1
|
Jiang LM, Zhang Z, Li Y, Xu J, Wang K, Ding X, He J, Qiu Z, Zhou H, Zhou Z. Under-loaded operation of an anaerobic-anoxic-aerobic system in dry and wet weather dynamics to prevent overflow pollution: Impacts on process performance and microbial community. BIORESOURCE TECHNOLOGY 2023; 376:128837. [PMID: 36898557 DOI: 10.1016/j.biortech.2023.128837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Effects of low hydraulic loading rate (HLR) in dry weather and high HLR in wet weather on pollutant removal, microbial community, and sludge properties of a full-scale wastewater treatment plant (WWTP) were extensively studied to explore the risk of under-loaded operation for overflow pollution control. Long-term low HLR operation had an insignificant effect on the pollutant removal performance of the full-scale WWTP, and the system could withstand high-load shocks in wet weather. Low HLR resulted in higher oxygen and nitrate uptake rate due to the storage mechanism under the alternating feast/famine condition, and lower nitrifying rate. Low HLR operation enlarged particle size, deteriorated floc aggregation and sludge settleability, and reduced sludge viscosity due to the overgrowth of filamentous bacteria and inhibition of floc-forming bacteria. The remarkable increase in Thuricola and the contract morphology of Vorticella in microfauna observation confirmed the risk of flocs disintegration in low HLR operation.
Collapse
Affiliation(s)
- Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhenjian Zhang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yunhui Li
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Jialei Xu
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Kun Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xinya Ding
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junli He
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhan Qiu
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Hua Zhou
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
2
|
Can Biomass Mastication Assist the Downstreaming of Polyhydroxyalkanoates Produced from Mixed Microbial Cultures? MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020767. [PMID: 36677824 PMCID: PMC9861560 DOI: 10.3390/molecules28020767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are natural polyesters which biodegrade in soils and oceans but have more than double the cost of comparable oil-based polymers. PHA downstreaming from its biomass represents 50% of its overall cost. Here, in an attempt to assist downstreaming, mastication of wet biomasses is tested as a new mechanical continuous biomass pretreatment with potential for industrial upscaling. Downstreaming conditions where both product recovery and purity are low due to the large amount of treated wet biomass (50% water) were targeted with the following process: extraction of 20 g in 100 mL solvent at 30 °C for 2 h, followed by 4.8 h digestion of 20 g in 0.3 M NaOH. Under the studied conditions, NaOH digestion was more effective than solvent extraction in recovering larger PHA amounts, but with less purity. A nearly 50% loss of PHA was seen during digestion after mastication. PHAs downstreamed by digestion with large amounts of impurities started to degrade at lower temperatures, but their melt elasticity was thermally stable at 170 °C. As such, these materials are attractive as fully PHA-compatible processing aids, reinforcing fillers or viscosity modifiers. On the other hand, wet biomass mastication before solvent extraction improves PHA purity and thermal stability as well as the melt rheology, which recovers the viscoelasticity measured with a PHA extracted from a dried biomass.
Collapse
|
3
|
Küçükağa Y, Facchin A, Kara S, Nayır TY, Scicchitano D, Rampelli S, Candela M, Torri C. Conversion of Pyrolysis Products into Volatile Fatty Acids with a Biochar-Packed Anaerobic Bioreactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yusuf Küçükağa
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Sant’Alberto, 163, Ravenna 48123, Italy
- Environmental Engineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Andrea Facchin
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Sant’Alberto, 163, Ravenna 48123, Italy
| | - Serdar Kara
- Environmental Engineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Tülin Yılmaz Nayır
- Environmental Engineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Daniel Scicchitano
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Cristian Torri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Sant’Alberto, 163, Ravenna 48123, Italy
| |
Collapse
|
4
|
Subcritical Water as a Pre-treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoates. Bioengineering (Basel) 2022; 9:bioengineering9070302. [PMID: 35877353 PMCID: PMC9311994 DOI: 10.3390/bioengineering9070302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxyalkanoate (PHA) recovery from microbial cells relies on either solvent extraction (usually using halogenated solvents) and/or digestion of the non-PHA cell mass (NPCM) by the action of chemicals (e.g., hypochlorite) that raise environmental and health hazards. A greener alternative for PHA recovery, subcritical water (SBW), was evaluated as a method for the dissolution of the NPCM of a mixed microbial culture (MMC) biomass. A temperature of 150 °C was found as a compromise to reach NPCM solubilization while mostly preventing the degradation of the biopolymer during the procedure. Such conditions yielded a polymer with a purity of 77%. PHA purity was further improved by combining the SBW treatment with hypochlorite digestion, in which a significantly lower hypochlorite concentration (0.1%, v/v) was sufficient to achieve an overall polymer purity of 80%. During the procedure, the biopolymer suffered some depolymerization, as evidenced by the lower molecular weight (Mw) and higher polydispersity of the extracted samples. Although such changes in the biopolymer’s molecular mass distribution impact its mechanical properties, impairing its utilization in most conventional plastic uses, the obtained PHA can find use in several applications, for example as additives or for the preparation of graft or block co-polymers, in which low-Mw oligomers are sought.
Collapse
|
5
|
Polyhydroxyalkanoates from a Mixed Microbial Culture: Extraction Optimization and Polymer Characterization. Polymers (Basel) 2022; 14:polym14112155. [PMID: 35683828 PMCID: PMC9182939 DOI: 10.3390/polym14112155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are biopolymers with potential to replace conventional oil-based plastics. However, PHA high production costs limit their scope of commercial applications. Downstream processing is currently the major cost factor for PHA production but one of the least investigated aspects of the PHA production chain. In this study, the extraction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced at pilot scale by a mixed microbial culture was performed using sodium hydroxide (NaOH) or sodium hypochlorite (NaClO) as digestion agents of non-PHA cellular mass. Optimal conditions for digestion with NaOH (0.3 M, 4.8 h) and NaClO (9.0%, 3.4 h) resulted in polymers with a PHA purity and recovery of ca. 100%, in the case of the former and ca. 99% and 90%, respectively, in the case of the latter. These methods presented higher PHA recoveries than extraction by soxhlet with chloroform, the benchmark protocol for PHA extraction. The polymers extracted by the three methods presented similar PHA purities, molecular weights and polydispersity indices. Using the optimized conditions for NaOH and NaClO digestions, this study analyzed the effect of the initial intracellular PHA content (40-70%), biomass concentration (20-100 g/L) and biomass pre-treatment (fresh vs. dried vs. lyophilized) on the performance of PHA extraction by these two methods.
