1
|
Balakrishnan AS, Johansen LBE, Lindsley CW, Conn PJ, Thomsen M. Co-stimulation of muscarinic M1 and M4 acetylcholine receptors prevents later cocaine reinforcement in male and female mice, but not place-conditioning. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111079. [PMID: 38950842 DOI: 10.1016/j.pnpbp.2024.111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Acute stimulation of M1 or M4 muscarinic cholinergic receptors reduces cocaine abuse-related effects in mice and rats. The combined activation of these receptor subtypes produces synergistic effects on some behavioural endpoints in mice. M1 and M1 + M4 receptor stimulation in a cocaine vs. food choice assay in rats and microdialysis in rats showed delayed and lasting "anticocaine effects". Here, we tested whether these putative lasting neuroplastic changes are sufficient to occlude the reinforcing effects of cocaine at the behavioural level in mice. Mice were pre-treated with the M1 receptor partial agonist VU0364572, M4 receptor positive allosteric modulator VU0152100, or VU0364572 + VU0152100 two weeks prior to acquisition of cocaine intravenous self-administration (IVSA). Male C57BL/6JRj mice received vehicle, VU0364572, VU0152100, or VU0364572 + VU0152100. Female mice were tested with two VU0364572 + VU0152100 dose combinations or vehicle. To attribute potential effects to either reduced rewarding effects or increased aversion to cocaine, we tested VU0364572 alone and VU0364572 + VU0152100 in acquisition of cocaine-conditioned place preference (CPP) in male mice using an unbiased design. The acquisition of cocaine IVSA was drastically reduced and/or slowed in male and female mice receiving VU0364572 + VU0152100, but not either drug alone. Food-maintained operant behaviour was unaffected, indicating that the treatment effects were cocaine-specific. No treatment altered the acquisition of cocaine-CPP, neither in the post-test, nor in a challenge 14 days later. The cocaine IVSA findings confirm unusual long-lasting "anticocaine" effects of muscarinic M1 + M4 receptor stimulation. Thus, in mice, simultaneous stimulation of both receptor subtypes seems to produce potential neuroplastic changes that yield lasting effects.
Collapse
Affiliation(s)
- Abhishek Shankar Balakrishnan
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Bornø Engelhardt Johansen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Morgan Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Hirokane K, Nakamura T, Terashita T, Kubota Y, Hu D, Yagi T, Graybiel AM, Kitsukawa T. Representation of rhythmic chunking in striatum of mice executing complex continuous movement sequences. Cell Rep 2024; 43:114312. [PMID: 38848217 PMCID: PMC11262464 DOI: 10.1016/j.celrep.2024.114312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/14/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
We used a step-wheel system to examine the activity of striatal projection neurons as mice practiced stepping on complexly arranged foothold pegs in this Ferris-wheel-like device to receive reward. Sets of dorsolateral striatal projection neurons were sensitive to specific parameters of repetitive motor coordination during the runs. They responded to combinations of the parameters of continuous movements (interval, phase, and repetition), forming "chunking responses"-some for combinations of these parameters across multiple body parts. Recordings in sensorimotor cortical areas exhibited notably fewer such responses but were documented for smaller neuron sets whose heterogeneity was significant. Striatal movement encoding via chunking responsivity could provide insight into neural strategies governing effective motor control by the striatum. It is possible that the striking need for external rhythmic cuing to allow movement sequences by Parkinson's patients could, at least in part, reflect dysfunction in such striatal coding.
