1
|
Testa AM, Vignozzi L, Corallo D, Aveic S, Viola A, Allegra M, Angioni R. Hypoxic Human Microglia Promote Angiogenesis Through Extracellular Vesicle Release. Int J Mol Sci 2024; 25:12508. [PMID: 39684220 DOI: 10.3390/ijms252312508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain-resident immune cells, orchestrate neuroinflammatory responses and are crucial in the progression of neurological diseases, including ischemic stroke (IS), which accounts for approximately 85% of all strokes worldwide. Initially deemed detrimental, microglial activation has been shown to perform protective functions in the ischemic brain. Besides their effects on neurons, microglia play a role in promoting post-ischemic angiogenesis, a pivotal step for restoring oxygen and nutrient supply. However, the molecular mechanisms underlying microglia-endothelial cell interactions remain largely unresolved, particularly in humans. Using both in vitro and in vivo models, we investigated the angiogenic signature and properties of extracellular vesicles (EVs) released by human microglia upon hypoxia-reperfusion stimulation. EVs were isolated and characterized in terms of their size, concentration, and protein content. Their angiogenic potential was evaluated using endothelial cell assays and a zebrafish xenograft model. The in vivo effects were further assessed in a mouse model of ischemic stroke. Our findings identified key proteins orchestrating the pro-angiogenic functions of human microglial EVs under hypoxic conditions. In vitro assays demonstrated that hypoxic EVs (hypEVs) promoted endothelial cell migration and tube formation. In vivo, hypEVs induced vessel sprouting in zebrafish and increased microvessel density in the perilesional area of mice following ischemic stroke.
Collapse
Affiliation(s)
- Alessandra Maria Testa
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
- Laboratory of Immunity, Inflammation and Angiogenesis, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padua, Italy
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padua, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Manuela Allegra
- Laboratory of Neuronal Circuits in Developmental Disorders, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padua, Italy
- Neuroscience Institute, National Research Council, 35131 Padua, Italy
| | - Roberta Angioni
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
- Laboratory of Immunity, Inflammation and Angiogenesis, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padua, Italy
| |
Collapse
|
2
|
Mallard C, Ferriero DM, Vexler ZS. Immune-Neurovascular Interactions in Experimental Perinatal and Childhood Arterial Ischemic Stroke. Stroke 2024; 55:506-518. [PMID: 38252757 DOI: 10.1161/strokeaha.123.043399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Emerging clinical and preclinical data have demonstrated that the pathophysiology of arterial ischemic stroke in the adult, neonates, and children share similar mechanisms that regulate brain damage but also have distinct molecular signatures and involved cellular pathways due to the maturational stage of the central nervous system and the immune system at the time of the insult. In this review, we discuss similarities and differences identified thus far in rodent models of 2 different diseases-neonatal (perinatal) and childhood arterial ischemic stroke. In particular, we review acquired knowledge of the role of resident and peripheral immune populations in modulating outcomes in models of perinatal and childhood arterial ischemic stroke and the most recent and relevant findings in relation to the immune-neurovascular crosstalk, and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we discuss the current state of treatments geared toward age-appropriate therapies that signal via the immune-neurovascular interaction and consider sex differences to achieve successful translation.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden (C.M.)
| | - Donna M Ferriero
- Department of Pediatrics, UCSF, San Francisco, CA (D.M.F.)
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| | - Zinaida S Vexler
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| |
Collapse
|
3
|
Mitra S, Harvey-Jones K, Kraev I, Verma V, Meehan C, Mintoft A, Norris G, Campbell E, Tucker K, Robertson NJ, Hristova M, Lange S. The Extracellular Vesicle Citrullinome and Signature in a Piglet Model of Neonatal Seizures. Int J Mol Sci 2023; 24:11529. [PMID: 37511288 PMCID: PMC10380774 DOI: 10.3390/ijms241411529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, which is caused by modification of arginine to citrulline via the calcium-mediated activation of the peptidylarginine deiminase (PAD) enzyme family, is being increasingly linked to neurological injury. Extracellular vesicles (EVs) are lipid-bilayer structures released from cells; they can be isolated from most body fluids and act as potential liquid biomarkers for disease conditions and response to treatment. As EVs carry a range of genetic and protein cargo that can be characteristic of pathological processes, the current study assessed modified citrullinated protein cargo in EVs isolated from plasma and CSF in a piglet neonatal seizure model, also following phenobarbitone treatment. Our findings provide novel insights into roles for PAD-mediated changes on EV signatures in neonatal seizures and highlight the potential of plasma- and CSF-EVs to monitor responses to treatment.