Collapse
|
6
|
Scale-Up Studies for Polyhydroxyalkanoate and Halocin Production by <i>Halomonas</i> Sp. as Potential Biomedical Materials. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-yqf2wv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyhydroxyalkanoates (PHA) are the biomaterials isolated naturally from bacterial strains. These are present in granules and accumulated intracellularly for storage and energy uptake in stressed conditions. This work was based on the extraction of polyhydroxyalkanoates from haloarchaeal strains isolated from samples of a salt mine and Halocin activity screening of these isolates. For the screening of polyhydroxyalkanoates, Nile Blue and Sudan Black Staining were performed. After confirmation and theoretical determination, polyhydroxyalkanoates extraction was done by sodium hypochlorite digestion and solvent extraction by chloroform method in combination. Polyhydroxyalkanoates production was calculated along with the determination of biomass. Halocin activity of these strains was also screened at different intervals. Isolated strains were identified by 16S RNA gene sequencing. Polyhydroxyalkanoates polymer was produced in form of biofilms and brittle crystals. Halocin activity was exhibited by four strains, among which confirmed halocin activity was shown by strain K7. The remarkable results showed that polyhydroxyalkanoates can replace synthetic plastics which are not environment friendly as they cause environmental pollution – a major threat to Earth rising gradually. Therefore, by switching to the use of biodegradable bioplastics from the use of synthetic plastics, it would be beneficial to the ecosphere.
Collapse
|
7
|
Chien Bong CP, Alam MNHZ, Samsudin SA, Jamaluddin J, Adrus N, Mohd Yusof AH, Muis ZA, Hashim H, Salleh MM, Abdullah AR, Chuprat BRB. A review on the potential of polyhydroxyalkanoates production from oil-based substrates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113461. [PMID: 34435568 DOI: 10.1016/j.jenvman.2021.113461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Polyhydroxyalkanoate (PHA) is a type of polyesters produced in the form of accumulated intracellular granules by many microorganisms. It is viewed as an environmentally friendly bioproduct due to its biodegradability and biocompatibility. The production of the PHA using oil substrates such as waste oil and plant oil, has gained considerable attention due to the high product yield and lower substrate cost. Nevertheless, the PHA fermentation using oil substrate is complicated due to the heterogenous fatty acid composition, varied bio-accessibility and possible inhibitory effect on the bacterial culture. This review presents the current state-of-the-art of PHA production from oil-based substrates. This paper firstly discusses the technical details, such as the choice of bacteria strain and fermentation conditions, characteristic of the oil substrate as well as the PHA composition and application. Finally, the paper discusses the challenges and prospects for up-scaling towards a cleaner and effective bioprocess. From the literature review, depending on the cell culture and the type of PHA produced, the oil platform can have a PHA yield of 0.2-0.8 g PHA/g oil substrate, with PHA content mostly from 40 to 90% of the cell dry weight. There is an on-going search for more effective oil-utilising PHA producers and lower cost substrate for effective PHA production. The final application of the PHA polymer influences the treatment needed during downstream processing and its economic performance. PHA with different compositions exhibits varied decomposition behaviour under different conditions, requiring further insight towards its management towards a sustainable circular economy.
Collapse
Affiliation(s)
- Cassendra Phun Chien Bong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Muhd Nazrul Hisham Zainal Alam
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Sani Amril Samsudin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Jamarosliza Jamaluddin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nadia Adrus
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Abdul Halim Mohd Yusof
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Zarina Ab Muis
- Process Systems Engineering Centre (PROSPECT), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Haslenda Hashim
- Process Systems Engineering Centre (PROSPECT), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Madihah Md Salleh
- Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | | | | |
Collapse
|
8
|
Rossi MM, Dell’Armi E, Lorini L, Amanat N, Zeppilli M, Villano M, Petrangeli Papini M. Combined Strategies to Prompt the Biological Reduction of Chlorinated Aliphatic Hydrocarbons: New Sustainable Options for Bioremediation Application. Bioengineering (Basel) 2021; 8:bioengineering8080109. [PMID: 34436112 PMCID: PMC8389326 DOI: 10.3390/bioengineering8080109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Groundwater remediation is one of the main objectives to minimize environmental impacts and health risks. Chlorinated aliphatic hydrocarbons contamination is prevalent and presents particularly challenging scenarios to manage with a single strategy. Different technologies can manage contamination sources and plumes, although they are usually energy-intensive processes. Interesting alternatives involve in-situ bioremediation strategies, which allow the chlorinated contaminant to be converted into non-toxic compounds by indigenous microbial activity. Despite several advantages offered by the bioremediation approaches, some limitations, like the relatively low reaction rates and the difficulty in the management and control of the microbial activity, can affect the effectiveness of a bioremediation approach. However, those issues can be addressed through coupling different strategies to increase the efficiency of the bioremediation strategy. This mini review describes different strategies to induce the reduction dechlorination reaction by the utilization of innovative strategies, which include the increase or the reduction of contaminant mobility as well as the use of innovative strategies of the reductive power supply. Subsequently, three future approaches for a greener and more sustainable intervention are proposed. In particular, two bio-based materials from renewable resources are intended as alternative, long-lasting electron-donor sources (e.g., polyhydroxyalkanoates from mixed microbial cultures) and a low-cost adsorbent (e.g., biochar from bio-waste). Finally, attention is drawn to novel bio-electrochemical systems that use electric current to stimulate biological reactions.
