1
|
Guillén-Yunta M, García-Aldea Á, Valcárcel-Hernández V, Sanz-Bógalo A, Muñoz-Moreno E, Matheus MG, Grijota-Martínez C, Montero-Pedrazuela A, Guadaño-Ferraz A, Bárez-López S. Defective thyroid hormone transport to the brain leads to astroglial alterations. Neurobiol Dis 2024; 200:106621. [PMID: 39097035 DOI: 10.1016/j.nbd.2024.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a rare X-linked disorder that causes severe neurological damage, for which there is no effective treatment. AHDS is due to inactivating mutations in the thyroid hormone transporter MCT8 that impair the entry of thyroid hormones into the brain, resulting in cerebral hypothyroidism. However, the pathophysiology of AHDS is still not fully understood and this is essential to develop therapeutic strategies. Based on evidence suggesting that thyroid hormone deficit leads to alterations in astroglial cells, including gliosis, in this work, we have evaluated astroglial impairments in MCT8 deficiency by means of magnetic resonance imaging, histological, ultrastructural, and immunohistochemical techniques, and by mining available RNA sequencing outputs. Apparent diffusion coefficient (ADC) imaging values obtained from magnetic resonance imaging showed changes indicative of alterations in brain cytoarchitecture in MCT8-deficient patients (n = 11) compared to control subjects (n = 11). Astroglial alterations were confirmed by immunohistochemistry against astroglial markers in autopsy brain samples of an 11-year-old and a 30th gestational week MCT8-deficient subjects in comparison to brain samples from control subjects at similar ages. These findings were validated and further explored in a mouse model of AHDS. Our findings confirm changes in all the astroglial populations of the cerebral cortex in MCT8 deficiency that impact astrocytic metabolic and mitochondrial cellular respiration functions. These impairments arise early in brain development and persist at adult stages, revealing an abnormal distribution, density, morphology of cortical astrocytes, along with altered transcriptome, compatible with an astrogliosis-like phenotype at adult stages. We conclude that astrocytes are potential novel therapeutic targets in AHDS, and we propose ADC imaging as a tool to monitor the progression of neurological impairments and potential effects of treatments in MCT8 deficiency.
Collapse
Affiliation(s)
- Marina Guillén-Yunta
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ángel García-Aldea
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Valcárcel-Hernández
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ainara Sanz-Bógalo
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Emma Muñoz-Moreno
- Magnetic Imaging Resonance Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Gisele Matheus
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Carmen Grijota-Martínez
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Montero-Pedrazuela
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Ana Guadaño-Ferraz
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Soledad Bárez-López
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
2
|
Guillén-Yunta M, Valcárcel-Hernández V, García-Aldea Á, Soria G, García-Verdugo JM, Montero-Pedrazuela A, Guadaño-Ferraz A. Neurovascular unit disruption and blood-brain barrier leakage in MCT8 deficiency. Fluids Barriers CNS 2023; 20:79. [PMID: 37924081 PMCID: PMC10623792 DOI: 10.1186/s12987-023-00481-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The monocarboxylate transporter 8 (MCT8) plays a vital role in maintaining brain thyroid hormone homeostasis. This transmembrane transporter is expressed at the brain barriers, as the blood-brain barrier (BBB), and in neural cells, being the sole known thyroid hormone-specific transporter to date. Inactivating mutations in the MCT8 gene (SLC16A2) cause the Allan-Herndon-Dudley Syndrome (AHDS) or MCT8 deficiency, a rare X-linked disease characterized by delayed neurodevelopment and severe psychomotor disorders. The underlying pathophysiological mechanisms of AHDS remain unclear, and no effective treatments are available for the neurological symptoms of the disease. METHODS Neurovascular unit ultrastructure was studied by means of transmission electron microscopy. BBB permeability and integrity were evaluated by immunohistochemistry, non-permeable dye infiltration assays and histological staining techniques. Brain blood-vessel density was evaluated by immunofluorescence and magnetic resonance angiography. Finally, angiogenic-related factors expression was evaluated by qRT-PCR. The studies were carried out both in an MCT8 deficient subject and Mct8/Dio2KO mice, an AHDS murine model, and their respective controls. RESULTS Ultrastructural analysis of the BBB of Mct8/Dio2KO mice revealed significant alterations in neurovascular unit integrity and increased transcytotic flux. We also found functional alterations in the BBB permeability, as shown by an increased presence of peripheral IgG, Sodium Fluorescein and Evans Blue, along with increased brain microhemorrhages. We also observed alterations in the angiogenic process, with reduced blood vessel density in adult mice brain and altered expression of angiogenesis-related factors during brain development. Similarly, AHDS human brain samples showed increased BBB permeability to IgG and decreased blood vessel density. CONCLUSIONS These findings identify for the first time neurovascular alterations in the MCT8-deficient brain, including a disruption of the integrity of the BBB and alterations in the neurovascular unit ultrastructure as a new pathophysiological mechanism for AHDS. These results open a new field for potential therapeutic targets for the neurological symptoms of these patients and unveils magnetic resonance angiography as a new non-invasive in vivo technique for evaluating the progression of the disease.
