1
|
Ascandari A, Aminu S, Safdi NEH, El Allali A, Daoud R. A bibliometric analysis of the global impact of metaproteomics research. Front Microbiol 2023; 14:1217727. [PMID: 37476667 PMCID: PMC10354264 DOI: 10.3389/fmicb.2023.1217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background Metaproteomics is a subfield in meta-omics that is used to characterize the proteome of a microbial community. Despite its importance and the plethora of publications in different research area, scientists struggle to fully comprehend its functional impact on the study of microbiomes. In this study, bibliometric analyses are used to evaluate the current state of metaproteomic research globally as well as evaluate the specific contribution of Africa to this burgeoning research area. In this study, we use bibliometric analyses to evaluate the current state of metaproteomic research globally, identify research frontiers and hotspots, and further predict future trends in metaproteomics. The specific contribution of Africa to this research area was evaluated. Methods Relevant documents from 2004 to 2022 were extracted from the Scopus database. The documents were subjected to bibliometric analyses and visualization using VOS viewer and Biblioshiny package in R. Factors such as the trends in publication, country and institutional cooperation networks, leading scientific journals, author's productivity, and keywords analyses were conducted. The African publications were ranked using Field-Weighted Citation Impact (FWCI) scores. Results A total of 1,138 documents were included and the number of publications increased drastically from 2004 to 2022 with more publications (170) reported in 2021. In terms of publishers, Frontiers in Microbiology had the highest number of total publications (62). The United States of America (USA), Germany, China, and Canada, together with other European countries were the most productive. Institution-wise, the Helmholtz Zentrum für Umweltforschung, Germany had more publications while Max Plank Institute had the highest total collaborative link strength. Jehmlich N. was the most productive author whereas Hettich RL had the highest h-index of 63. Regarding Africa, only 2.2% of the overall publications were from the continent with more publication outputs from South Africa. More than half of the publications from the continent had an FWCI score ≥ 1. Conclusion The scientific outputs of metaproteomics are rapidly evolving with developed countries leading the way. Although Africa showed prospects for future progress, this could only be accelerated by providing funding, increased collaborations, and mentorship programs.
Collapse
Affiliation(s)
- AbdulAziz Ascandari
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Suleiman Aminu
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Nour El Houda Safdi
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
2
|
Hamdan HZ, Ahmad FA, Zayyat RM, Salam DA. Spatio-temporal variation of the microbial community of the coast of Lebanon in response to petroleum hydrocarbon pollution. MARINE POLLUTION BULLETIN 2023; 192:115037. [PMID: 37201353 DOI: 10.1016/j.marpolbul.2023.115037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
In this study, the coast of Lebanon was analyzed for the dynamic changes in sediment microbial communities in response to a major petroleum oil spill and tar contamination that occurred in the summer of 2021. Spatio-temporal variations in the microbial structure along the shores of Lebanon were assessed in comparison to baseline microbial structure determined in 2017. Microbial community structure and diversity were determined using Illumina MiSeq technology and DADA2 pipeline. The results show a significant diversity of microbial populations along the Lebanese shore, and a significant change in the sediment microbial structure within four years. Namely, Woeseia, Blastopirellula, and Muriicola were identified in sediment samples collected in year 2017, while a higher microbial diversity was observed in 2021 with Woeseia, Halogranum, Bacillus, and Vibrio prevailing in beach sediments. In addition, the results demonstrate a significant correlation between certain hydrocarbon degraders, such as Marinobacter and Vibrio, and measured hydrocarbon concentrations.
Collapse
Affiliation(s)
- Hamdan Z Hamdan
- Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Beirut, Lebanon
| | - Farah Ali Ahmad
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Ramez M Zayyat
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Darine A Salam
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
3
|
Hamdan HZ, Salam DA, Saikaly PE. Characterization of the microbial community diversity and composition of the coast of Lebanon: Potential for petroleum oil biodegradation. MARINE POLLUTION BULLETIN 2019; 149:110508. [PMID: 31425842 DOI: 10.1016/j.marpolbul.2019.110508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
In this study, the shoreline of Lebanon, which extends over 225 km along the eastern side of the Mediterranean Sea, was characterized for its sediment microbial community diversity and composition using 16S rRNA gene sequencing with Illumina MiSeq technology. Non-metric multidimensional scaling (NMDS) analysis showed no clear grouping among nearby sampled sites along the shoreline. Insignificant diversion between the wet and dry season microbial communities was observed along the coast at each sampling site. A high variation at the genus level was observed, with several novel genera identified at high relative abundance in certain locations, such as JTB255 marine benthic groups OTU_4 (5.4%) and OTU_60 (3.2%), and BD7-8 marine group OTU_5 (2.9%).