Collapse
|
9
|
Lorini L, Martinelli A, Capuani G, Frison N, Reis M, Sommer Ferreira B, Villano M, Majone M, Valentino F. Characterization of Polyhydroxyalkanoates Produced at Pilot Scale From Different Organic Wastes. Front Bioeng Biotechnol 2021; 9:628719. [PMID: 33681164 PMCID: PMC7931994 DOI: 10.3389/fbioe.2021.628719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) production at pilot scale has been recently investigated and carried out exploiting different process configurations and organic wastes. More in detail, three pilot platforms, in Treviso (North-East of Italy), Carbonera (North-East of Italy) and Lisbon, produced PHAs by open mixed microbial cultures (MMCs) and different organic waste streams: organic fraction of municipal solid waste and sewage sludge (OFMSW-WAS), cellulosic primary sludge (CPS), and fruit waste (FW), respectively. In this context, two stabilization methods have been applied, and compared, for preserving the amount of PHA inside the cells: thermal drying and wet acidification of the biomass at the end of PHA accumulation process. Afterward, polymer has been extracted following an optimized method based on aqueous-phase inorganic reagents. Several PHA samples were then characterized to determine PHA purity, chemical composition, molecular weight, and thermal properties. The polymer contained two types of monomers, namely 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) at a relative percentage of 92.6-79.8 and 7.4-20.2 w/w, respectively, for Treviso and Lisbon plants. On the other hand, an opposite range was found for 3HB and 3HV monomers of PHA from Carbonera, which is 44.0-13.0 and 56.0-87.0 w/w, respectively. PHA extracted from wet-acidified biomass had generally higher viscosity average molecular weights (M v ) (on average 424.8 ± 20.6 and 224.9 ± 21.9 KDa, respectively, for Treviso and Lisbon) while PHA recovered from thermally stabilized dried biomass had a three-fold lower M v .
Collapse
Affiliation(s)
- Laura Lorini
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Andrea Martinelli
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Giorgio Capuani
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Maria Reis
- Department of Chemistry, Nova University of Lisbon, Lisbon, Portugal
| | | | - Marianna Villano
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Mauro Majone
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Francesco Valentino
- Department of Environmental Science, Informatics and Statistics, “Ca Foscari” University of Venice, Venice, Italy
| |
Collapse
|
10
|
Pagliano G, Galletti P, Samorì C, Zaghini A, Torri C. Recovery of Polyhydroxyalkanoates From Single and Mixed Microbial Cultures: A Review. Front Bioeng Biotechnol 2021; 9:624021. [PMID: 33644018 PMCID: PMC7902716 DOI: 10.3389/fbioe.2021.624021] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2021] [Indexed: 01/08/2023] Open
Abstract
An overview of the main polyhydroxyalkanoates (PHA) recovery methods is here reported, by considering the kind of PHA-producing bacteria (single bacterial strains or mixed microbial cultures) and the chemico-physical characteristics of the extracted polymer (molecular weight and polydispersity index). Several recovery approaches are presented and categorized in two main strategies: PHA recovery with solvents (halogenated solvents, alkanes, alcohols, esters, carbonates and ketones) and PHA recovery by cellular lysis (with oxidants, acid and alkaline compounds, surfactants and enzymes). Comparative evaluations based on the recovery, purity and molecular weight of the recovered polymers as well as on the potential sustainability of the different approaches are here presented.
Collapse
Affiliation(s)
- Giorgia Pagliano
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | - Paola Galletti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
- CIRI-Fonti Rinnovabili, Ambiente, Mare ed Energia, Ravenna, Italy
| | - Chiara Samorì
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
- CIRI-Fonti Rinnovabili, Ambiente, Mare ed Energia, Ravenna, Italy
| | - Agnese Zaghini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | - Cristian Torri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
- CIRI-Fonti Rinnovabili, Ambiente, Mare ed Energia, Ravenna, Italy
| |
Collapse
|
11
|
Macagnan KL, Alves MI, Kesserlingh SM, Vendruscolo CT, Moreira ADS. Environmentally friendly method for poly(3-hydroxybutyrate) recovery based on physical adsorption on a solid inorganic inert adsorbent. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:374-388. [PMID: 33139190 DOI: 10.1016/j.wasman.2020.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Increased awareness of environmental sustainability with associated strict environmental regulations has incentivized the pursuit of novel materials to replace conventional petroleum-derived plastics. Polyhydroxyalkanoates (PHAs) are appealing intracellular biopolymers and have drawn significant attention as a viable alternative to petrochemical based plastics not only due to their comparable physiochemical properties but also, their outstanding characteristics such as biodegradability and biocompatibility. This review provides a comprehensive overview of the recent developments on the involved PHA producer microorganisms, production process from different waste streams by both pure and mixed microbial cultures (MMCs). Bio-based PHA production, particularly using cheap carbon sources with MMCs, is getting more attention. The main bottlenecks are the low production yield and the inconsistency of the biopolymers. Bioaugmentation and metabolic engineering together with cost effective downstream processing are promising approaches to overcome the hurdles of commercial PHA production from waste streams.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
13
|
Colombo B, Pereira J, Martins M, Torres-Acosta MA, Dias AC, Lemos PC, Ventura SP, Eisele G, Alekseeva A, Adani F, Serafim LS. Recovering PHA from mixed microbial biomass: Using non-ionic surfactants as a pretreatment step. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Bossu J, Angellier-Coussy H, Totee C, Matos M, Reis M, Guillard V. Effect of the Molecular Structure of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-3HV)) Produced from Mixed Bacterial Cultures on Its Crystallization and Mechanical Properties. Biomacromolecules 2020; 21:4709-4723. [DOI: 10.1021/acs.biomac.0c00826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Bossu
- JRU IATE 1208—CIRAD/INRA/Montpellier Supagro, University of Montpellier, Montpellier F-34060, France
| | - Hélène Angellier-Coussy
- JRU IATE 1208—CIRAD/INRA/Montpellier Supagro, University of Montpellier, Montpellier F-34060, France
| | - Cedric Totee
- ICGM, CNRS, ENSCM, University of Montpellier, Montpellier F-34095, France
| | - Mariana Matos
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT-UNL), Caparica 2829-516, Portugal
| | - Maria Reis
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT-UNL), Caparica 2829-516, Portugal
| | - Valérie Guillard
- JRU IATE 1208—CIRAD/INRA/Montpellier Supagro, University of Montpellier, Montpellier F-34060, France
| |
Collapse
|
15
|
Community profile governs substrate competition in polyhydroxyalkanoate (PHA)-producing mixed cultures. N Biotechnol 2020; 58:32-37. [DOI: 10.1016/j.nbt.2020.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/20/2022]
|
16
|
Samadlouie HR, Jahanbin K, jalali P. Production, medium optimization, and structural characterization of an extracellular polysaccharide produced by Rhodotorula minuta ATCC 10658. Food Sci Nutr 2020; 8:4957-4964. [PMID: 32994957 PMCID: PMC7500799 DOI: 10.1002/fsn3.1792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/11/2022] Open
Abstract
Several strains of microorganism are capable of converting carbohydrates into extracellular polysaccharide. The preset research is a first effort made to optimize extracellular polysaccharide (CRMEP) by Rhodotorula minuta ATCC 10658 using one factor at time and response surface methods. One factor at time was applied in the initial screening of substrates prior to optimization study. Of all the substrates examined, starch as carbon source and defatted soy bean powder as protein source were discovered to be best for CRMEP production. Response surface analysis revealed that 15 g/L starch and 30g/L defatted soy bean powder were the optimal chemical conditions. The model predicted 13.22 g/L for CRMEP, which went along with the experimentally observed result. Purification of CRMEP by anion-exchange column of DEAE-cellulose yielded RMEP. Structural investigation indicated that the main chain of RMEP was composed of (1 → 3) and (1 → 4)-linked mannopyranosyl residues, with branches attached to O-6 of some (1 → 3)-linked mannopyranosyl residues. The branches were composed of Glcp-(1 → residues.
