1
|
Jay KL, Gogate N, Ezell K, Andrews JC, Jangam SV, Hall PI, Pan H, Pham K, German R, Gomez V, Jellinek-Russo E, Storch E, Yamamoto S, Kanca O, Bellen HJ, Dierick H, Cogan JD, Phillips JA, Hamid R, Cassini T, Rives L, Posey JE, Wangler MF. Resolution of SLC6A1 variable expressivity in a multi-generational family using deep clinical phenotyping and Drosophila models. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.27.24314092. [PMID: 39399018 PMCID: PMC11469343 DOI: 10.1101/2024.09.27.24314092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Purpose Variants in SLC6A1 result in a rare neurodevelopmental disorder characterized by a variable clinical presentation of symptoms including developmental delay, epilepsy, motor dysfunction, and autism spectrum disorder. SLC6A1 haploinsufficiency has been confirmed as the predominant pathway of SLC6A1-related neurodevelopmental disorders (NDDs), however, the molecular mechanism underlying the variable clinical presentation remains unclear. Methods Here, through work of the Undiagnosed Diseases Network, we identify an undiagnosed individual with an inherited p.(A334S) variant of uncertain significance. To resolve this case and better understand the variable expressivity with SLC6A1, we assess the phenotypes of the proband with a cohort of cases diagnosed with SLC6A1-related NDDs. We then create an allelic series in the Drosophila melanogaster to functionally characterize case variants. Results We identify significant clinical overlap between the unsolved case and confirmed cases of SLC6A1-related NDDs and find a mild to severe clinical presentation associated with missense variants. We confirm phenotypes in flies expressing SLC6A1 variants consistent with a partial loss-of-function mechanism. Conclusion We conclude that the p.(A334S) variant is a hypomorphic allele and begin to elucidate the underlying variability in SLC6A1-related NDDs. These insights will inform clinical diagnosis, prognosis, treatment and inform therapeutic design for those living with SLC6A1-related NDDs.
Collapse
Affiliation(s)
- Kristy L. Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| | - Nikhita Gogate
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kim Ezell
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan C. Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| | - Sharayu V. Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| | - Paige I. Hall
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| | - Kelvin Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ryan German
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| | - Vanessa Gomez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| | | | - Eric Storch
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | | | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| | - Herman Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joy D. Cogan
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A. Phillips
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rizwan Hamid
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Thomas Cassini
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lynette Rives
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030
| |
Collapse
|
2
|
Shah N, Kasture AS, Fischer FP, Sitte HH, Hummel T, Sucic S. A transporter's doom or destiny: SLC6A1 in health and disease, novel molecular targets and emerging therapeutic prospects. Front Mol Neurosci 2024; 17:1466694. [PMID: 39268250 PMCID: PMC11390516 DOI: 10.3389/fnmol.2024.1466694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
As the first member of the solute carrier 6 (SLC6) protein family, the γ-aminobutyric acid (GABA) transporter 1 (GAT1, SLC6A1), plays a pivotal role in the uptake of GABA from the synaptic cleft into neurons and astrocytes. This process facilitates the subsequent storage of GABA in presynaptic vesicles. The human SLC6A1 gene is highly susceptible to missense mutations, leading to severe clinical outcomes, such as epilepsy, in the afflicted patients. The molecular mechanisms of SLC6A1-associated disorders are discerned to some degree; many SLC6A1 mutations are now known to impair protein folding, and consequently fail to reach the plasma membrane. Inherently, once inside the endoplasmic reticulum (ER), GAT1 abides by a complex cascade of events that enable efficient intracellular trafficking. This involves association with specialized molecular chaperones responsible for steering the protein folding process, oligomerization, sorting through the Golgi apparatus, and ultimately delivery to the cell surface. The entire process is subject to stringent quality control mechanisms at multiple checkpoints. While the majority of the existing loss-of-function SLC6A1 variants interfere with folding and membrane targeting, certain mutants retain abundant surface expression. In either scenario, suppressed GAT1 activity disrupts GABAergic neurotransmission, preceding the disease manifestation in individuals harboring these mutations. The nervous system is enthralling and calls for systematic, groundbreaking research efforts to dissect the precise molecular factors associated with the onset of complex neurological disorders, and uncover additional non-canonical therapeutic targets. Recent research has given hope for some of the misfolded SLC6A1 variants, which can be salvaged by small molecules, i.e., chemical and pharmacological chaperones, acting on multiple upstream targets in the secretory pathway. We here highlight the significance of pharmacochaperoning as a therapeutic strategy for the treatment of SLC6A1-related disorders.
