1
|
Qu G, Merchant JP, Clatot J, DeFlitch LM, Frederick DJ, Tang S, Salvatore M, Zhang X, Li J, Anderson SA, Goldberg EM. Targeted blockade of aberrant sodium current in a stem cell-derived neuron model of SCN3A encephalopathy. Brain 2024; 147:1247-1263. [PMID: 37935051 PMCID: PMC10994535 DOI: 10.1093/brain/awad376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Missense variants in SCN3A encoding the voltage-gated sodium (Na+) channel α subunit Nav1.3 are associated with SCN3A-related neurodevelopmental disorder (SCN3A-NDD), a spectrum of disease that includes epilepsy and malformation of cortical development. How genetic variation in SCN3A leads to pathology remains unclear, as prior electrophysiological work on disease-associated variants has been performed exclusively in heterologous cell systems. To further investigate the mechanisms of SCN3A-NDD pathogenesis, we used CRISPR/Cas9 gene editing to modify a control human induced pluripotent stem cell (iPSC) line to express the recurrent de novo missense variant SCN3A c.2624T>C (p.Ile875Thr). With the established Ngn2 rapid induction protocol, we generated glutamatergic forebrain-like neurons (iNeurons), which we showed to express SCN3A mRNA and Nav1.3-mediated Na+ currents. We performed detailed whole-cell patch clamp recordings to determine the effect of the SCN3A-p.Ile875Thr variant on endogenous Na+ currents in, and intrinsic excitability of, human neurons. Compared to control iNeurons, variant-expressing iNeurons exhibit markedly increased slowly-inactivating/persistent Na+ current, abnormal firing patterns with paroxysmal bursting and plateau-like potentials with action potential failure, and a hyperpolarized voltage threshold for action potential generation. We then validated these findings using a separate iPSC line generated from a patient harbouring the SCN3A-p.Ile875Thr variant compared to a corresponding CRISPR-corrected isogenic control line. Finally, we found that application of the Nav1.3-selective blocker ICA-121431 normalizes action potential threshold and aberrant firing patterns in SCN3A-p.Ile1875Thr iNeurons; in contrast, consistent with action as a Na+ channel blocker, ICA-121431 decreases excitability of control iNeurons. Our findings demonstrate that iNeurons can model the effects of genetic variation in SCN3A yet reveal a complex relationship between gain-of-function at the level of the ion channel versus impact on neuronal excitability. Given the transient expression of SCN3A in the developing human nervous system, selective blockade or suppression of Nav1.3-containing Na+ channels could represent a therapeutic approach towards SCN3A-NDD.
Collapse
Affiliation(s)
- Guojie Qu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Julie P Merchant
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jérôme Clatot
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Leah M DeFlitch
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Danny J Frederick
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sheng Tang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Madeleine Salvatore
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jianping Li
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stewart A Anderson
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
D'Onofrio G, Roberti R, Riva A, Russo E, Verrotti A, Striano P, Belcastro V. Pharmacodynamic rationale for the choice of antiseizure medications in the paediatric population. Neurotherapeutics 2024; 21:e00344. [PMID: 38521667 PMCID: PMC11070715 DOI: 10.1016/j.neurot.2024.e00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/25/2024] Open
Abstract
In the landscape of paediatric epilepsy treatment, over 20 anti-seizure medications (ASMs) have gained approval from Drug Regulatory Agencies, each delineating clear indications. However, the complexity of managing drug-resistant epilepsy often necessitates the concurrent use of multiple medications. This therapeutic challenge highlights a notable gap: the absence of standardized guidelines, compelling clinicians to rely on empirical clinical experience when selecting combination therapies. This comprehensive review aims to explore current evidence elucidating the preferential utilization of specific ASMs or their combinations, with a primary emphasis on pharmacodynamic considerations. The fundamental objective underlying rational polytherapy is the strategic combination of medications, harnessing diverse mechanisms of action to optimize efficacy while mitigating shared side effects. Moreover, the intricate interplay between epilepsy and comorbidities partly may influence the treatment selection process. Despite advancements, unresolved queries persist, notably concerning the mechanisms underpinning drug resistance and the paradoxical exacerbation of seizures. By synthesizing existing evidence and addressing pertinent unresolved issues, this review aims to contribute to the evolving landscape of paediatric epilepsy treatment strategies, paving the way for more informed and efficacious therapeutic interventions.