Collapse
Affiliation(s)
- Hamdan Z Hamdan
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Darine A Salam
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
| | - Pascal E Saikaly
- Division of Biological and Environmental Sciences and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Sakaya K, Salam DA, Campo P. Assessment of crude oil bioremediation potential of seawater and sediments from the shore of Lebanon in laboratory microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:227-235. [PMID: 30640091 DOI: 10.1016/j.scitotenv.2019.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
With the planned oil and gas exploration activities off the coast of Lebanon, the risk of shoreline contamination with crude oil spills has become a major concern. This study aimed at assessing the crude oil bioremediation potential of the chronically polluted Lebanese shores in light of the continuous discharge of nutrient-rich sewage into the Mediterranean Sea and the long-lasting absence of proper sewage treatment systems. It was anticipated that, with the high pollution levels of the coastline, background concentrations of nutrients would be sufficient to sustain high intrinsic biodegradation rates without human intervention. Biodegradation experiments were conducted using crude oil-spiked beach sediments and seawater under natural attenuation and biostimulation conditions. The experiments were conducted at 18 and 28 °C to account for seasonal variation in temperature, background nutrient levels, and microbial communities. The biodegradability of oil constituents - namely alkanes and polycyclic aromatic hydrocarbons (PAHs), was monitored over a 42-day period using gas chromatography-mass spectrometry (GC-MS). Under biostimulation conditions, significant enhancement in the overall biodegradation rates of alkanes and PAHs was observed in seawater at 18 and 28 °C, while little to no improvement was measured at both temperatures in sediments where background nutrient levels were sufficient to induce near maximum intrinsic biodegradation rates. Under both natural attenuation and biostimulation treatments, the increase in temperature increased the oil biodegradation rates in sediment and seawater microcosms. In both instances, the overall trend in the biodegradation of individual alkanes and PAHs suggested a typical decrease in biodegradation rates with the increase in carbon number/rings and alkyl groups.
Collapse
Affiliation(s)
- Khaled Sakaya
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, P.O.Box: 11-0236, Riad El Solh, 1107 2020 Beirut, Lebanon
| | - Darine A Salam
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, P.O.Box: 11-0236, Riad El Solh, 1107 2020 Beirut, Lebanon.
| | - Pablo Campo
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Cranfield, Beds MK43 0AL, UK
| |
Collapse
|
5
|
Djahnit N, Chernai S, Catania V, Hamdi B, China B, Cappello S, Quatrini P. Isolation, characterization and determination of biotechnological potential of oil-degrading bacteria from Algerian centre coast. J Appl Microbiol 2019; 126:780-795. [PMID: 30586234 DOI: 10.1111/jam.14185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/31/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
Abstract
AIMS The Algerian coastline is exposed to several types of pollution, including hydrocarbons. The aim of this work was to isolate oil-degrading bacteria and to explore the intrinsic bioremediation potential of part of its contaminated harbour. METHODS AND RESULTS A collection of 119 strains, capable to grow on mineral medium supplemented with hydrocarbons, were obtained from polluted sediment and seawater collected from Sidi Fredj harbour (Algiers). Twenty-three strains were selected for further studies. Sequencing of the 16S rRNA gene showed that most isolates belong to genera of hydrocarbonoclastic bacteria (Alcanivorax), generalist hydrocarbons degraders (Marinobacter, Pseudomonas, Gordonia, Halomonas, Erythrobacter and Brevibacterium) and other bacteria not known as hydrocarbon degraders (Xanthomarina) but were able to degrade hydrocarbons. Strains related to Marinobacter and Alcanivorax were frequently isolated from our samples and resulted the most effective in degrading crude oil. Screening of catabolic genes alkB and xylA revealed the presence of alkB gene in several bacterial strains; one isolate harboured both catabolic genes while other isolates carried none of the studied genes. However, they grew in the presence of crude oil implying the existence of other biodegradation pathways. CONCLUSIONS The samples of seawater and sediment from the Algerian coast contain high level of hydrocarbon-degrading bacteria that could be interesting and useful for future bioremediation purposes. SIGNIFICANCE AND IMPACT OF THE STUDY This investigation demonstrates the diversity of hydrocarbon-degrading bacteria from a marine-contaminated area in Algeria, and their variable biodegradation abilities.