Collapse
Affiliation(s)
- Subhabrata Mitra
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Kelly Harvey-Jones
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Vinita Verma
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Christopher Meehan
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Alison Mintoft
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Georgina Norris
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Ellie Campbell
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Katie Tucker
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Nicola J. Robertson
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Neonatology, UCL Institute for Women’s Health, London WC1E 6HU, UK;
| | - Sigrun Lange
- Perinatal Brain Repair Group, Department of Neonatology, UCL Institute for Women’s Health, London WC1E 6HU, UK;
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Pathobiology and Extracellular Vesicle Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
4
|
Gabrielli M, Raffaele S, Fumagalli M, Verderio C. The multiple faces of extracellular vesicles released by microglia: Where are we 10 years after? Front Cell Neurosci 2022; 16:984690. [PMID: 36176630 PMCID: PMC9514840 DOI: 10.3389/fncel.2022.984690] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
As resident component of the innate immunity in the central nervous system (CNS), microglia are key players in pathology. However, they also exert fundamental roles in brain development and homeostasis maintenance. They are extremely sensitive and plastic, as they assiduously monitor the environment, adapting their function in response to stimuli. On consequence, microglia may be defined a heterogeneous community of cells in a dynamic equilibrium. Extracellular vesicles (EVs) released by microglia mirror the dynamic nature of their donor cells, exerting important and versatile functions in the CNS as unbounded conveyors of bioactive signals. In this review, we summarize the current knowledge on EVs released by microglia, highlighting their heterogeneous properties and multifaceted effects.
Collapse
Affiliation(s)
- Martina Gabrielli
- CNR Institute of Neuroscience, Vedano al Lambro, Italy
- *Correspondence: Martina Gabrielli,
| | - Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Vedano al Lambro, Italy
- Claudia Verderio,
| |
Collapse
|
5
|
Pavlic A, Bahram Sangani N, Kerins J, Nicolaes G, Schurgers L, Reutelingsperger C. Vascular Smooth Muscle Cell Neutral Sphingomyelinase 2 in the Release of Exosomes and Vascular Calcification. Int J Mol Sci 2022; 23:ijms23169178. [PMID: 36012444 PMCID: PMC9409231 DOI: 10.3390/ijms23169178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification (VC) is the pathological precipitation of calcium salts in the walls of blood vessels. It is a risk factor for cardiovascular events and their associated mortality. VC can be observed in a variety of cardiovascular diseases and is most prominent in diseases that are associated with dysregulated mineral homeostasis such as in chronic kidney disease. Local factors and mechanisms underlying VC are still incompletely understood, but it is appreciated that VC is a multifactorial process in which vascular smooth muscle cells (VSMCs) play an important role. VSMCs participate in VC by releasing extracellular vesicles (EVs), the extent, composition, and propensity to calcify of which depend on VSMC phenotype and microenvironment. Currently, no targeted therapy is available to treat VC. In-depth knowledge of molecular players of EV release and the understanding of their mechanisms constitute a vital foundation for the design of pharmacological treatments to combat VC effectively. This review highlights our current knowledge of VSMCs in VC and focuses on the biogenesis of exosomes and the role of the neutral Sphingomyelinase 2 (nSMase2).
Collapse
Affiliation(s)
- Angelina Pavlic
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Nasim Bahram Sangani
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Johanna Kerins
- University College Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Gerry Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-388-1533
| |
Collapse
|
6
|
Switching Roles: Beneficial Effects of Adipose Tissue-Derived Mesenchymal Stem Cells on Microglia and Their Implication in Neurodegenerative Diseases. Biomolecules 2022; 12:biom12020219. [PMID: 35204722 PMCID: PMC8961583 DOI: 10.3390/biom12020219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 01/08/2023] Open
Abstract
Neurological disorders, including neurodegenerative diseases, are often characterized by neuroinflammation, which is largely driven by microglia, the resident immune cells of the central nervous system (CNS). Under these conditions, microglia are able to secrete neurotoxic substances, provoking neuronal cell death. However, microglia in the healthy brain carry out CNS-supporting functions. This is due to the ability of microglia to acquire different phenotypes that can play a neuroprotective role under physiological conditions or a pro-inflammatory, damaging one during disease. Therefore, therapeutic strategies focus on the downregulation of these neuroinflammatory processes and try to re-activate the neuroprotective features of microglia. Mesenchymal stem cells (MSC) of different origins have been shown to exert such effects, due to their immunomodulatory properties. In recent years, MSC derived from adipose tissue have been made the center of attention because of their easy availability and extraction methods. These cells induce a neuroprotective phenotype in microglia and downregulate neuroinflammation, resulting in an improvement of clinical symptoms in a variety of animal models for neurological pathologies, e.g., Alzheimer’s disease, traumatic brain injury and ischemic stroke. In this review, we will discuss the application of adipose tissue-derived MSC and their conditioned medium, including extracellular vesicles, in neurological disorders, their beneficial effect on microglia and the signaling pathways involved.
Collapse
|