Collapse
Affiliation(s)
- Hamid Reza Samadlouie
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Kambiz Jahanbin
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Parisa jalali
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| |
Collapse
|
17
|
Sabapathy PC, Devaraj S, Meixner K, Anburajan P, Kathirvel P, Ravikumar Y, Zabed HM, Qi X. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review. BIORESOURCE TECHNOLOGY 2020; 306:123132. [PMID: 32220472 DOI: 10.1016/j.biortech.2020.123132] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are inevitably a key biopolymer that has the potential to replace the conventional petrochemical based plastics that pose jeopardy to the environment globally. Even then the reach of PHA in the common market is so restricted. The economy of PHA is such that, even after several attempts the overall production cost seems to be high and this very factor surpasses PHAs usage when compared to the conventional polymers. The major focus of the review relies on the synthesis of PHA from Mixed Microbial Cultures (MMCs), through a 3-stage process most probably utilizing feedstocks from waste streams or models that mimic them. Emphasis was given to the works carried out in the past decade and their coherence with each and every individual criteria (Aeration, Substrate and bioprocess parameters) such that to understand their effect in enhancing the overall production of PHA.
Collapse
Affiliation(s)
- Poorna Chandrika Sabapathy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Katharina Meixner
- University of Natural Resources and Life Sciences, Vienna, Austria; Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Straße 20, 3430 Tulln, Austria
| | - Parthiban Anburajan
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Preethi Kathirvel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
18
|
Pereira J, Queirós D, Lemos PC, Rossetti S, Serafim LS. Enrichment of a mixed microbial culture of PHA-storing microorganisms by using fermented hardwood spent sulfite liquor. N Biotechnol 2020; 56:79-86. [DOI: 10.1016/j.nbt.2019.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022]
|
19
|
Mannina G, Presti D, Montiel-Jarillo G, Carrera J, Suárez-Ojeda ME. Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. BIORESOURCE TECHNOLOGY 2020; 297:122478. [PMID: 31810735 DOI: 10.1016/j.biortech.2019.122478] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biopolyesters accumulated as carbon and energy storage materials under unbalanced growth conditions by various microorganisms. They are one of the most promising potential substitutes for conventional non-biodegradable plastics due to their similar physicochemical properties, but most important, its biodegradability. Production cost of PHAs is still a great barrier to extend its application at industrial scale. In order to reduce that cost, research is focusing on the use of several wastes as feedstock (such as agro-industrial and municipal organic waste and wastewater) in a platform based on mixed microbial cultures. This review provides a critical illustration of the state of the art of the most likely-to-be-scale-up PHA production processes using mixed microbial cultures platform and waste streams as feedstock, with a particular focus on both, upstream and downstream processes. Current pilot scale studies, future prospects, challenges and developments in the field are also highlighted.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Dario Presti
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| | - Gabriela Montiel-Jarillo
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| | - Julián Carrera
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| | - María Eugenia Suárez-Ojeda
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| |
Collapse
|
20
|
Guventurk A, Ozturk D, Ozyildiz G, Ayisigi E, Guven D, Zengin GE, Tas DO, Olmez-Hanci T, Pala-Ozkok I, Yagci N, Insel G, Cokgor E. Determination of the potential of pickle wastewater as feedstock for biopolymer production. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:21-28. [PMID: 32293585 DOI: 10.2166/wst.2020.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food industry wastewater (FIWW) streams with high organic content are among the most suitable and inexpensive candidates for polyhydroxyalkanoate (PHA) biopolymer production. Due to its high organic acid content, pickle industry wastewater (PIWW), can be considered as one of the prospective alternatives to petroleum-based polymers for PHA production. In this context, this study aimed to investigate the production of PHA with enriched microbial culture using PIWW. Two laboratory scale sequencing batch reactors (SBRs) were operated under aerobic dynamic feeding conditions at a sludge retention time of 8 days, with a total cycle duration of 24 hours. SBRs were fed with peptone mixture and PIWW. In-cycle analysis and batch respirometric tests were performed to evaluate PHA storage together with biodegradation kinetics. In-cycle analysis showed that maximum PHA content was 1,820 mgCOD/L, corresponding to 44% in the biomass (ratio of chemical oxygen demand (COD) to volatile suspended solids) for PIWW. Experimental results were also confirmed with activated sludge model simulations. As for the PHA composition, hydroxybutyrate was the major fraction. Model simulations proposed a unique conversion-degradation-storage pathway for the organic acid mixture. This paper presents a novel insight for better understanding of PHA biopolymer production using high saline FIWW.
Collapse
Affiliation(s)
- Ayse Guventurk
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail:
| | - Dilara Ozturk
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail:
| | - Goksin Ozyildiz
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail: ; Faculty of Science and Technology, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4021, Norway
| | - Ezgi Ayisigi
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail:
| | - Didem Guven
- Faculty of Civil Engineering, Applied Biopolymer and Bioplastics Production Technologies Research Center, Istanbul Technical University, Istanbul, Turkey
| | - Gulsum Emel Zengin
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail:
| | - Didem Okutman Tas
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail:
| | - Tugba Olmez-Hanci
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail:
| | - Ilke Pala-Ozkok
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail: ; Faculty of Science and Technology, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4021, Norway
| | - Nevin Yagci
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail:
| | - Güçlü Insel
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail:
| | - Emine Cokgor
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey E-mail:
| |
Collapse
|
21
|
Kumar V, Kumar S, Singh D. Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges. Int J Biol Macromol 2019; 147:1255-1267. [PMID: 31739043 DOI: 10.1016/j.ijbiomac.2019.09.253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023]
Abstract
Extreme niches are offered with unusual physiochemical conditions that impose stress to the life-forms including microbial communities. Microbes have evolved unique physiology and genetics to interact dynamically with extreme environments for their adaptation and survival. Amongst the several adaptive features of microbes in stressed conditions, polyhydroxyalkanoates synthesis is a crucial strategy of many bacteria and archaea to reserve carbon and energy inside the cell. Apart from the relevance of PHA to microbial world, these intracellular polyesters are seen as essential biological macromolecules for the bio-material industry owing to their plastic-like properties, biodegradable and eco-friendly nature. Recently, much attention has been attracted by the microbes of extreme habitats for a new source of industrially suited PHA producers and novel PHA with unique properties. Therefore, the current review is focused on the critical evaluation of microbes from extreme niches for PHA production and opportunities for the development of commercially feasible PHA bioprocess.