Collapse
Affiliation(s)
- Nikita Shah
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ameya S Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian P Fischer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Harald H Sitte
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- Center for Addiction Research and Science-AddRess, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Poliquin S, Nwosu G, Randhave K, Shen W, Flamm C, Kang JQ. Modulating Endoplasmic Reticulum Chaperones and Mutant Protein Degradation in GABRG2(Q390X) Associated with Genetic Epilepsy with Febrile Seizures Plus and Dravet Syndrome. Int J Mol Sci 2024; 25:4601. [PMID: 38731820 PMCID: PMC11083348 DOI: 10.3390/ijms25094601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
A significant number of patients with genetic epilepsy do not obtain seizure freedom, despite developments in new antiseizure drugs, suggesting a need for novel therapeutic approaches. Many genetic epilepsies are associated with misfolded mutant proteins, including GABRG2(Q390X)-associated Dravet syndrome, which we have previously shown to result in intracellular accumulation of mutant GABAA receptor γ2(Q390X) subunit protein. Thus, a potentially promising therapeutic approach is modulation of proteostasis, such as increasing endoplasmic reticulum (ER)-associated degradation (ERAD). To that end, we have here identified an ERAD-associated E3 ubiquitin ligase, HRD1, among other ubiquitin ligases, as a strong modulator of wildtype and mutant γ2 subunit expression. Overexpressing HRD1 or knockdown of HRD1 dose-dependently reduced the γ2(Q390X) subunit. Additionally, we show that zonisamide (ZNS)-an antiseizure drug reported to upregulate HRD1-reduces seizures in the Gabrg2+/Q390X mouse. We propose that a possible mechanism for this effect is a partial rescue of surface trafficking of GABAA receptors, which are otherwise sequestered in the ER due to the dominant-negative effect of the γ2(Q390X) subunit. Furthermore, this partial rescue was not due to changes in ER chaperones BiP and calnexin, as total expression of these chaperones was unchanged in γ2(Q390X) models. Our results here suggest that leveraging the endogenous ERAD pathway may present a potential method to degrade neurotoxic mutant proteins like the γ2(Q390X) subunit. We also demonstrate a pharmacological means of regulating proteostasis, as ZNS alters protein trafficking, providing further support for the use of proteostasis regulators for the treatment of genetic epilepsies.
Collapse
Affiliation(s)
- Sarah Poliquin
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA;
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
| | - Gerald Nwosu
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave South, Nashville, TN 37232, USA; (K.R.); (W.S.); (C.F.)
| | - Karishma Randhave
- Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave South, Nashville, TN 37232, USA; (K.R.); (W.S.); (C.F.)
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave South, Nashville, TN 37232, USA; (K.R.); (W.S.); (C.F.)
| | - Carson Flamm
- Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave South, Nashville, TN 37232, USA; (K.R.); (W.S.); (C.F.)
| | - Jing-Qiong Kang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
- Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave South, Nashville, TN 37232, USA; (K.R.); (W.S.); (C.F.)