Collapse
Affiliation(s)
- N Djahnit
- Laboratoire de Conservation et de Valorisation des Ressources Marines, Ecole Nationale Supérieure des Sciences de la Mer et l'Aménagement du Littoral, ENSSMAL, Alger, Algérie
| | - S Chernai
- Laboratoire de Conservation et de Valorisation des Ressources Marines, Ecole Nationale Supérieure des Sciences de la Mer et l'Aménagement du Littoral, ENSSMAL, Alger, Algérie
| | - V Catania
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - B Hamdi
- Laboratoire de Conservation et de Valorisation des Ressources Marines, Ecole Nationale Supérieure des Sciences de la Mer et l'Aménagement du Littoral, ENSSMAL, Alger, Algérie
| | - B China
- Sciensano, J. Wytsmanstreet, Brussels, Belgium
| | - S Cappello
- Istituto per l'Ambiente Marino Costiero (IAMC) - C.N.R. U.O.S. di Messina Sp., Messina, Italy
| | - P Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Roy A, Sar P, Sarkar J, Dutta A, Sarkar P, Gupta A, Mohapatra B, Pal S, Kazy SK. Petroleum hydrocarbon rich oil refinery sludge of North-East India harbours anaerobic, fermentative, sulfate-reducing, syntrophic and methanogenic microbial populations. BMC Microbiol 2018; 18:151. [PMID: 30348104 PMCID: PMC6198496 DOI: 10.1186/s12866-018-1275-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022] Open
Abstract
Background Sustainable management of voluminous and hazardous oily sludge produced by petroleum refineries remains a challenging problem worldwide. Characterization of microbial communities of petroleum contaminated sites has been considered as the essential prerequisite for implementation of suitable bioremediation strategies. Three petroleum refinery sludge samples from North Eastern India were analyzed using next-generation sequencing technology to explore the diversity and functional potential of inhabitant microorganisms and scope for their on-site bioremediation. Results All sludge samples were hydrocarbon rich, anaerobic and reduced with sulfate as major anion and several heavy metals. High throughput sequencing of V3-16S rRNA genes from sludge metagenomes revealed dominance of strictly anaerobic, fermentative, thermophilic, sulfate-reducing bacteria affiliated to Coprothermobacter, Fervidobacterium, Treponema, Syntrophus, Thermodesulfovibrio, Anaerolinea, Syntrophobacter, Anaerostipes, Anaerobaculum, etc., which have been well known for hydrocarbon degradation. Relatively higher proportions of archaea were detected by qPCR. Archaeal 16S rRNA gene sequences showed presence of methanogenic Methanobacterium, Methanosaeta, Thermoplasmatales, etc. Detection of known hydrocarbon utilizing aerobic/facultative anaerobic (Mycobacterium, Pseudomonas, Longilinea, Geobacter, etc.), nitrate reducing (Gordonia, Novosphigobium, etc.) and nitrogen fixing (Azovibrio, Rhodobacter, etc.) bacteria suggested niche specific guilds with aerobic, facultative anaerobic and strict anaerobic populations. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predicted putative genetic repertoire of sludge microbiomes and their potential for hydrocarbon degradation; lipid-, nitrogen-, sulfur- and methane- metabolism. Methyl coenzyme M reductase A (mcrA) and dissimilatory sulfite reductase beta-subunit (dsrB) genes phylogeny confirmed methanogenic and sulfate-reducing activities within sludge environment endowed by hydrogenotrophic methanogens and sulfate-reducing Deltaproteobacteria and Firmicutes members. Conclusion Refinery sludge microbiomes were comprised of hydrocarbon degrading, fermentative, sulfate-reducing, syntrophic, nitrogen fixing and methanogenic microorganisms, which were in accordance with the prevailing physicochemical nature of the samples. Analysis of functional biomarker genes ascertained the activities of methanogenic and sulfate-reducing organisms within sludge environment. Overall data provided better insights on microbial diversity and activity in oil contaminated environment, which could be exploited suitably for in situ bioremediation of refinery sludge. Electronic supplementary material The online version of this article (10.1186/s12866-018-1275-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Jayeeta Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Avishek Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India.,School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Poulomi Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India.