Collapse
Affiliation(s)
- Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.
| |
Collapse
|
22
|
A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: State-of-the-art and latest developments. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107283] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME. Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. BIORESOURCE TECHNOLOGY 2019; 282:361-369. [PMID: 30884455 DOI: 10.1016/j.biortech.2019.03.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures (MMCs) is proposed. PHA-accumulating capacity of the MMC was selected in a sequencing batch reactor (SBR) fed with a synthetic effluent emulating a fermented oil mill wastewater (OMW). The highest recovery yield and purity (74 ± 8% and 100 ± 5%, respectively) was obtained when using NH4-Laurate for which operating conditions of the extraction process such as temperature, concentration and contact time were optimized. Best conditions for PHA extraction from MMC turned to be: i) a pre-treatment with NaClO at 85 °C with 1 h of contact time, followed by ii) a treatment with lauric acid in a ratio acid lauric to biomass of 2:1 and 3 h of contact time.
Collapse
Affiliation(s)
- Giorgio Mannina
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 8, Palermo, IT, Italy.
| | - Dario Presti
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 8, Palermo, IT, Italy
| | - Gabriela Montiel-Jarillo
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria. Edifici Q Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria. Edifici Q Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
24
|
Uma V, Gandhimathi R. Organic removal and synthesis of biopolymer from synthetic oily bilge water using the novel mixed bacterial consortium. BIORESOURCE TECHNOLOGY 2019; 273:169-176. [PMID: 30445269 DOI: 10.1016/j.biortech.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Synthetic oily bilge water (OBW) treatment and subsequent production of biopolymer were studied by using a sequential batch reactor (SBR). The effect of various influencing parameters such as solids retention time (SRT), cycle time (CT), substrate concentration, pH level on the organic removal and synthesis of polyhydroxyalkanoates (PHA) was examined by novel soil bacteria isolated from hydrocarbon contaminated site near Karaikal port, India. The isolates were identified as Pseudomonas tuomuerensis and Pseudomonas nitroreducens using 16S rRNA. Sudan Black B staining was performed to visualize the presence of PHA. The experimental results showed that a decrease in substrate concentration to 5000 mg/L of soluble COD (CODs) showed maximum organic removal (81%) and maximum PHA yields of its cell dry mass (81%). The PHA yield was maximum at SRT of 5 d, pH = 7 and CT of 24 h. The produced PHA was characterized by using FTIR, XRD and SEM analysis.
Collapse
Affiliation(s)
- V Uma
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu 620 015, India
| | - R Gandhimathi
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu 620 015, India.
| |
Collapse
|
25
|
Cabrera F, Torres Á, Campos JL, Jeison D. Effect of Operational Conditions on the Behaviour and Associated Costs of Mixed Microbial Cultures for PHA Production. Polymers (Basel) 2019; 11:polym11020191. [PMID: 30960175 PMCID: PMC6418583 DOI: 10.3390/polym11020191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/25/2022] Open
Abstract
Massive production and disposal of petrochemical derived plastics represent relevant environmental problems. Polyhydroxyalkanoates (PHA) are a renewable alternative that can even be produced from wastes. The production of PHA from acetate using mixed microbial cultures was studied. The effect of two key operational conditions was evaluated, i.e., substrate concentration and cycle length. The effects of these factors on several responses were studied using a surface response methodology. Several reactors were operated under selected conditions for at least 10 solids retention times to ensure stable operation. Results show that conditions providing higher PHA content involve lower biomass productivities. This has a great impact on biomass production costs. Results suggest then that PHA content alone may not be a reasonable criterion for determining optimal conditions for PHB production. If production costs need to be reduced, conditions that provide a lower PHA content in the selection reactor, but a higher biomass productivity may be of interest.
Collapse
Affiliation(s)
- Francisco Cabrera
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile.
| | - Álvaro Torres
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile.
| | - José Luis Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar 2520000, Chile.
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile.
| |
Collapse
|
26
|
Guillard V, Gaucel S, Fornaciari C, Angellier-Coussy H, Buche P, Gontard N. The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Front Nutr 2018; 5:121. [PMID: 30564581 PMCID: PMC6288173 DOI: 10.3389/fnut.2018.00121] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022] Open
Abstract
Packaging is an essential element of response to address key challenges of sustainable food consumption on the international scene, which is clearly about minimizing the environmental footprint of packed food. An innovative sustainable packaging aims to address food waste and loss reduction by preserving food quality, as well as food safety issues by preventing food-borne diseases and food chemical contamination. Moreover, it must address the long-term crucial issue of environmentally persistent plastic waste accumulation as well as the saving of oil and food material resources. This paper reviews the major challenges that food packaging must tackle in the near future in order to enter the virtuous loop of circular bio-economy. Some solutions are proposed to address pressing international stakes in terms of food and plastic waste reduction and end-of-life issues of persistent materials. Among potential solutions, production of microbial biodegradable polymers from agro-food waste residues seems a promising route to create an innovative, more resilient, and productive waste-based food packaging economy by decoupling the food packaging industry from fossil feed stocks and permitting nutrients to return to the soil. To respond to the lack of tools and approach to properly design and adapt food packaging to food needs, mathematical simulation, based on modeling of mass transfer and reactions into food/packaging systems are promising tools. The next generation of such modeling and tools should help the food packaging sector to validate usage benefit of new packaging solutions and chose, in a fair and transparent way, the best packaging solution to contribute to the overall decrease of food losses and persistent plastic accumulation.