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Kennedy Center of Human Development, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Shen W, Nwosu G, Honer M, Clasadonte J, Schmalzbauer S, Biven M, Langer K, Flamm C, Poliquin S, Mermer F, Dedeurwaerdere S, Hernandez MC, Kang JQ. γ-Aminobutyric acid transporter and GABA A receptor mechanisms in Slc6a1+/A288V and Slc6a1+/S295L mice associated with developmental and epileptic encephalopathies. Brain Commun 2024; 6:fcae110. [PMID: 38650830 PMCID: PMC11032196 DOI: 10.1093/braincomms/fcae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
We have previously characterized the molecular mechanisms for variants in γ-aminobutyric acid transporter 1-encoding solute carrier family 6-member 1 (SLC6A1) in vitro and concluded that a partial or complete loss of γ-aminobutyric acid uptake due to impaired protein trafficking is the primary aetiology. Impairment of γ-aminobutyric acid transporter 1 function could cause compensatory changes in the expression of γ-aminobutyric acid receptors, which, in turn, modify disease pathophysiology and phenotype. Here we used different approaches including radioactive 3H γ-aminobutyric acid uptake in cells and synaptosomes, immunohistochemistry and confocal microscopy as well as brain slice surface protein biotinylation to characterize Slc6a1+/A288V and Slc6a1+/S295L mice, representative of a partial or a complete loss of function of SLC6A1 mutations, respectively. We employed the γ-aminobutyric acid transporter 1-specific inhibitor [3H]tiagabine binding and GABAA receptor subunit-specific radioligand binding to profile the γ-aminobutyric acid transporter 1 and GABAA receptor expression in major brain regions such as cortex, cerebellum, hippocampus and thalamus. We also determined the total and surface expression of γ-aminobutyric acid transporter 1, γ-aminobutyric acid transporter 3 and expression of GABAA receptor in the major brain regions in the knockin mice. We found that γ-aminobutyric acid transporter 1 protein was markedly reduced in cortex, hippocampus, thalamus and cerebellum in both mutant mouse lines. Consistent with the findings of reduced γ-aminobutyric acid uptake for both γ-aminobutyric acid transporter 1(A288V) and γ-aminobutyric acid transporter 1(S295L), both the total and the γ-aminobutyric acid transporter 1-mediated 3H γ-aminobutyric acid reuptake was reduced. We found that γ-aminobutyric acid transporter 3 is only abundantly expressed in the thalamus and there was no compensatory increase of γ-aminobutyric acid transporter 3 in either of the mutant mouse lines. γ-Aminobutyric acid transporter 1 was reduced in both somatic regions and nonsomatic regions in both mouse models, in which a ring-like structure was identified only in the Slc6a1+/A288V mouse, suggesting more γ-aminobutyric acid transporter 1 retention inside endoplasmic reticulum in the Slc6a1+/A288V mouse. The [3H]tiagabine binding was similar in both mouse models despite the difference in γ-aminobutyric acid uptake function and γ-aminobutyric acid transporter 1 protein expression for both mutations. There were no differences in GABAA receptor subtype expression, except for a small increase in the expression of α5 subunits of GABAA receptor in the hippocampus of Slc6a1S295L homozygous mice, suggesting a potential interaction between the expression of this GABAA receptor subtype and the mutant γ-aminobutyric acid transporter 1. The study provides the first comprehensive characterization of the SLC6A1 mutations in vivo in two representative mouse models. Because both γ-aminobutyric acid transporter 1 and GABAA receptors are targets for anti-seizure medications, the findings from this study can help guide tailored treatment options based on the expression and function of γ-aminobutyric acid transporter 1 and GABAA receptor in SLC6A1 mutation-mediated neurodevelopmental and epileptic encephalopathies.