Collapse
Affiliation(s)
- Kojiro Hirokane
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan; McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Toru Nakamura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takuma Terashita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yasuo Kubota
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dan Hu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Takeshi Yagi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Takashi Kitsukawa
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
3
|
Zhai S, Cui Q, Simmons DV, Surmeier DJ. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Curr Opin Neurobiol 2023; 83:102798. [PMID: 37866012 PMCID: PMC10842063 DOI: 10.1016/j.conb.2023.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The degeneration of mesencephalic dopaminergic neurons that innervate the basal ganglia is responsible for the cardinal motor symptoms of Parkinson's disease (PD). It has been thought that loss of dopaminergic signaling in one basal ganglia region - the striatum - was solely responsible for the network pathophysiology causing PD motor symptoms. While our understanding of dopamine (DA)'s role in modulating striatal circuitry has deepened in recent years, it also has become clear that it acts in other regions of the basal ganglia to influence movement. Underscoring this point, examination of a new progressive mouse model of PD shows that striatal dopamine DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. This review summarizes recent advances in the effort to understand basal ganglia circuitry, its modulation by DA, and how its dysfunction drives PD motor symptoms.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - DeNard V Simmons
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
4
|
Hirokane K, Nakamura T, Terashita T, Kubota Y, Hu D, Yagi T, Graybiel AM, Kitsukawa T. Rhythm Receptive Fields in Striatum of Mice Executing Complex Continuous Movement Sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559115. [PMID: 37790358 PMCID: PMC10542522 DOI: 10.1101/2023.09.23.559115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
By the use of a novel experimental system, the step-wheel, we investigated the neural underpinnings of complex and continuous movements. We recorded neural activities from the dorsolateral striatum and found neurons sensitive to movement rhythm parameters. These neurons responded to specific combinations of interval, phase, and repetition of movement, effectively forming what we term "rhythm receptive fields." Some neurons even responsive to the combination of movement phases of multiple body parts. In parallel, cortical recordings in sensorimotor areas highlighted a paucity of neurons responsive to multiple parameter combinations, relative to those in the striatum. These findings have implications for comprehending motor coordination deficits seen in brain disorders including Parkinson's disease. Movement encoding by rhythm receptive fields should streamline the brain's capacity to encode temporal patterns, help to resolve the degrees of freedom problem. Such rhythm fields hint at the neural mechanisms governing effective motor control and processing of rhythmic information.
Collapse
|
5
|
Surmeier DJ, Zhai S, Cui Q, Simmons DV. Rethinking the network determinants of motor disability in Parkinson's disease. Front Synaptic Neurosci 2023; 15:1186484. [PMID: 37448451 PMCID: PMC10336242 DOI: 10.3389/fnsyn.2023.1186484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.
Collapse
Affiliation(s)
- Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | |
Collapse
|
6
|
Hirokane K, Nakamura T, Kubota Y, Hu D, Yagi T, Graybiel AM, Kitsukawa T. Emergence of rhythmic chunking in complex stepping of mice. iScience 2023; 26:106765. [PMID: 37216111 PMCID: PMC10196557 DOI: 10.1016/j.isci.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Motor chunking is important for motor execution, allowing atomization and efficiency of movement sequences. However, it remains unclear why and how chunks contribute to motor execution. To analyze the structure of naturally occurring chunks, we trained mice to run in a complex series of steps and identified the formation of chunks. We found that intervals (cycle) and the positional relationship between the left and right limbs (phase) of steps inside the chunks, unlike those outside the chunks, were consistent across occurrences. Further, licking by the mice was also more periodic and linked to the specific phases of limb movements within the chunk. Based on these findings, we propose the rhythm chunking hypothesis, whereby within chunks, the repetitive movements of many body parts are linked by the rhythm parameters: cycle and phase. The computational complexity of movement may thereby be reduced by adjusting movements as the combination of rhythms.