| |
Collapse
|
7
|
Catania V, Cappello S, Di Giorgi V, Santisi S, Di Maria R, Mazzola A, Vizzini S, Quatrini P. Microbial communities of polluted sub-surface marine sediments. MARINE POLLUTION BULLETIN 2018; 131:396-406. [PMID: 29886964 DOI: 10.1016/j.marpolbul.2018.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities of coastal marine sediment play a key role in degradation of petroleum contaminants. Here the bacterial and archaeal communities of sub-surface sediments (5-10 cm) of the chronically polluted Priolo Bay (eastern coast of Sicily, Italy), contaminated mainly by n-alkanes and biodegraded/weathered oils, were characterized by cultural and molecular approaches. 16S-PCR-DGGE analysis at six stations, revealed that bacterial communities are highly divergent and display lower phylogenetic diversity than the surface sediment; sub-surface communities respond to oil supplementation in microcosms with a significant reduction in biodiversity and a shift in composition; they retain high biodegradation capacities and host hydrocarbon (HC) degraders that were isolated and identified. HC-degrading Alfa, Gamma and Epsilon proteobacteria together with Clostridia and Archaea are a common feature of sub-surface communities. These assemblages show similarities with that of subsurface petroleum reservoirs also characterized by the presence of biodegraded and weathered oils where anaerobic or microaerophilic syntrophic HC metabolism has been proposed.
Collapse
Affiliation(s)
- Valentina Catania
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Simone Cappello
- Institute for Coastal Marine Environment (IAMC)-CNR of Messina, Messina, Italy
| | - Vincenzo Di Giorgi
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Santina Santisi
- Institute for Coastal Marine Environment (IAMC)-CNR of Messina, Messina, Italy
| | - Roberta Di Maria
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonio Mazzola
- Dept. of Earth and Marine Sciences (DISTEM) University of Palermo, Palermo, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - Salvatrice Vizzini
- Dept. of Earth and Marine Sciences (DISTEM) University of Palermo, Palermo, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - Paola Quatrini
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| |
Collapse
|
8
|
Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms. Trends Biotechnol 2017; 35:860-870. [PMID: 28511936 DOI: 10.1016/j.tibtech.2017.04.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022]
Abstract
The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.
Collapse
Affiliation(s)
- Francesca Mapelli
- Department of Food Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Alberto Scoma
- Center for Microbial Ecology and Technology (CMET), University of Gent, B 9000 Gent, Belgium
| | - Grégoire Michoud
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, 23955-6900 Thuwal, Saudi Arabia
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), 00015 Monterotondo, Italy
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), University of Gent, B 9000 Gent, Belgium
| | - Sara Borin
- Department of Food Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Nicolas Kalogerakis
- School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
9
|
Trincone A. Enzymatic Processes in Marine Biotechnology. Mar Drugs 2017; 15:E93. [PMID: 28346336 PMCID: PMC5408239 DOI: 10.3390/md15040093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.