Collapse
Affiliation(s)
- Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gerald Nwosu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37240, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37232, USA
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel 4070, Switzerland
| | - Jerome Clasadonte
- Early Solutions, Neuroscience TA, UCB Biopharma SRL, Braine l’Alleud 1420, Belgium
| | - Svenja Schmalzbauer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel 4070, Switzerland
| | - Marshall Biven
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Katherine Langer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carson Flamm
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah Poliquin
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37240, USA
| | - Felicia Mermer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Maria-Clemencia Hernandez
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel 4070, Switzerland
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37240, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Kennedy Center of Human Development, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Shen W, Flamm C, Delahanty AJ, Casteel E, Biven M, DeLeeuw MB, Poliquin S, Nwosu G, Randhave K, Kang JQ. 4-Phenylbutyrate promoted wild-type γ-aminobutyric acid type A receptor trafficking, reduced endoplasmic reticulum stress, and mitigated seizures in Gabrg2 +/Q390X mice associated with Dravet syndrome. Epilepsia 2024; 65:204-217. [PMID: 37746768 PMCID: PMC10842976 DOI: 10.1111/epi.17779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE γ-Aminobutyric acid type A (GABAA ) receptor subunit gene mutations are major causes of various epilepsy syndromes, including severe kinds such as Dravet syndrome. Although the GABAA receptor is a major target for antiseizure medications, treating GABAA receptor mutations with receptor channel modulators is ineffective. Here, we determined the effect of a novel treatment with 4-phenylbutyrate (PBA) in Gabrg2+/Q390X knockin mice associated with Dravet syndrome. METHODS We used biochemistry in conjunction with differential tagging of the wild-type and the mutant alleles, live brain slice surface biotinylation, microsome isolation, patch-clamp whole-cell recordings, and video-monitoring synchronized electroencephalographic (EEG) recordings in Gabrg2+/Q390X mice to determine the effect of PBA in vitro with recombinant GABAA receptors and in vivo with knockin mice. RESULTS We found that PBA reduced the mutant γ2(Q390X) subunit protein aggregates, enhanced the wild-type GABAA receptor subunits' trafficking, and increased the membrane expression of the wild-type receptors. PBA increased the current amplitude of GABA-evoked current in human embryonic kidney 293T cells and the neurons bearing the γ2(Q390X) subunit protein. PBA also proved to reduce endoplasmic reticulum (ER) stress caused by the mutant γ2(Q390X) subunit protein, as well as mitigating seizures and EEG abnormalities in the Gabrg2+/Q390X mice. SIGNIFICANCE This research has unveiled a promising and innovative approach for treating epilepsy linked to GABAA receptor mutations through an unconventional antiseizure mechanism. Rather than directly modulating the affected mutant channel, PBA facilitates the folding and transportation of wild-type receptor subunits to the cell membrane and synapse. Combining these findings with our previous study, which demonstrated PBA's efficacy in restoring GABA transporter 1 (encoded by SLC6A1) function, we propose that PBA holds significant potential for a wide range of genetic epilepsies. Its ability to target shared molecular pathways involving mutant protein ER retention and impaired protein membrane trafficking suggests broad application in treating such conditions.
Collapse
Affiliation(s)
- Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Carson Flamm
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Aiden J Delahanty
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Emmett Casteel
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Marshall Biven
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Melissa B DeLeeuw
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Sarah Poliquin
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Gerald Nwosu
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Karishma Randhave
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
- the Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
6
|
Starkey J, Horstick EJ, Ackerman SD. Glial regulation of critical period plasticity. Front Cell Neurosci 2023; 17:1247335. [PMID: 38034592 PMCID: PMC10687281 DOI: 10.3389/fncel.2023.1247335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Animal behavior, from simple to complex, is dependent on the faithful wiring of neurons into functional neural circuits. Neural circuits undergo dramatic experience-dependent remodeling during brief developmental windows called critical periods. Environmental experience during critical periods of plasticity produces sustained changes to circuit function and behavior. Precocious critical period closure is linked to autism spectrum disorders, whereas extended synaptic remodeling is thought to underlie circuit dysfunction in schizophrenia. Thus, resolving the mechanisms that instruct critical period timing is important to our understanding of neurodevelopmental disorders. Control of critical period timing is modulated by neuron-intrinsic cues, yet recent data suggest that some determinants are derived from neighboring glial cells (astrocytes, microglia, and oligodendrocytes). As glia make up 50% of the human brain, understanding how these diverse cells communicate with neurons and with each other to sculpt neural plasticity, especially during specialized critical periods, is essential to our fundamental understanding of circuit development and maintenance.