Collapse
Affiliation(s)
- Kojiro Hirokane
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Toru Nakamura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yasuo Kubota
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Hu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Takeshi Yagi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Takashi Kitsukawa
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Kuroiwa M, Shuto T, Nagai T, Amano M, Kaibuchi K, Nairn AC, Nishi A. DARPP-32/protein phosphatase 1 regulates Rasgrp2 as a novel component of dopamine D1 receptor signaling in striatum. Neurochem Int 2023; 162:105438. [PMID: 36351540 DOI: 10.1016/j.neuint.2022.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Dopamine regulates psychomotor function by D1 receptor/PKA-dependent phosphorylation of DARPP-32. DARPP-32, phosphorylated at Thr34 by PKA, inhibits protein phosphatase 1 (PP1), and amplifies the phosphorylation of other PKA/PP1 substrates following D1 receptor activation. In addition to the D1 receptor/PKA/DARPP-32 signaling pathway, D1 receptor stimulation is known to activate Rap1/ERK signaling. Rap1 activation is mediated through the phosphorylation of Rasgrp2 (guanine nucleotide exchange factor; activation) and Rap1gap (GTPase-activating protein; inhibition) by PKA. In this study, we investigated the role of PP1 inhibition by phospho-Thr34 DARPP-32 in the D1 receptor-induced phosphorylation of Rasgrp2 and Rap1gap at PKA sites. The analyses in striatal and NAc slices from wild-type and DARPP-32 knockout mice revealed that the phosphorylation of Rasgrp2 at Ser116/Ser117 and Ser586, but not of Rasgrp2 at Ser554 or Rap1gap at Ser441 or Ser499 induced by a D1 receptor agonist, is under the control of the DARPP-32/PP1. The results were supported by pharmacological analyses using a selective PP1 inhibitor, tautomycetin. In addition, analyses using a PP1 and PP2A inhibitor, okadaic acid, revealed that all sites of Rasgrp2 and Rap1gap were regulated by PP2A. Thus, the interactive machinery of DARPP-32/PP1 may contribute to efficient D1 receptor signaling via Rasgrp2/Rap1 in the striatum.
Collapse
Affiliation(s)
- Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan; Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, 06519, United States
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan.
| |
Collapse
|
8
|
Striatal synaptic adaptations in Parkinson's disease. Neurobiol Dis 2022; 167:105686. [PMID: 35272023 DOI: 10.1016/j.nbd.2022.105686] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
The striatum is densely innervated by mesencephalic dopaminergic neurons that modulate acquisition and vigor of goal-directed actions and habits. This innervation is progressively lost in Parkinson's disease (PD), contributing to the defining movement deficits of the disease. Although boosting dopaminergic signaling with levodopa early in the course of the disease alleviates these deficits, later this strategy leads to the emergence of debilitating dyskinesia. Here, recent advances in our understanding of how striatal cells and circuits adapt to this progressive de-innervation and to levodopa therapy are discussed. First, we discuss how dopamine (DA) depletion triggers cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity but also lead to disruption of the synaptic architecture sculpted by experience. Second, we discuss the roles played by cholinergic and nitric oxide-releasing interneurons in these adaptations. Third, we examine recent work in freely moving mice suggesting that alterations in the spatiotemporal dynamics of striatal ensembles contributes to PD movement deficits. Lastly, we discuss recently published evidence from a progressive model of PD suggesting that contrary to the classical model, striatal pathway imbalance is necessary but not sufficient to produce frank parkinsonism.
Collapse
|
9
|
Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients. Biomolecules 2022; 12:biom12020328. [PMID: 35204828 PMCID: PMC8869509 DOI: 10.3390/biom12020328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia (SCZ) is a polygenic severe mental illness. Genome-wide association studies (GWAS) have detected genomic variants associated with this psychiatric disorder and pathway analyses have indicated immune system and dopamine signaling as core components of risk in dorsolateral-prefrontal cortex (DLPFC) and hippocampus, but the mechanistic links remain unknown. The RasGRP1 gene, encoding for a guanine nucleotide exchange factor, is implicated in dopamine signaling and immune response. RasGRP1 has been identified as a candidate risk gene for SCZ and autoimmune disease, therefore representing a possible point of convergence between mechanisms involving the nervous and the immune system. Here, we investigated RasGRP1 mRNA and protein expression in post-mortem DLPFC and hippocampus of SCZ patients and healthy controls, along with RasGRP1 protein content in the serum of an independent cohort of SCZ patients and control subjects. Differences in RasGRP1 expression between SCZ patients and controls were detected both in DLPFC and peripheral blood of samples analyzed. Our results indicate RasGRP1 may mediate risk for SCZ by involving DLPFC and peripheral blood, thus encouraging further studies to explore its possible role as a biomarker of the disease and/or a target for new medication.
Collapse
|