Collapse
Affiliation(s)
- Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| |
Collapse
|
10
|
Sarkar J, Kazy SK, Gupta A, Dutta A, Mohapatra B, Roy A, Bera P, Mitra A, Sar P. Biostimulation of Indigenous Microbial Community for Bioremediation of Petroleum Refinery Sludge. Front Microbiol 2016; 7:1407. [PMID: 27708623 PMCID: PMC5030240 DOI: 10.3389/fmicb.2016.01407] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022] Open
Abstract
Nutrient deficiency severely impairs the catabolic activity of indigenous microorganisms in hydrocarbon rich environments (HREs) and limits the rate of intrinsic bioremediation. The present study aimed to characterize the microbial community in refinery waste and evaluate the scope for biostimulation based in situ bioremediation. Samples recovered from the wastewater lagoon of Guwahati refinery revealed a hydrocarbon enriched [high total petroleum hydrocarbon (TPH)], oxygen-, moisture-limited, reducing environment. Intrinsic biodegradation ability of the indigenous microorganisms was enhanced significantly (>80% reduction in TPH by 90 days) with nitrate amendment. Preferred utilization of both higher- (>C30) and middle- chain (C20-30) length hydrocarbons were evident from GC-MS analysis. Denaturing gradient gel electrophoresis and community level physiological profiling analyses indicated distinct shift in community’s composition and metabolic abilities following nitrogen (N) amendment. High throughput deep sequencing of 16S rRNA gene showed that the native community was mainly composed of hydrocarbon degrading, syntrophic, methanogenic, nitrate/iron/sulfur reducing facultative anaerobic bacteria and archaebacteria, affiliated to γ- and δ-Proteobacteria and Euryarchaeota respectively. Genes for aerobic and anaerobic alkane metabolism (alkB and bssA), methanogenesis (mcrA), denitrification (nirS and narG) and N2 fixation (nifH) were detected. Concomitant to hydrocarbon degradation, lowering of dissolve O2 and increase in oxidation-reduction potential (ORP) marked with an enrichment of N2 fixing, nitrate reducing aerobic/facultative anaerobic members [e.g., Azovibrio, Pseudoxanthomonas and Comamonadaceae members] was evident in N amended microcosm. This study highlighted that indigenous community of refinery sludge was intrinsically diverse, yet appreciable rate of in situ bioremediation could be achieved by supplying adequate N sources.
Collapse
Affiliation(s)
- Jayeeta Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, India
| | - Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Avishek Dutta
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, India
| | - Paramita Bera
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, India
| | - Adinpunya Mitra
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
11
|
Shan L, Gao Y, Zhang Y, Yu W, Yang Y, Shen S, Zhang S, Zhu L, Xu L, Tian B, Yun J. Fabrication and Use of Alginate-Based Cryogel Delivery Beads Loaded with Urea and Phosphates as Potential Carriers for Bioremediation. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01256] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lishen Shan
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, China
| | - Yunling Gao
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, China
| | - Yuanchang Zhang
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, China
| | - Wubin Yu
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, China
| | - Yujun Yang
- Institute
of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shaochuan Shen
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, China
| | - Songhong Zhang
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, China
| | - Lingyu Zhu
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, China
| | - Linhong Xu
- Faculty of Mechanical & Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Bing Tian
- Key
Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of
Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China
| | - Junxian Yun
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, China
| |
Collapse
|
12
|
Barbato M, Mapelli F, Magagnini M, Chouaia B, Armeni M, Marasco R, Crotti E, Daffonchio D, Borin S. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments. MARINE POLLUTION BULLETIN 2016; 104:211-220. [PMID: 26849913 DOI: 10.1016/j.marpolbul.2016.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation (ABA), by exploiting the indigenous microbes of the environment to be treated, could represent a successful bioremediation strategy. In this perspective we aimed to i) identify the main drivers of the bacterial communities' richness in the sediments, ii) establish enrichment cultures with different hydrocarbon pollutants evaluating their effects on the bacterial communities' composition, and iii) obtain a collection of hydrocarbon degrading bacteria potentially exploitable in ABA. The correlation between the selection of different specialized bacterial populations and the type of pollutants was demonstrated by culture-independent analyses, and by establishing a collection of bacteria with different hydrocarbon degradation traits. Our observations indicate that pollution dictates the diversity of sediment bacterial communities and shapes the ABA potential in harbor sediments.