Collapse
Affiliation(s)
- Jacob Starkey
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Sarah D. Ackerman
- Department of Pathology and Immunology, Brain Immunology and Glia Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Lindquist BE, Voskobiynyk Y, Goodspeed K, Paz JT. Patient-derived SLC6A1 variant S295L results in an epileptic phenotype similar to haploinsufficient mice. Epilepsia 2023; 64:e214-e221. [PMID: 37501613 PMCID: PMC10592270 DOI: 10.1111/epi.17731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The solute carrier family 6 member 1 (SLC6A1) gene encodes GAT-1, a γ-aminobutyric acid transporter expressed on astrocytes and inhibitory neurons. Mutations in SLC6A1 are associated with epilepsy and developmental disorders, including motor and social impairments, but variant-specific animal models are needed to elucidate mechanisms. Here, we report electrocorticographic (ECoG) recordings and clinical data from a patient with a variant in SLC6A1 that encodes GAT-1 with a serine-to-leucine substitution at amino acid 295 (S295L), who was diagnosed with childhood absence epilepsy. Next, we show that mice bearing the S295L mutation (GAT-1S295L/+ ) have spike-and-wave discharges with motor arrest consistent with absence-type seizures, similar to GAT-1+/- mice. GAT-1S295L/+ and GAT-1+/- mice follow the same pattern of pharmacosensitivity, being bidirectionally modulated by ethosuximide (200 mg/kg ip) and the GAT-1 antagonist NO-711 (10 mg/kg ip). By contrast, GAT-1-/- mice were insensitive to both ethosuximide and NO-711 at the doses tested. In conclusion, ECoG findings in GAT-1S295L/+ mice phenocopy GAT-1 haploinsufficiency and provide a useful preclinical model for drug screening and gene therapy investigations.
Collapse
Affiliation(s)
- Britta E. Lindquist
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158 USA
- University of California, San Francisco, Department of Neurology, Weill Institute, San Francisco, CA 94143 USA
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158 USA
- University of California, San Francisco, Department of Neurology, Weill Institute, San Francisco, CA 94143 USA
| | | | - Jeanne T. Paz
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158 USA
- University of California, San Francisco, Department of Neurology, Weill Institute, San Francisco, CA 94143 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
8
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Kassabian B, Fenger CD, Willems M, Aledo-Serrano A, Linnankivi T, McDonnell PP, Lusk L, Jepsen BS, Bayat M, Kattentidt-Mouravieva AA, Vidal AA, Valero-Lopez G, Alarcon-Martinez H, Goodspeed K, van Slegtenhorst M, Barakat TS, Møller RS, Johannesen KM, Rubboli G. Intrafamilial variability in SLC6A1-related neurodevelopmental disorders. Front Neurosci 2023; 17:1219262. [PMID: 37502687 PMCID: PMC10368872 DOI: 10.3389/fnins.2023.1219262] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Phenotypic spectrum of SLC6A1-related neurodevelopmental disorders (SLC6A1-NDD) includes intellectual disability (ID), autistic spectrum disorders (ASD), epilepsy, developmental delay, beginning from early infancy or after seizure onset, and other neurological features such as hypotonia and movement disorders. Data on familial phenotypic heterogeneity have been rarely reported, thus in our study we aimed to investigate intrafamilial phenotypic variability in families with SLC6A1 variants. Methods We collected clinical, laboratory and genetic data on 39 individuals, including 17 probands, belonging to 13 families harboring inherited variants of SLC6A1. Data were collected through an international network of Epilepsy and Genetic Centers. Results Main clinical findings in the whole cohort of 39 subjects were: (a) epilepsy, mainly presenting with generalized seizures, reported in 71% of probands and 36% of siblings or first/second-degree relatives. Within a family, the same epilepsy type (generalized or focal) was observed; (b) ID reported in 100% and in 13% of probands and siblings or first/second-degree relatives, respectively; (c) learning disabilities detected in 28% of the SLC6A1 carriers, all of them were relatives of a proband; (d) around 51% of the whole cohort presented with psychiatric symptoms or behavioral disorders, including 82% of the probands. Out of the 19 patients with psychiatric symptoms, ASD were diagnosed in 40% of them; (e) neurological findings (primarily tremor and speech difficulties) were observed 38.5% of the whole cohort, including 10 probands. Our families harbored 12 different SLC6A1 variants, one was a frameshift, two stop-gain, while the remaining were missense. No genotype-phenotype associations were identified. Discussion Our study showed that first-or second-degree relatives presented with a less severe phenotype, featuring mainly mild intellectual and/or learning disabilities, at variance with the probands who suffered from moderate to severe ID, generalized, sometimes intractable, epileptic seizures, behavioral and psychiatric disorders. These findings may suggest that a proportion of individuals with mild SLC6A1-NDD might be missed, in particular those with an older age where genetic testing is not performed. Further studies on intrafamilial phenotypic variability are needed to confirm our results and possibly to expand the phenotypic spectrum of these disorders and benefit genetic counseling.