Collapse
Affiliation(s)
- Marina Guillén-Yunta
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Víctor Valcárcel-Hernández
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Ángel García-Aldea
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Guadalupe Soria
- Laboratory of Surgical and Experimental Neuroanatomy, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology and Department of Cellular Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - Ana Montero-Pedrazuela
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain.
| | - Ana Guadaño-Ferraz
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Mayerl S, Heuer H. lThyroid hormone transporter Mct8/Oatp1c1 deficiency compromises proper oligodendrocyte maturation in the mouse CNS. Neurobiol Dis 2023:106195. [PMID: 37307933 DOI: 10.1016/j.nbd.2023.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
Proper CNS myelination depends on the timed availability of thyroid hormone (TH) that induces differentiation of oligodendrocyte precursor cells (OPCs) to mature, myelinating oligodendrocytes. Abnormal myelination is frequently observed in Allan-Herndon-Dudley syndrome caused by inactivating mutations in the TH transporter MCT8. Likewise, persistent hypomyelination is a key CNS feature of the Mct8/Oatp1c1 double knockout (Dko) mouse model, a well-established mouse model for human MCT8 deficiency that exhibits diminished TH transport across brain barriers and thus a TH deficient CNS. Here, we explored whether decreased myelin content is caused by an impairment in oligodendrocyte maturation. To that end, we studied OPC and oligodendrocyte populations in Dko mice versus wild-type and single TH transporter knockout animals at different developmental time points (at postnatal days P12, P30, and P120) using multi-marker immunostaining and confocal microscopy. Only in Dko mice we observed a reduction in cells expressing the oligodendroglia marker Olig2, encompassing all stages between OPCs and mature oligodendrocytes. Moreover, Dko mice exhibited at all analysed time points an increased portion of OPCs and a reduced number of mature oligodendrocytes both in white and grey matter regions indicating a differentiation blockage in the absence of Mct8/Oatp1c1. We also assessed cortical oligodendrocyte structural parameters by visualizing and counting the number of mature myelin sheaths formed per oligodendrocyte. Again, only Dko mice displayed a reduced number of myelin sheaths that in turn exhibited an increase in length indicating a compensatory response to the reduced number of mature oligodendrocyte. Altogether, our studies underscore an oligodendrocyte differentiation impairment and altered oligodendrocyte structural parameters in the global absence of Mct8 and Oatp1c1. Both mechanisms most likely do not only cause the abnormal myelination state but also contribute to compromised neuronal functionality in Mct8/Oatp1c1 deficient animals.
Collapse
Affiliation(s)
- Steffen Mayerl
- Dept. of Endocrinology, Diabetes & Metabolism, University of Duisburg-Essen, Essen, Germany.
| | - Heike Heuer
- Dept. of Endocrinology, Diabetes & Metabolism, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Thomas J, Sairoz, Jose A, Poojari VG, Shetty S, K SP, Prabhu R V K, Rao M. Role and Clinical Significance of Monocarboxylate Transporter 8 (MCT8) During Pregnancy. Reprod Sci 2023; 30:1758-1769. [PMID: 36595209 PMCID: PMC10229697 DOI: 10.1007/s43032-022-01162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
The review aims to summarize the available research focusing on the importance of monocarboxylate transporter (MCT8) in thyroid hormone trafficking across the placenta and fetal development. A systematic search was carried out in PubMed; studies available in English related to "monocarboxylate transporter", "adverse pregnancy", "fetal development," and "thyroid hormone" were identified and assessed. The references within the resulting articles were manually searched. MCT8 is a highly active and selective thyroid hormone transporter that facilitates the cellular uptake of triiodothyronine (T3), thyroxine (T4), reverse triiodothyronine (rT3), and diiodothyronine (T2) in different tissues. MCT8 is expressed in the placenta from the first trimester onwards, allowing the transport of thyroid hormone from mother to fetus. Mutations in MCT8 cause an X-linked disorder known as Allan-Herndon-Dudley syndrome (AHDS), characterized by severe psychomotor impairment and peripheral thyrotoxicosis. Hence, any maternal thyroid dysfunction may cause severe consequences for the fetus and newborn. Further research regarding MCT8 gene expression, polymorphic variation, and adverse pregnancy outcomes must be done to establish that MCT8 is a novel prognostic marker for the early detection of pregnancy-related complications.