Collapse
Affiliation(s)
- Marta Barbato
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Bessem Chouaia
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy.
| |
Collapse
|
13
|
Bargiela R, Herbst FA, Martínez-Martínez M, Seifert J, Rojo D, Cappello S, Genovese M, Crisafi F, Denaro R, Chernikova TN, Barbas C, von Bergen M, Yakimov MM, Ferrer M, Golyshin PN. Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics 2015; 15:3508-20. [PMID: 26201687 PMCID: PMC4973819 DOI: 10.1002/pmic.201400614] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 05/21/2015] [Accepted: 07/20/2015] [Indexed: 11/24/2022]
Abstract
Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments.
Collapse
Affiliation(s)
- Rafael Bargiela
- Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Madrid, Spain
| | - Florian-Alexander Herbst
- Department of Proteomics, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Jana Seifert
- Department of Proteomics, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Animal Science, Universität Hohenheim, Stuttgart, Germany
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Simone Cappello
- Institute for Coastal Marine Environment, CNR, Messina, Italy
| | - María Genovese
- Institute for Coastal Marine Environment, CNR, Messina, Italy
| | | | - Renata Denaro
- Institute for Coastal Marine Environment, CNR, Messina, Italy
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Martin von Bergen
- Department of Proteomics, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Metabolomics, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | - Manuel Ferrer
- Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Madrid, Spain
| | | |
Collapse
|
14
|
Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea). BIOMED RESEARCH INTERNATIONAL 2015; 2015:981829. [PMID: 26273661 PMCID: PMC4530241 DOI: 10.1155/2015/981829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/01/2015] [Accepted: 02/01/2015] [Indexed: 11/17/2022]
Abstract
Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.
Collapse
|
15
|
Bargiela R, Mapelli F, Rojo D, Chouaia B, Tornés J, Borin S, Richter M, Del Pozo MV, Cappello S, Gertler C, Genovese M, Denaro R, Martínez-Martínez M, Fodelianakis S, Amer RA, Bigazzi D, Han X, Chen J, Chernikova TN, Golyshina OV, Mahjoubi M, Jaouanil A, Benzha F, Magagnini M, Hussein E, Al-Horani F, Cherif A, Blaghen M, Abdel-Fattah YR, Kalogerakis N, Barbas C, Malkawi HI, Golyshin PN, Yakimov MM, Daffonchio D, Ferrer M. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Sci Rep 2015; 5:11651. [PMID: 26119183 PMCID: PMC4484246 DOI: 10.1038/srep11651] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/29/2015] [Indexed: 01/16/2023] Open
Abstract
Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.
Collapse
Affiliation(s)
- Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | - Bessem Chouaia
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Jesús Tornés
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Mercedes V. Del Pozo
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Simone Cappello
- Institute for Coastal Marine Environment, Consiglio Nazionale delle Ricerche, Messina, Italy
| | | | - María Genovese
- Institute for Coastal Marine Environment, Consiglio Nazionale delle Ricerche, Messina, Italy
| | - Renata Denaro
- Institute for Coastal Marine Environment, Consiglio Nazionale delle Ricerche, Messina, Italy
| | | | | | - Ranya A. Amer
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research & Technology Applications, Alexandria, Egypt
| | | | - Xifang Han
- BGI Tech Solutions Co., Ltd, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Jianwei Chen
- BGI Tech Solutions Co., Ltd, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | | | | | - Mouna Mahjoubi
- LR Biotechnology and Bio-Geo Resources Valorization (LR11ES31), Higher Institute for Biotechnology - University of Manouba, Biotechpole of Sidi Thabet, 2020, Sidi Thabet, Ariana, Tunisia
| | - Atef Jaouanil
- Laboratory of Microorganisms and Active Biomolecules, University of Tunis El Manar, Tunis, Tunisia
| | - Fatima Benzha
- Laboratory of Microbiology, Biotechnology and Environment, University Hassan II – Ain Chock, Casablanca, Morocco
| | | | - Emad Hussein
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - Fuad Al-Horani
- Faculty of Marine Sciences, The University of Jordan-Aqaba, Jordan
| | - Ameur Cherif
- Laboratory of Microorganisms and Active Biomolecules, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Blaghen
- Laboratory of Microbiology, Biotechnology and Environment, University Hassan II – Ain Chock, Casablanca, Morocco
| | - Yasser R. Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research & Technology Applications, Alexandria, Egypt
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | - Hanan I. Malkawi
- Hamdan Bin Mohammad Smart University, Academic City, Dubai, United Arab Emirates
| | | | - Michail M. Yakimov
- Institute for Coastal Marine Environment, Consiglio Nazionale delle Ricerche, Messina, Italy