Collapse
Affiliation(s)
- Gianluca D'Onofrio
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Roberta Roberti
- Science of Health Department, Magna Græcia University, Catanzaro, Italy
| | - Antonella Riva
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Emilio Russo
- Science of Health Department, Magna Græcia University, Catanzaro, Italy
| | | | - Pasquale Striano
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | | |
Collapse
|
3
|
van Hugte EJH, Lewerissa EI, Wu KM, Scheefhals N, Parodi G, van Voorst TW, Puvogel S, Kogo N, Keller JM, Frega M, Schubert D, Schelhaas HJ, Verhoeven J, Majoie M, van Bokhoven H, Nadif Kasri N. SCN1A-deficient excitatory neuronal networks display mutation-specific phenotypes. Brain 2023; 146:5153-5167. [PMID: 37467479 PMCID: PMC10689919 DOI: 10.1093/brain/awad245] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Dravet syndrome is a severe epileptic encephalopathy, characterized by (febrile) seizures, behavioural problems and developmental delay. Eighty per cent of patients with Dravet syndrome have a mutation in SCN1A, encoding Nav1.1. Milder clinical phenotypes, such as GEFS+ (generalized epilepsy with febrile seizures plus), can also arise from SCN1A mutations. Predicting the clinical phenotypic outcome based on the type of mutation remains challenging, even when the same mutation is inherited within one family. This clinical and genetic heterogeneity adds to the difficulties of predicting disease progression and tailoring the prescription of anti-seizure medication. Understanding the neuropathology of different SCN1A mutations may help to predict the expected clinical phenotypes and inform the selection of best-fit treatments. Initially, the loss of Na+-current in inhibitory neurons was recognized specifically to result in disinhibition and consequently seizure generation. However, the extent to which excitatory neurons contribute to the pathophysiology is currently debated and might depend on the patient clinical phenotype or the specific SCN1A mutation. To examine the genotype-phenotype correlations of SCN1A mutations in relation to excitatory neurons, we investigated a panel of patient-derived excitatory neuronal networks differentiated on multi-electrode arrays. We included patients with different clinical phenotypes, harbouring various SCN1A mutations, along with a family in which the same mutation led to febrile seizures, GEFS+ or Dravet syndrome. We hitherto describe a previously unidentified functional excitatory neuronal network phenotype in the context of epilepsy, which corresponds to seizurogenic network prediction patterns elicited by proconvulsive compounds. We found that excitatory neuronal networks were affected differently, depending on the type of SCN1A mutation, but did not segregate according to clinical severity. Specifically, loss-of-function mutations could be distinguished from missense mutations, and mutations in the pore domain could be distinguished from mutations in the voltage sensing domain. Furthermore, all patients showed aggravated neuronal network responses at febrile temperatures compared with controls. Finally, retrospective drug screening revealed that anti-seizure medication affected GEFS+ patient- but not Dravet patient-derived neuronal networks in a patient-specific and clinically relevant manner. In conclusion, our results indicate a mutation-specific excitatory neuronal network phenotype, which recapitulates the foremost clinically relevant features, providing future opportunities for precision therapies.
Collapse
Affiliation(s)
- Eline J H van Hugte
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
- Department of Epileptology, ACE Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Elly I Lewerissa
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Ka Man Wu
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Nicky Scheefhals
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Giulia Parodi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, 16145 GE Genova, Italy
| | - Torben W van Voorst
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Sofia Puvogel
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Naoki Kogo
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Jason M Keller
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Helenius J Schelhaas
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
| | - Judith Verhoeven
- Department of Epileptology, ACE Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Marian Majoie
- Department of Epileptology, ACE Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
4
|
Li M, Eltabbal M, Tran HD, Kuhn B. Scn2a insufficiency alters spontaneous neuronal Ca 2+ activity in somatosensory cortex during wakefulness. iScience 2023; 26:108138. [PMID: 37876801 PMCID: PMC10590963 DOI: 10.1016/j.isci.2023.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
SCN2A protein-truncating variants (PTV) can result in neurological disorders such as autism spectrum disorder and intellectual disability, but they are less likely to cause epilepsy in comparison to missense variants. While in vitro studies showed PTV reduce action potential firing, consequences at in vivo network level remain elusive. Here, we generated a mouse model of Scn2a insufficiency using antisense oligonucleotides (Scn2a ASO mice), which recapitulated key clinical feature of SCN2A PTV disorders. Simultaneous two-photon Ca2+ imaging and electrocorticography (ECoG) in awake mice showed that spontaneous Ca2+ transients in somatosensory cortical neurons, as well as their pairwise co-activities were generally decreased in Scn2a ASO mice during spontaneous awake state and induced seizure state. The reduction of neuronal activities and paired co-activity are mechanisms associated with motor, social and cognitive deficits observed in our mouse model of severe Scn2a insufficiency, indicating these are likely mechanisms driving SCN2A PTV pathology.