Collapse
Affiliation(s)
- Jinsu Thomas
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sairoz
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anmi Jose
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vidyashree G Poojari
- Department of Reproductive Medicine and Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishnananda Prabhu R V
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Lazcano I, Pech-Pool SM, Olvera A, García-Martínez I, Palacios-Pérez S, Orozco A. The importance of thyroid hormone signaling during early development: Lessons from the zebrafish model. Gen Comp Endocrinol 2023; 334:114225. [PMID: 36709002 DOI: 10.1016/j.ygcen.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The zebrafish is an optimal experimental model to study thyroid hormone (TH) involvement in vertebrate development. The use of state-of-the-art zebrafish genetic tools available for the study of the effect of gene silencing, cell fate decisions and cell lineage differentiation have contributed to a more insightful comprehension of molecular, cellular, and tissue-specific TH actions. In contrast to intrauterine development, extrauterine embryogenesis observed in zebrafish has facilitated a more detailed study of the development of the hypothalamic-pituitary-thyroid axis. This model has also enabled a more insightful analysis of TH molecular actions upon the organization and function of the brain, the retina, the heart, and the immune system. Consequently, zebrafish has become a trendy model to address paradigms of TH-related functional and biomedical importance. We here compilate the available knowledge regarding zebrafish developmental events for which specific components of TH signaling are essential.
Collapse
Affiliation(s)
- I Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S M Pech-Pool
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - I García-Martínez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S Palacios-Pérez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
6
|
Sreenivasan VKA, Dore R, Resch J, Maier J, Dietrich C, Henck J, Balachandran S, Mittag J, Spielmann M. Single-cell RNA-based phenotyping reveals a pivotal role of thyroid hormone receptor alpha for hypothalamic development. Development 2023; 150:286776. [PMID: 36715020 PMCID: PMC10110490 DOI: 10.1242/dev.201228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023]
Abstract
Thyroid hormone and its receptor TRα1 play an important role in brain development. Several animal models have been used to investigate this function, including mice heterozygous for the TRα1R384C mutation, which confers receptor-mediated hypothyroidism. These mice display abnormalities in several autonomic functions, which was partially attributed to a developmental defect in hypothalamic parvalbumin neurons. However, whether other cell types in the hypothalamus are similarly affected remains unknown. Here, we used single-nucleus RNA sequencing to obtain an unbiased view on the importance of TRα1 for hypothalamic development and cellular diversity. Our data show that defective TRα1 signaling has surprisingly little effect on the development of hypothalamic neuronal populations, but it heavily affects hypothalamic oligodendrocytes. Using selective reactivation of the mutant TRα1 during specific developmental periods, we find that early postnatal thyroid hormone action seems to be crucial for proper hypothalamic oligodendrocyte maturation. Taken together, our findings underline the well-known importance of postnatal thyroid health for brain development and provide an unbiased roadmap for the identification of cellular targets of TRα1 action in mouse hypothalamic development.
Collapse
Affiliation(s)
- Varun K A Sreenivasan
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck 23562, Germany
| | - Riccardo Dore
- Institute for Endocrinology and Diabetes, University of Lübeck and Universitätsklinikum Schleswig-Holstein Campus Lübeck, Center of Brain Behavior and Metabolism (CBBM), Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Julia Resch
- Institute for Endocrinology and Diabetes, University of Lübeck and Universitätsklinikum Schleswig-Holstein Campus Lübeck, Center of Brain Behavior and Metabolism (CBBM), Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Julia Maier
- Institute for Endocrinology and Diabetes, University of Lübeck and Universitätsklinikum Schleswig-Holstein Campus Lübeck, Center of Brain Behavior and Metabolism (CBBM), Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Carola Dietrich
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Jana Henck
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck 23562, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Saranya Balachandran
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck 23562, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck 23562, Germany
| | - Jens Mittag
- Institute for Endocrinology and Diabetes, University of Lübeck and Universitätsklinikum Schleswig-Holstein Campus Lübeck, Center of Brain Behavior and Metabolism (CBBM), Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Malte Spielmann
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck 23562, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck 23562, Germany
| |
Collapse
|
7
|