| | - Daniele Daffonchio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- King Abdullah University of Science and Technology, BESE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
16
|
Bioaccumulation of heavy metals in marine organisms from the Romanian sector of the Black Sea. N Biotechnol 2015; 32:369-78. [DOI: 10.1016/j.nbt.2014.11.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 11/24/2022]
|
17
|
Fodelianakis S, Antoniou E, Mapelli F, Magagnini M, Nikolopoulou M, Marasco R, Barbato M, Tsiola A, Tsikopoulou I, Giaccaglia L, Mahjoubi M, Jaouani A, Amer R, Hussein E, Al-Horani FA, Benzha F, Blaghen M, Malkawi HI, Abdel-Fattah Y, Cherif A, Daffonchio D, Kalogerakis N. Allochthonous bioaugmentation in ex situ treatment of crude oil-polluted sediments in the presence of an effective degrading indigenous microbiome. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:78-86. [PMID: 25621834 DOI: 10.1016/j.jhazmat.2015.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
Oil-polluted sediment bioremediation depends on both physicochemical and biological parameters, but the effect of the latter cannot be evaluated without the optimization of the former. We aimed in optimizing the physicochemical parameters related to biodegradation by applying an ex-situ landfarming set-up combined with biostimulation to oil-polluted sediment, in order to determine the added effect of bioaugmentation by four allochthonous oil-degrading bacterial consortia in relation to the degradation efficiency of the indigenous community. We monitored hydrocarbon degradation, sediment ecotoxicity and hydrolytic activity, bacterial population sizes and bacterial community dynamics, characterizing the dominant taxa through time and at each treatment. We observed no significant differences in total degradation, but increased ecotoxicity between the different treatments receiving both biostimulation and bioaugmentation and the biostimulated-only control. Moreover, the added allochthonous bacteria quickly perished and were rarely detected, their addition inducing minimal shifts in community structure although it altered the distribution of the residual hydrocarbons in two treatments. Therefore, we concluded that biodegradation was mostly performed by the autochthonous populations while bioaugmentation, in contrast to biostimulation, did not enhance the remediation process. Our results indicate that when environmental conditions are optimized, the indigenous microbiome at a polluted site will likely outperform any allochthonous consortium.
Collapse
Affiliation(s)
- S Fodelianakis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece; King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - E Antoniou
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - F Mapelli
- Department of Food, Environment and Nutritional Sciences, University of Milan, Italy
| | | | - M Nikolopoulou
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - R Marasco
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; Department of Food, Environment and Nutritional Sciences, University of Milan, Italy
| | - M Barbato
- Department of Food, Environment and Nutritional Sciences, University of Milan, Italy
| | - A Tsiola
- Hellenic Center for Marine Research, Heraklion, Crete, Greece
| | - I Tsikopoulou
- Hellenic Center for Marine Research, Heraklion, Crete, Greece; Department of Biology, University of Crete,Heraklion, Crete, Greece
| | | | - M Mahjoubi
- LR11-ES31 Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole SidiThabet, University of Manouba, 2020 Ariana, Tunisia
| | - A Jaouani
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - R Amer
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), Alexandria, Egypt
| | - E Hussein
- Department of Biological Sciences, Yarmouk University, 211-63 Irbid, Jordan
| | - F A Al-Horani
- Faculty of Marine Sciences, The University of Jordan-Aqaba, 7110 Aqaba, Jordan
| | - F Benzha
- Laboratory of Microbiolgy, Biotechnology and Environmrent, University Hassan II Casablanca, Faculty of Sciences aîn-chock, B.P. 5366 Morocco
| | - M Blaghen
- Laboratory of Microbiolgy, Biotechnology and Environmrent, University Hassan II Casablanca, Faculty of Sciences aîn-chock, B.P. 5366 Morocco
| | - H I Malkawi
- Department of Biological Sciences, Yarmouk University, 211-63 Irbid, Jordan; Hamdan Bin Mohammed Smart University, Academic City, Dubai, United Arab Emirates
| | - Y Abdel-Fattah
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), Alexandria, Egypt
| | - A Cherif
- LR11-ES31 Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole SidiThabet, University of Manouba, 2020 Ariana, Tunisia; Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - D Daffonchio
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; Department of Food, Environment and Nutritional Sciences, University of Milan, Italy
| | - N Kalogerakis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece.
