1
|
Chartampila E, Diering GH. Sleep now little one, remember why when you grow up. Sleep 2024; 47:zsae191. [PMID: 39140481 DOI: 10.1093/sleep/zsae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Elissavet Chartampila
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Graham Hugh Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities Chapel Hill, NC, USA
| |
Collapse
|
2
|
Coulson RL, Mourrain P, Wang GX. The intersection of sleep and synaptic translation in synaptic plasticity deficits in neurodevelopmental disorders. J Comp Physiol B 2024; 194:253-263. [PMID: 38396062 PMCID: PMC11233386 DOI: 10.1007/s00360-023-01531-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024]
Abstract
Individuals with neurodevelopmental disorders experience persistent sleep deficits, and there is increasing evidence that sleep dysregulation is an underlying cause, rather than merely an effect, of the synaptic and behavioral defects observed in these disorders. At the molecular level, dysregulation of the synaptic proteome is a common feature of neurodevelopmental disorders, though the mechanism connecting these molecular and behavioral phenotypes is an ongoing area of investigation. A role for eIF2α in shifting the local proteome in response to changes in the conditions at the synapse has emerged. Here, we discuss recent progress in characterizing the intersection of local synaptic translation and sleep and propose a reciprocal mechanism of dysregulation in the development of synaptic plasticity defects in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rochelle L Coulson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- INSERM 1024, Ecole Normale Supérieure, Paris, France
| | - Gordon X Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Wilson DA, Sullivan RM, Smiley JF, Saito M, Raineki C. Developmental alcohol exposure is exhausting: Sleep and the enduring consequences of alcohol exposure during development. Neurosci Biobehav Rev 2024; 158:105567. [PMID: 38309498 PMCID: PMC10923002 DOI: 10.1016/j.neubiorev.2024.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Prenatal alcohol exposure is the leading nongenetic cause of human intellectual impairment. The long-term impacts of prenatal alcohol exposure on health and well-being are diverse, including neuropathology leading to behavioral, cognitive, and emotional impairments. Additionally negative effects also occur on the physiological level, such as the endocrine, cardiovascular, and immune systems. Among these diverse impacts is sleep disruption. In this review, we describe how prenatal alcohol exposure affects sleep, and potential mechanisms of those effects. Furthermore, we outline the evidence that sleep disruption across the lifespan may be a mediator of some cognitive and behavioral impacts of developmental alcohol exposure, and thus may represent a promising target for treatment.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
4
|
Bueno-Junior LS, Jones-Tinsley CE, Milman NEP, Wickham PT, Watson BO, Lim MM. Early-life sleep disruption impairs subtle social behaviours in prairie voles: a pose-estimation study. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230700. [PMID: 37448475 PMCID: PMC10336370 DOI: 10.1098/rsos.230700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Early-life sleep disruption (ELSD) has been shown to have long-lasting effects on social behaviour in adult prairie voles (Microtus ochrogaster), including impaired expression of pair bonding during partner preference testing. However, due to the limitations of manual behaviour tracking, the effects of ELSD across the time course of pair bonding have not yet been described, hindering our ability to trace mechanisms. Here, we used pose estimation to track prairie voles during opposite-sex cohabitation, the process leading to pair bonding. Male-female pairs were allowed to interact through a mesh divider in the home cage for 72 h, providing variables of body direction, distance-to-divider and locomotion speed. We found that control males displayed periodic patterns of body orientation towards females during cohabitation. In contrast, ELSD males showed reduced duration and ultradian periodicity of these body orientation behaviours towards females. Furthermore, in both sexes, ELSD altered spatial and temporal patterns of locomotion across the light/dark cycles of the 72 h recordings. This study allows a comprehensive behavioural assessment of the effects of ELSD on later life sociality and highlights subtle prairie vole behaviours. Our findings may shed light on neurodevelopmental disorders featuring sleep disruption and social deficits, such as autism spectrum disorders.
Collapse
Affiliation(s)
| | - Carolyn E. Jones-Tinsley
- Veterans Affairs VISN20 Northwest MIRECC, VA Portland Health Care System, Portland, OR, USA
- Oregon Alzheimer's Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Noah E. P. Milman
- Veterans Affairs VISN20 Northwest MIRECC, VA Portland Health Care System, Portland, OR, USA
- Oregon Alzheimer's Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Peyton T. Wickham
- Veterans Affairs VISN20 Northwest MIRECC, VA Portland Health Care System, Portland, OR, USA
- Oregon Alzheimer's Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Brendon O. Watson
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miranda M. Lim
- Veterans Affairs VISN20 Northwest MIRECC, VA Portland Health Care System, Portland, OR, USA
- Oregon Alzheimer's Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|