Collapse
Affiliation(s)
- Benedetta Kassabian
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, Dianalund, Denmark
- Neurology Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Christina Dühring Fenger
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, Dianalund, Denmark
- Amplexa Genetics, Odense, Denmark
| | - Marjolaine Willems
- Département Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier Institute for Neurosciences of Montpellier, Univ Montpellier, INSERM, Montpellier, France
| | - Angel Aledo-Serrano
- Epilepsy and Neurogenetics Program—Vithas Madrid La Milagrosa University Hospital, Vithas Hospital Group, Madrid, Spain
| | - Tarja Linnankivi
- Department of Pediatric Neurology, New Children's Hospital and Pediatric Research Center, Epilepsia Helsinki, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pamela Pojomovsky McDonnell
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Laina Lusk
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Michael Bayat
- Department of Neurology and Center for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Anna Abulí Vidal
- Department of Clinical and Molecular Genetics, University Hospital Vall d’Hebron and Medicine Genetics Group Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | | | - Kimberly Goodspeed
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, Dianalund, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Katrine M. Johannesen
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, Dianalund, Denmark
- Department of Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, Dianalund, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Nwosu GI, Shen W, Zavalin K, Poliquin S, Randhave K, Flamm C, Biven M, Langer K, Kang JQ. GABA A Receptor β3 Subunit Mutation N328D Heterozygous Knock-in Mice Have Lennox-Gastaut Syndrome. Int J Mol Sci 2023; 24:8458. [PMID: 37176165 PMCID: PMC10179596 DOI: 10.3390/ijms24098458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Lennox-Gastaut Syndrome (LGS) is a developmental and epileptic encephalopathy (DEE) characterized by multiple seizure types, electroencephalogram (EEG) patterns, and cognitive decline. Its etiology has a prominent genetic component, including variants in GABRB3 that encodes the GABAA receptor (GABAAR) β3 subunit. LGS has an unknown pathophysiology, and few animal models are available for studying LGS. The objective of this study was to evaluate Gabrb3+/N328D knock-in mice as a model for LGS. We generated a heterozygous knock-in mouse expressing Gabrb3 (c.A982G, p.N238D), a de novo mutation identified in a patient with LGS. We investigated Gabrb3+/N328D mice for features of LGS. In 2-4-month-old male and female C57BL/J6 wild-type and Gabrb3+/N328D mice, we investigated seizure severity using video-monitored EEG, cognitive impairment using a suite of behavioral tests, and profiled GABAAR subunit expression by Western blot. Gabrb3+/N328D mice showed spontaneous seizures and signs of cognitive impairment, including deficits in spatial learning, memory, and locomotion. Moreover, Gabrb3+/N328D mice showed reduced β3 subunit expression in the cerebellum, hippocampus, and thalamus. This phenotype of epilepsy and neurological impairment resembles the LGS patient phenotype. We conclude that Gabrb3+/N328D mice provide a good model for investigating the pathophysiology and therapeutic intervention of LGS and DEEs.
