner A, Deng Y. Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neurosci Ther 2018; 24:250-280. [PMID: 29582587 PMCID: PMC5875736 DOI: 10.1111/cns.12844] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the protein huntingtin, resulting in a pathogenic expansion of the polyglutamine tract in the N-terminus of this protein. The HD pathology resulting from the mutation is most prominent in the striatal part of the basal ganglia, and progressive differential dysfunction and loss of striatal projection neurons and interneurons account for the progression of motor deficits seen in this disease. The present review summarizes current understanding regarding the progression in striatal neuron dysfunction and loss, based on studies both in human HD victims and in genetic mouse models of HD. We review evidence on early loss of inputs to striatum from cortex and thalamus, which may be the basis of the mild premanifest bradykinesia in HD, as well as on the subsequent loss of indirect pathway striatal projection neurons and their outputs to the external pallidal segment, which appears to be the basis of the chorea seen in early symptomatic HD. Later loss of direct pathway striatal projection neurons and their output to the internal pallidal segment account for the severe akinesia seen late in HD. Loss of parvalbuminergic striatal interneurons may contribute to the late dystonia and rigidity.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTNUSA
| | - Yun‐Ping Deng
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|