Reinwald JR, Weber-Fahr W, Cosa-Linan A, Becker R, Sack M, Falfan-Melgoza C, Gass N, Braun U, Clemm von Hohenberg C, Chen J, Mayerl S, Muente TF, Heuer H, Sartorius A. TRIAC Treatment Improves Impaired Brain Network Function and White Matter Loss in Thyroid Hormone Transporter Mct8/Oatp1c1 Deficient Mice. Int J Mol Sci 2022; 23:15547. [PMID: 36555189 PMCID: PMC9779161 DOI: 10.3390/ijms232415547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Dysfunctions of the thyroid hormone (TH) transporting monocarboxylate transporter MCT8 lead to a complex X-linked syndrome with abnormal serum TH concentrations and prominent neuropsychiatric symptoms (Allan-Herndon-Dudley syndrome, AHDS). The key features of AHDS are replicated in double knockout mice lacking MCT8 and organic anion transporting protein OATP1C1 (Mct8/Oatp1c1 DKO). In this study, we characterize impairments of brain structure and function in Mct8/Oatp1c1 DKO mice using multimodal magnetic resonance imaging (MRI) and assess the potential of the TH analogue 3,3',5-triiodothyroacetic acid (TRIAC) to rescue this phenotype. Structural and functional MRI were performed in 11-weeks-old male Mct8/Oatp1c1 DKO mice (N = 10), wild type controls (N = 7) and Mct8/Oatp1c1 DKO mice (N = 13) that were injected with TRIAC (400 ng/g bw s.c.) daily during the first three postnatal weeks. Grey and white matter volume were broadly reduced in Mct8/Oatp1c1 DKO mice. TRIAC treatment could significantly improve white matter thinning but did not affect grey matter loss. Network-based statistic showed a wide-spread increase of functional connectivity, while graph analysis revealed an impairment of small-worldness and whole-brain segregation in Mct8/Oatp1c1 DKO mice. Both functional deficits could be substantially ameliorated by TRIAC treatment. Our study demonstrates prominent structural and functional brain alterations in Mct8/Oatp1c1 DKO mice that may underlie the psychomotor deficiencies in AHDS. Additionally, we provide preclinical evidence that early-life TRIAC treatment improves white matter loss and brain network dysfunctions associated with TH transporter deficiency.
Collapse
Affiliation(s)
- Jonathan Rochus Reinwald
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Research Group Systems Neuroscience and Mental Health, Department of Psychiatry and Psychotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Alejandro Cosa-Linan
- Research Group in Silico Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Robert Becker
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Center for Innovative Psychiatry and Psychotherapy Research, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Markus Sack
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Center for Innovative Psychiatry and Psychotherapy Research, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Claudia Falfan-Melgoza
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Urs Braun
- Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Christian Clemm von Hohenberg
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Jiesi Chen
- Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thomas F. Muente
- Department of Neurology, University of Lübeck, 23538 Lübeck, Germany
| | - Heike Heuer
- Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| |
Collapse
|
8
|
Valcárcel-Hernández V, Guillén-Yunta M, Bueno-Arribas M, Montero-Pedrazuela A, Grijota-Martínez C, Markossian S, García-Aldea Á, Flamant F, Bárez-López S, Guadaño-Ferraz A. A CRISPR/Cas9-engineered avatar mouse model of monocarboxylate transporter 8 deficiency displays distinct neurological alterations. Neurobiol Dis 2022; 174:105896. [DOI: 10.1016/j.nbd.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022] Open
|
9
|
Emamnejad R, Dass M, Mahlis M, Bozkurt S, Ye S, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. Thyroid hormone-dependent oligodendroglial cell lineage genomic and non-genomic signaling through integrin receptors. Front Pharmacol 2022; 13:934971. [PMID: 36133808 PMCID: PMC9483185 DOI: 10.3389/fphar.2022.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease whereby the pathological sequelae evolve from oligodendrocytes (OLs) within the central nervous system and are targeted by the immune system, which causes widespread white matter pathology and results in neuronal dysfunction and neurological impairment. The progression of this disease is facilitated by a failure in remyelination following chronic demyelination. One mediator of remyelination is thyroid hormone (TH), whose reliance on monocarboxylate transporter 8 (MCT8) was recently defined. MCT8 facilitates the entry of THs into oligodendrocyte progenitor cell (OPC) and pre-myelinating oligodendrocytes (pre-OLs). Patients with MS may exhibit downregulated MCT8 near inflammatory lesions, which emphasizes an inhibition of TH signaling and subsequent downstream targeted pathways such as phosphoinositide 3-kinase (PI3K)-Akt. However, the role of the closely related mammalian target of rapamycin (mTOR) in pre-OLs during neuroinflammation may also be central to the remyelination process and is governed by various growth promoting signals. Recent research indicates that this may be reliant on TH-dependent signaling through β1-integrins. This review identifies genomic and non-genomic signaling that is regulated through mTOR in TH-responsive pre-OLs and mature OLs in mouse models of MS. This review critiques data that implicates non-genomic Akt and mTOR signaling in response to TH-dependent integrin receptor activation in pre-OLs. We have also examined whether this can drive remyelination in the context of neuroinflammation and associated sequelae. Importantly, we outline how novel therapeutic small molecules are being designed to target integrin receptors on oligodendroglial lineage cells and whether these are viable therapeutic options for future use in clinical trials for MS.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Michael Mahlis
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Paschalis Theotokis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
- *Correspondence: Steven Petratos,
| |
Collapse
|