Collapse
Affiliation(s)
- Gerald Ikemefuna Nwosu
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37232, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37232, USA
| | - Kirill Zavalin
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37232, USA
| | - Sarah Poliquin
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37232, USA
| | - Karishma Randhave
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37232, USA
| | - Carson Flamm
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37232, USA
| | - Marshall Biven
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37232, USA
| | - Katherine Langer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Nashville, TN 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
11
|
Qu S, Jackson LG, Zhou C, Shen D, Shen W, Nwosu G, Howe R, Caltron M, Flamm C, Biven M, Kang JQ, Macdonald RL. Heterozygous GABA A receptor β3 subunit N110D knock-in mice have epileptic spasms. Epilepsia 2023; 64:1061-1073. [PMID: 36495145 PMCID: PMC10101922 DOI: 10.1111/epi.17470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Infantile spasms is an epileptic encephalopathy of childhood, and its pathophysiology is largely unknown. We generated a heterozygous knock-in mouse with the human infantile spasms-associated de novo mutation GABRB3 (c.A328G, p.N110D) to investigate its molecular mechanisms and to establish the Gabrb3+/N110D knock-in mouse as a model of infantile spasms syndrome. METHODS We used electroencephalography (EEG) and video monitoring to characterize seizure types, and a suite of behavioral tests to identify neurological and behavioral impairment in Gabrb3+/N110D knock-in mice. Miniature inhibitory postsynaptic currents (mIPSCs) were recorded from layer V/VI pyramidal neurons in somatosensory cortex, and extracellular multi-unit recordings from the ventral basal nucleus of the thalamus in a horizontal thalamocortical slice were used to assess spontaneous thalamocortical oscillations. RESULTS The infantile spasms-associated human de novo mutation GABRB3 (c.A328G, p.N110D) caused epileptic spasms early in development and multiple seizure types in adult Gabrb3+/N110D knock-in mice. Signs of neurological impairment, anxiety, hyperactivity, social impairment, and deficits in spatial learning and memory were also observed. Gabrb3+/N110D mice had reduced cortical mIPSCs and increased duration of spontaneous oscillatory firing in the somatosensory thalamocortical circuit. SIGNIFICANCE The Gabrb3+/N110D knock-in mouse has epileptic spasms, seizures, and other neurological impairments that are consistent with infantile spasms syndrome in patients. Multiple seizure types and abnormal behaviors indicative of neurological impairment both early and late in development suggest that Gabrb3+/N110D mice can be used to study the pathophysiology of infantile spasms. Reduced cortical inhibition and increased duration of thalamocortical oscillatory firing suggest perturbations in thalamocortical circuits.
Collapse
Affiliation(s)
- Shimian Qu
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
| | - Laurel G. Jackson
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232
| | - Chengwen Zhou
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
| | - DingDing Shen
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232
| | - Wangzhen Shen
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
| | - Gerald Nwosu
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Vanderbilt University, Nashville, TN 37232
| | - Rachel Howe
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
| | - Mackenzie Caltron
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232
| | - Carson Flamm
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
| | - Marshall Biven
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
| | - Jing-Qiong Kang
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
- Pharmacology, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Kennedy Center of Human Development, Vanderbilt University, Nashville, TN 37232
| | - Robert L. Macdonald
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
- Pharmacology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
12
|
Wang X, Rao X, Zhang J, Gan J. Genetic mechanisms in generalized epilepsies. ACTA EPILEPTOLOGICA 2023. [DOI: 10.1186/s42494-023-00118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
AbstractThe genetic generalized epilepsies (GGEs) have been proved to generate from genetic impact by twin studies and family studies. The genetic mechanisms of generalized epilepsies are always updating over time. Although the genetics of GGE is complex, there are always new susceptibility genes coming up as well as copy number variations which can lead to important breakthroughs in exploring the problem. At the same time, the development of ClinGen fades out some of the candidate genes. This means we have to figure out what accounts for a reliable gene for GGE, in another word, which gene has sufficient evidence for GGE. This will improve our understanding of the genetic mechanisms of GGE. In this review, important up-to-date genetic mechanisms of GGE were discussed.