Collapse
Affiliation(s)
- Melody Li
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Mohamed Eltabbal
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Hoang-Dai Tran
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Hack JB, Horning K, Juroske Short DM, Schreiber JM, Watkins JC, Hammer MF. Distinguishing Loss-of-Function and Gain-of-Function SCN8A Variants Using a Random Forest Classification Model Trained on Clinical Features. Neurol Genet 2023; 9:e200060. [PMID: 37152443 PMCID: PMC10160958 DOI: 10.1212/nxg.0000000000200060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/12/2023] [Indexed: 05/09/2023]
Abstract
Background and Objectives Pathogenic variants at the voltage-gated sodium channel gene, SCN8A, are associated with a wide spectrum of clinical disease outcomes. A critical challenge for neurologists is to determine whether patients carry gain-of-function (GOF) or loss-of-function (LOF) variants to guide treatment decisions, yet in vitro studies to infer channel function are often not feasible in the clinic. In this study, we develop a predictive modeling approach to classify variants based on clinical features present at initial diagnosis. Methods We performed an exhaustive search for individuals deemed to carry SCN8A GOF and LOF variants by means of in vitro studies in heterologous cell systems, or because the variant was classified as truncating, and recorded clinical features. This resulted in a total of 69 LOF variants: 34 missense and 35 truncating variants, including 9 nonsense, 13 frameshift, 6 splice site, 6 indels, and 1 large deletion. We then assembled a truth set of variants with known functional effects, excluding individuals carrying variants at other loci associated with epilepsy. We then trained a predictive model based on random forest using this truth set of 45 LOF variants and 45 GOF variants randomly selected from a set of variants tested by in vitro methods. Results Phenotypic categories assigned to individuals correlated strongly with GOF or LOF variants. All patients with GOF variants experienced early-onset seizures (mean age at onset = 4.5 ± 3.1 months) while only 64.4% patients with LOF variants had seizures, most of which were late-onset absence seizures (mean age at onset = 40.0 ± 38.1 months). With high accuracy (95.4%), our model including 5 key clinical features classified individuals with GOF and LOF variants into 2 distinct cohorts differing in age at seizure onset, development of seizures, seizure type, intellectual disability, and developmental and epileptic encephalopathy. Discussion The results support the hypothesis that patients with SCN8A GOF and LOF variants represent distinct clinical phenotypes. The clinical model developed in this study has great utility because it provides a rapid and highly accurate platform for predicting the functional class of patient variants during SCN8A diagnosis, which can aid in initial treatment decisions and improve prognosis.
Collapse
Affiliation(s)
- Joshua B Hack
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| | - Kyle Horning
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| | - Denise M Juroske Short
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| | - John M Schreiber
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| | - Joseph C Watkins
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| | - Michael F Hammer
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| |
Collapse
|
6
|
Scalise S, Zannino C, Lucchino V, Lo Conte M, Scaramuzzino L, Cifelli P, D’Andrea T, Martinello K, Fucile S, Palma E, Gambardella A, Ruffolo G, Cuda G, Parrotta EI. Human iPSC Modeling of Genetic Febrile Seizure Reveals Aberrant Molecular and Physiological Features Underlying an Impaired Neuronal Activity. Biomedicines 2022; 10:biomedicines10051075. [PMID: 35625812 PMCID: PMC9138645 DOI: 10.3390/biomedicines10051075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Mutations in SCN1A gene, encoding the voltage-gated sodium channel (VGSC) NaV1.1, are widely recognized as a leading cause of genetic febrile seizures (FS), due to the decrease in the Na+ current density, mainly affecting the inhibitory neuronal transmission. Here, we generated induced pluripotent stem cells (iPSCs)-derived neurons (idNs) from a patient belonging to a genetically well-characterized Italian family, carrying the c.434T > C mutation in SCN1A gene (hereafter SCN1AM145T). A side-by-side comparison of diseased and healthy idNs revealed an overall maturation delay of SCN1AM145T cells. Membranes isolated from both diseased and control idNs were injected into Xenopus oocytes and both GABA and AMPA currents were successfully recorded. Patch-clamp measurements on idNs revealed depolarized action potential for SCN1AM145T, suggesting a reduced excitability. Expression analyses of VGSCs and chloride co-transporters NKCC1 and KCC2 showed a cellular “dysmaturity” of mutated idNs, strengthened by the high expression of SCN3A, a more fetal-like VGSC isoform, and a high NKCC1/KCC2 ratio, in mutated cells. Overall, we provide strong evidence for an intrinsic cellular immaturity, underscoring the role of mutant NaV1.1 in the development of FS. Furthermore, our data are strengthening previous findings obtained using transfected cells and recordings on human slices, demonstrating that diseased idNs represent a powerful tool for personalized therapy and ex vivo drug screening for human epileptic disorders.
Collapse
Affiliation(s)
- Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Pierangelo Cifelli
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of Aquila, 67100 Aquila, Italy;
| | - Tiziano D’Andrea
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
| | | | - Sergio Fucile
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
- IRCCS Neuromed, Via Atinense, 86077 Pozzilli, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (E.I.P.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
- IRCCS San Raffaele Roma, Via della Pisana, 00163 Rome, Italy
- Correspondence: (G.R.); (G.C.)
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
- Correspondence: (G.R.); (G.C.)
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (E.I.P.)
| |
Collapse
|