Collapse
Affiliation(s)
- Valérie Guillard
- UMR IATE, University of Montpellier, INRA, SupAgro, CIRAD, Montpellier, France
| | - Sébastien Gaucel
- UMR IATE, University of Montpellier, INRA, SupAgro, CIRAD, Montpellier, France
| | | | | | - Patrice Buche
- UMR IATE, University of Montpellier, INRA, SupAgro, CIRAD, Montpellier, France
| | - Nathalie Gontard
- UMR IATE, University of Montpellier, INRA, SupAgro, CIRAD, Montpellier, France
| |
Collapse
|
27
|
Debuissy T, Pollet E, Avérous L. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. CHEMSUSCHEM 2018; 11:3836-3870. [PMID: 30203918 DOI: 10.1002/cssc.201801700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Biobased polymers have seen their attractiveness increase in recent decades thanks to the significant development of biorefineries to allow access to a wide variety of biobased building blocks. Polyesters are one of the best examples of the development of biobased polymers because most of them now have their monomers produced from renewable resources and are biodegradable. Currently, these polyesters are mainly produced by using traditional chemical catalysts and harsh conditions, but recently greener pathways with nontoxic enzymes as biocatalysts and mild conditions have shown great potential. Bacterial polyesters, such as poly(hydroxyalkanoate)s (PHA), are the best example of the biotic production of high molar mass polymers. PHAs display a wide variety of macromolecular architectures, which allow a large range of applications. The present contribution aims to provide an overview of recent progress in studies on biobased polyesters, especially those made from short building blocks, synthesized through step-growth polymerization. In addition, some important technical aspects of their syntheses through biotic or abiotic pathways have been detailed.
Collapse
Affiliation(s)
- Thibaud Debuissy
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
28
|
Metabolic modeling of the substrate competition among multiple VFAs for PHA production by mixed microbial cultures. J Biotechnol 2018; 280:62-69. [DOI: 10.1016/j.jbiotec.2018.06.342] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/09/2018] [Accepted: 06/16/2018] [Indexed: 11/18/2022]
|
29
|
Melendez-Rodriguez B, Castro-Mayorga JL, Reis MAM, Sammon C, Cabedo L, Torres-Giner S, Lagaron JM. Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00038] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
30
|
Mohapatra S, Sarkar B, Samantaray DP, Daware A, Maity S, Pattnaik S, Bhattacharjee S. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process. ENVIRONMENTAL TECHNOLOGY 2017; 38:3201-3208. [PMID: 28162048 DOI: 10.1080/09593330.2017.1291759] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Currently, one of the major problem affecting the world is solid waste management, predominantly petroleum-based plastic and fish solid waste (FSW). However, it is very difficult to reduce the consumption of plastic as well as fish products, but it is promising to convert FSW to biopolymer to reduce eco-pollution. On account of that, the bioconversion of FSW extract to polyhydroxybutyrate (PHB) was undertaken by using Bacillus subtilis (KP172548). Under optimized conditions, 1.62 g/L of PHB has been produced by the bacterium. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the biopolymer was found to be PHB, the most common homopolymer of polyhydroxyalkanoates (PHAs). This is the first report demonstrating the efficacy of B. subtilis to utilize FSW extract to produce biopolymer. The biocompatibility of the PHB against murine macrophage cell line RAW264.7 demonstrated that, it was comparatively less toxic, favourable for surface attachment and proliferation in comparison with poly-lactic acid (PLA) and commercially available PHB. Thus, further exploration is highly indispensable to use FSW extract as a substrate for production of PHB at pilot scale.
Collapse
Affiliation(s)
- S Mohapatra
- a Department of Biotechnology , Indian Institute of Technology , Roorke , India
| | - B Sarkar
- b ICAR-Indian Institute of Agricultural Biotechnology, IINRG Campus , Ranchi , Jharkhand , India
| | - D P Samantaray
- c Department of Microbiology , Orissa University of Agriculture and Technology , Bhubaneswar , Odisha, India
| | - A Daware
- d Department of Molecular Biology and Bioinformatics , Tripura University , Agartala , Tripura , India
| | - S Maity
- c Department of Microbiology , Orissa University of Agriculture and Technology , Bhubaneswar , Odisha, India
| | - S Pattnaik
- c Department of Microbiology , Orissa University of Agriculture and Technology , Bhubaneswar , Odisha, India
| | - S Bhattacharjee
- d Department of Molecular Biology and Bioinformatics , Tripura University , Agartala , Tripura , India
| |
Collapse
|
31
|
Torri C, Weme TDO, Samorì C, Kiwan A, Brilman DWF. Renewable Alkenes from the Hydrothermal Treatment of Polyhydroxyalkanoates-Containing Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12683-12691. [PMID: 28991443 DOI: 10.1021/acs.est.7b03927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyhydroxyalkanoates (PHA) are a key constituent of excess sludge produced by Aerobic Sewage Sludge Treatment plants. The accumulation of significant amount of PHA inside aerobic microbial cells occurs when a surplus of an easily degradable carbon source (e.g., volatile fatty acids, VFA) is found in combination with other nutrients limitation. Herein, hydrothermal treatment (HT) of PHA-containing sludge at 300 and 375 °C was demonstrated to be effective in converting most (>70% w/w) of the bacterial PHA stored inside microbial cells into alkene/CO2 gas mixtures. Simultaneously, most of non-PHA biomass was converted into water-soluble compounds (50% carbon yield) that were acidogenic fermented to produce volatile fatty acids, ideal substrate to feed aerobic bacteria and produce more PHA. According to results here presented, HT of excess sludge with moderate (13%) PHA content can produce about 50 kg of alkenes per tonne of suspended solids treated, with a significant reduction of sludge mass (80% reduction of wet sludge volume) and consequent disposal cost.
Collapse
Affiliation(s)
- Cristian Torri
- Laboratori "R. Sartori", Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna , Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Tom Detert Oude Weme
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Chiara Samorì
- Laboratori "R. Sartori", Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna , Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Alisar Kiwan
- Laboratori "R. Sartori", Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna , Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Derk W F Brilman
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500AE Enschede, The Netherlands
| |
Collapse
|
32
|
Carbon recovery from wastewater through bioconversion into biodegradable polymers. N Biotechnol 2017; 37:9-23. [DOI: 10.1016/j.nbt.2016.05.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/19/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
|
33
|
Silva F, Campanari S, Matteo S, Valentino F, Majone M, Villano M. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures. N Biotechnol 2017; 37:90-98. [DOI: 10.1016/j.nbt.2016.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/03/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|
34
|
Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering (Basel) 2017; 4:bioengineering4020055. [PMID: 28952534 PMCID: PMC5590474 DOI: 10.3390/bioengineering4020055] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/22/2022] Open
Abstract
Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processing.