| |
Collapse
|
18
|
Das R, Kazy SK. Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7369-89. [PMID: 24682711 DOI: 10.1007/s11356-014-2640-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/10/2014] [Indexed: 05/20/2023]
Abstract
Microbial community composition and metabolic potential have been explored in petroleum-hydrocarbon-contaminated sludge of an oil storage facility. Culture-independent clone library-based 16S rRNA gene analyses revealed that the bacterial community within the sludge was dominated by the members of β-Proteobacteria (35%), followed by Firmicutes (13%), δ-Proteobacteria (11%), Bacteroidetes (10%), Acidobacteria (6%), α-Proteobacteria (3%), Lentisphaerae (2%), Spirochaetes (2%), and unclassified bacteria (5%), whereas the archaeal community was composed of Thermoprotei (54%), Methanocellales (33%), Methanosarcinales/Methanosaeta (8%) and Methanoculleus (1%) members. Methyl coenzyme M reductase A (mcrA) gene (a functional biomarker) analyses also revealed predominance of hydrogenotrophic, methanogenic Archaea (Methanocellales, Methanobacteriales and Methanoculleus members) over acetoclastic methanogens (Methanosarcinales members). In order to explore the cultivable bacterial population, a total of 28 resident strains were identified and characterized in terms of their physiological and metabolic capabilities. Most of these could be taxonomically affiliated to the members of the genera Bacillus, Paenibacillus, Micrococcus, Brachybacterium, Aerococcus, and Zimmermannella, while two strains were identified as Pseudomonas and Pseudoxanthomonas. Metabolic profiling exhibited that majority of these isolates were capable of growing in presence of a variety of petroleum hydrocarbons as sole source of carbon, tolerating different heavy metals at higher concentrations (≥1 mM) and producing biosurfactant during growth. Many strains could grow under a wide range of pH, temperature, or salinity as well as under anaerobic conditions in the presence of different electron acceptors and donors in the growth medium. Correlation between the isolates and their metabolic properties was estimated by the unweighted pair group method with arithmetic mean (UPGMA) analysis. Overall observation indicated the presence of diverse groups of microorganisms including hydrocarbonoclastic, nitrate reducing, sulphate reducing, fermentative, syntrophic, methanogenic and methane-oxidizing bacteria and Archaea within the sludge community, which can be exploited for in situ bioremediation of the oily sludge.
Collapse
Affiliation(s)
- Ranjit Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur, 713 209, West Bengal, India
| | | |
Collapse
|
19
|
Kalogerakis N, Arff J, Banat IM, Broch OJ, Daffonchio D, Edvardsen T, Eguiraun H, Giuliano L, Handå A, López-de-Ipiña K, Marigomez I, Martinez I, Øie G, Rojo F, Skjermo J, Zanaroli G, Fava F. The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment. N Biotechnol 2014; 32:157-67. [PMID: 24747820 DOI: 10.1016/j.nbt.2014.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
In light of the Marine Strategy Framework Directive (MSFD) and the EU Thematic Strategy on the Sustainable Use of Natural Resources, environmental biotechnology could make significant contributions in the exploitation of marine resources and addressing key marine environmental problems. In this paper 14 propositions are presented focusing on (i) the contamination of the marine environment, and more particularly how to optimize the use of biotechnology-related tools and strategies for predicting and monitoring contamination and developing mitigation measures; (ii) the exploitation of the marine biological and genetic resources to progress with the sustainable, eco-compatible use of the maritime space (issues are very diversified and include, for example, waste treatment and recycling, anti-biofouling agents; bio-plastics); (iii) environmental/marine biotechnology as a driver for a sustainable economic growth.
Collapse
|