Collapse
|
13
|
Experimental and Bioinformatic Insights into the Effects of Epileptogenic Variants on the Function and Trafficking of the GABA Transporter GAT-1. Int J Mol Sci 2023; 24:ijms24020955. [PMID: 36674476 PMCID: PMC9862756 DOI: 10.3390/ijms24020955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In this article, we identified a novel epileptogenic variant (G307R) of the gene SLC6A1, which encodes the GABA transporter GAT-1. Our main goal was to investigate the pathogenic mechanisms of this variant, located near the neurotransmitter permeation pathway, and compare it with other variants located either in the permeation pathway or close to the lipid bilayer. The mutants G307R and A334P, close to the gates of the transporter, could be glycosylated with variable efficiency and reached the membrane, albeit inactive. Mutants located in the center of the permeation pathway (G297R) or close to the lipid bilayer (A128V, G550R) were retained in the endoplasmic reticulum. Applying an Elastic Network Model, to these and to other previously characterized variants, we found that G307R and A334P significantly perturb the structure and dynamics of the intracellular gate, which can explain their reduced activity, while for A228V and G362R, the reduced translocation to the membrane quantitatively accounts for the reduced activity. The addition of a chemical chaperone (4-phenylbutyric acid, PBA), which improves protein folding, increased the activity of GAT-1WT, as well as most of the assayed variants, including G307R, suggesting that PBA might also assist the conformational changes occurring during the alternative access transport cycle.
Collapse
|
14
|
Verhoeven W, Zuijdam J, Scheick A, van Nieuwenhuijsen F, Zwemer AS, Pfundt R, Egger J. Myoclonic-Atonic Epilepsy Caused by a Novel de Novo Heterozygous Missense Variant in the SLC6A1 Gene: Brief Discussion of the Literature and Detailed Case Description of a Severely Intellectually Disabled Adult Male Patient. Int Med Case Rep J 2022; 15:753-759. [PMID: 36582431 PMCID: PMC9793742 DOI: 10.2147/imcrj.s390636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction Diagnostic exome sequencing has yielded over the past decades a great number of molecular diagnoses for genetic disorders in which both intellectual disability and epilepsy are present. One of these syndromes is myoclonic-atonic epilepsy (MAE) that is caused by pathogenic variants in the SLC6A1 gene located at 3p25.3. The most relevant clinical characteristics are intellectual disability, several forms of mostly treatment-resistant epilepsy starting at young age, serious disinhibitory behavioural problems, language impairment, higher pain tolerance, and symptoms from the autism spectrum, all in the absence of any consistent dysmorphism or malformation. Methods After an overview of the literature, here, the developmental trajectory of a 55-year-old severely intellectually disabled male with therapy-resistant epilepsy and aggressive outburst is reported in detail, in whom no etiological diagnosis had been performed. Next to genetic, neurological, and neuropsychiatric examination, psychological assessment with validated instruments was performed. Results Exome sequencing and targeted analysis of the patient and both his parents demonstrated a de novo missense variant in the SLC6A1 gene which was never before described in the literature nor in control databases. The phenotypical presentation of the patient with treatment-resistant epilepsy, especially absences and myoclonic seizures, as well as sleep disturbances and autism, corresponds with a diagnosis of MAE. Discussion This case stresses that exome sequencing should be the first-tier diagnostic test for patients with unexplained neurodevelopmental disorders, regardless of their age, and that as yet the most suitable approach is the formation of an interdisciplinary team for treatment design and clinical management.
Collapse
Affiliation(s)
- Willem Verhoeven
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands,Centre for Consultation and Expertise, Utrecht, the Netherlands,Vincent van Gogh Centre of Excellence for Neuropsychiatry, Venray, the Netherlands,Correspondence: Willem Verhoeven, Centre of Excellence for Neuropsychiatry, Stationsweg 46, Venray, 5803 AC, the Netherlands, Tel +31651156556, Fax +31478584765, Email
| | - José Zuijdam
- Raphael Institute Breidablick, Centre for People with Intellectual Disabilities, Middenbeemster, the Netherlands
| | - Anneke Scheick
- Raphael Institute Breidablick, Centre for People with Intellectual Disabilities, Middenbeemster, the Netherlands
| | | | - Anne-Suus Zwemer
- ASVZ, Centre for People with Intellectual Disabilities, Sliedrecht, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jos Egger
- Vincent van Gogh Centre of Excellence for Neuropsychiatry, Venray, the Netherlands,Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|