Collapse
|
35
|
Abbondanzi F, Biscaro G, Carvalho G, Favaro L, Lemos P, Paglione M, Samorì C, Torri C. Fast method for the determination of short-chain-length polyhydroxyalkanoates (scl-PHAs) in bacterial samples by In Vial-Thermolysis (IVT). N Biotechnol 2017; 39:29-35. [PMID: 28591645 DOI: 10.1016/j.nbt.2017.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/02/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
A new method based on the GC-MS analysis of thermolysis products obtained by treating bacterial samples at a high temperature (above 270°C) has been developed. This method, here named "In-Vial-Thermolysis" (IVT), allowed for the simultaneous determination of short-chain-length polyhydroxyalkanoates (scl-PHA) content and composition. The method was applied to both single strains and microbial mixed cultures (MMC) fed with different carbon sources. The IVT procedure provided similar analytical performances compared to previous Py-GC-MS and Py-GC-FID methods, suggesting a similar application for PHA quantitation in bacterial cells. Results from the IVT procedure and the traditional methanolysis method were compared; the correlation between the two datasets was fit for the purpose, giving a R2 of 0.975. In search of further simplification, the rationale of IVT was exploited for the development of a "field method" based on the titration of thermolyzed samples with sodium hydrogen carbonate to quantify PHA inside bacterial cells. The accuracy of the IVT method was fit for the purpose. These results lead to the possibility for the on-line measurement of PHA productivity. Moreover, they allow for the fast and inexpensive quantification/characterization of PHA for biotechnological process control, as well as investigation over various bacterial communities and/or feeding strategies.
Collapse
Affiliation(s)
- F Abbondanzi
- Interdepartmental Centre for Industrial Research Energy-Environment (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy.
| | - G Biscaro
- Chemistry Department "Giacomo Ciamician", University of Bologna, via Selmi 2, Bologna, Italy
| | - G Carvalho
- UCIBIO, REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - L Favaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Italy
| | - P Lemos
- LAQV REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M Paglione
- National Research Council (CNR), Institute of Atmospheric Sciences and Climate (ISAC), Via Gobetti 101, Bologna, Italy
| | - C Samorì
- Interdepartmental Centre for Industrial Research Energy-Environment (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Chemistry Department "Giacomo Ciamician", University of Bologna, via Selmi 2, Bologna, Italy
| | - C Torri
- Interdepartmental Centre for Industrial Research Energy-Environment (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Chemistry Department "Giacomo Ciamician", University of Bologna, via Selmi 2, Bologna, Italy
| |
Collapse
|
36
|
Stabilization of Iron (Micro)Particles with Polyhydroxybutyrate for In Situ Remediation Applications. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6120417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Characterization of polyhydroxyalkanoates extracted from wastewater sludge under different environmental conditions. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Ghosh S, Chowdhury R, Bhattacharya P. Mixed consortia in bioprocesses: role of microbial interactions. Appl Microbiol Biotechnol 2016; 100:4283-95. [DOI: 10.1007/s00253-016-7448-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022]
|
39
|
Production and Characterization of Polyhydroxyalkanoates and Native Microorganisms Synthesized from Fatty Waste. INT J POLYM SCI 2016. [DOI: 10.1155/2016/6541718] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible plastics. They are synthesized by a wide variety of microorganisms (i.e., fungi and bacteria) and some organisms such as plants, which share characteristics with petrochemical-based plastics. The most recent studies focus on finding inexpensive substrates and extraction strategies that allow reducing product costs, thus moving into a widespread market, the market for petroleum-based plastics. In this study, the production of polyhydroxybutyrate (PHB) was evaluated using the native strains,Bacillus megaterium,Bacillussp., andLactococcus lactis, and glycerol reagent grade (GRG), residual glycerol (RGSB) byproduct of biodiesel from palm oil, Jatropha oil, castor oil, waste frying oils, and whey as substrates. Different bacteria-substrate systems were evaluated thrice on a laboratory scale under different conditions of temperature, pH, and substrate concentration, employing 50 mL of broth in 250 mL. The bacterial growth was tested in all systems; however, theB. megateriumGRG system generated the highest accumulation of PHA. The previous approach was allowed to propose a statistical design optimization with RGSB (i.e., RGSB, 15 g/L, pH 7.0, and 25°C). This system reached 2.80 g/L of PHB yield and was the optimal condition tested; however, the optimal biomass 5.42 g/L occurs at pH 9.0 and 25°C, with a substrate concentration of 22 g/L.
Collapse
|
40
|
Rosengart A, Cesário M, de Almeida MCM, Raposo RS, Espert A, de Apodaca ED, da Fonseca MMR. Efficient P(3HB) extraction from Burkholderia sacchari cells using non-chlorinated solvents. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Hilliou L, Machado D, Oliveira CSS, Gouveia AR, Reis MAM, Campanari S, Villano M, Majone M. Impact of fermentation residues on the thermal, structural, and rheological properties of polyhydroxy(butyrate-co-valerate) produced from cheese whey and olive oil mill wastewater. J Appl Polym Sci 2015. [DOI: 10.1002/app.42818] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Loic Hilliou
- Institute for Polymers and Composites, Institute for Nanostructures, Nanomodeling, and Nanofabrication, University of Minho; Campus de Azurém 4800-058 Guimarães Portugal
| | - Diogo Machado
- Institute for Polymers and Composites, Institute for Nanostructures, Nanomodeling, and Nanofabrication, University of Minho; Campus de Azurém 4800-058 Guimarães Portugal
| | - Catarina S. S. Oliveira
- UCIBIO, Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Ana R. Gouveia
- UCIBIO, Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Maria A. M. Reis
- UCIBIO, Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Sabrina Campanari
- Department of Chemistry; Sapienza University of Rome; Piazzale Aldo Moro 5 00185 Rome Italy
| | - Marianna Villano
- Department of Chemistry; Sapienza University of Rome; Piazzale Aldo Moro 5 00185 Rome Italy
| | - Mauro Majone
- Department of Chemistry; Sapienza University of Rome; Piazzale Aldo Moro 5 00185 Rome Italy
| |
Collapse
|
42
|
Sellami M, Oszako T, Miled N, Ben Rebah F. Industrial wastewater as raw material for exopolysaccharide production by Rhizobium leguminosarum. Braz J Microbiol 2015; 46:407-13. [PMID: 26273255 PMCID: PMC4507532 DOI: 10.1590/s1517-838246220140153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/14/2014] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to evaluate the exopolysaccharide (EPS)
production by Rhizobium leguminosarum cultivated in wastewater
generated by oil companies (WWOC1 and WWOC2) and fish processing industry
(WWFP). The results obtained in Erlenmeyer flasks indicated that the rhizobial
strain grew well in industrial wastewater. Generally, wastewater composition
affected the growth and the EPS production. WWFP allowed good bacterial growth
similar to that obtained with the standard medium (YMB). During growth, various
quantities of EPS were produced and yields varied depending on the media.
Growing in YMB, EPS production did not exceed 9.7 g/L obtained after 72 h of
growth. In wastewater, the maximum EPS value reached 11.1 g/L obtained with the
fish processing wastewater, after 72 h of growth. The use of a mixture of the
oil company wastewater (WWOC2) and the fish processing wastewater (WWFP) as
culture medium affected not only the rhizobial strain growth, but also EPS
production. The highest EPS (42.4 g/L, after 96 h of culture) was obtained using
a ratio of WWFP and WWOC2 of 50:50 (v:v). Therefore, this work shows the ability
of Rhizobium leguminosarum, growing in industrial wastewater as
new economic medium, to produce EPS. This biopolymer could be applied in
enormous biotechnological areas.
Collapse
Affiliation(s)
- Mohamed Sellami
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia, Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Tomasz Oszako
- Instytut Badawczy Lesnictwa, Forest Research Institute, Sekocin Stary, ulica Raszyn, Poland, Instytut Badawczy Lesnictwa, Forest Research Institute, Sekocin Stary, ulica Raszyn, Poland
| | - Nabil Miled
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia, Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Faouzi Ben Rebah
- King Khaled University, King Khalid University, Community College at Khamis Mushait, Khamis Mushait, Saudi Arabia, King Khalid University, Community College at Khamis Mushait, Khamis Mushait, Saudi Arabia
| |
Collapse
|
43
|
Martínez-Sanz M, Lopez-Rubio A, Villano M, Oliveira CSS, Majone M, Reis M, Lagarón JM. Production of bacterial nanobiocomposites of polyhydroxyalkanoates derived from waste and bacterial nanocellulose by the electrospinning enabling melt compounding method. J Appl Polym Sci 2015. [DOI: 10.1002/app.42486] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Marta Martínez-Sanz
- Novel Materials and Nanotechnology Group; IATA, CSIC; Avda. Agustín Escardino, 7 46980 Paterna, Valencia Spain
| | - Amparo Lopez-Rubio
- Novel Materials and Nanotechnology Group; IATA, CSIC; Avda. Agustín Escardino, 7 46980 Paterna, Valencia Spain
| | - Marianna Villano
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5 00185 Rome Italy
| | - Catarina S. S. Oliveira
- REQUIMTE/CQFB; FCT/Universidade Nova de Lisboa, Campus de Caparica; 2829-516 Caparica Portugal
| | - Mauro Majone
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5 00185 Rome Italy
| | - Maria Reis
- REQUIMTE/CQFB; FCT/Universidade Nova de Lisboa, Campus de Caparica; 2829-516 Caparica Portugal
| | - Jose M. Lagarón
- Novel Materials and Nanotechnology Group; IATA, CSIC; Avda. Agustín Escardino, 7 46980 Paterna, Valencia Spain
| |
Collapse
|
44
|
Potential and Prospects of Continuous Polyhydroxyalkanoate (PHA) Production. Bioengineering (Basel) 2015; 2:94-121. [PMID: 28955015 PMCID: PMC5597195 DOI: 10.3390/bioengineering2020094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/20/2015] [Accepted: 05/25/2015] [Indexed: 11/17/2022] Open
Abstract
Together with other so-called “bio-plastics”, Polyhydroxyalkanoates (PHAs) are expected to soon replace established polymers on the plastic market. As a prerequisite, optimized process design is needed to make PHAs attractive in terms of costs and quality. Nowadays, large-scale PHA production relies on discontinuous fed-batch cultivation in huge bioreactors. Such processes presuppose numerous shortcomings such as nonproductive time for reactor revamping, irregular product quality, limited possibility for supply of certain carbon substrates, and, most of all, insufficient productivity. Therefore, single- and multistage continuous PHA biosynthesis is increasingly investigated for production of different types of microbial PHAs; this goes for rather crystalline, thermoplastic PHA homopolyesters as well as for highly flexible PHA copolyesters, and even blocky-structured PHAs consisting of alternating soft and hard segments. Apart from enhanced productivity and constant product quality, chemostat processes can be used to elucidate kinetics of cell growth and PHA formation under constant process conditions. Furthermore, continuous enrichment processes constitute a tool to isolate novel powerful PHA-producing microbial strains adapted to special environmental conditions. The article discusses challenges, potential and case studies for continuous PHA production, and shows up new strategies to further enhance such processes economically by developing unsterile open continuous processes combined with the application of inexpensive carbon feedstocks.
Collapse
|
45
|
Samorì C, Abbondanzi F, Galletti P, Giorgini L, Mazzocchetti L, Torri C, Tagliavini E. Extraction of polyhydroxyalkanoates from mixed microbial cultures: Impact on polymer quality and recovery. BIORESOURCE TECHNOLOGY 2015; 189:195-202. [PMID: 25889806 DOI: 10.1016/j.biortech.2015.03.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Polyhydroxyalkanoates (PHAs) can be extracted from mixed microbial cultures (MMCs) by means of dimethyl carbonate (DMC) or combination of DMC and sodium hypochlorite (NaClO). The protocol based on DMC, a green solvent never used before for the extraction of PHAs from MMC, allows an overall polymer recovery of 63%; also the purity and the molecular weight of the recovered polymers are good (98% and 1.2 MDa, respectively). The use of NaClO pretreatment before DMC extraction increases the overall PHA recovery (82%) but lowers the mean molecular weight to 0.6-0.2 MDa. A double extraction with DMC results to be the method of choice for the recovery of high quality PHAs from attractive but challenging MMCs.
Collapse
Affiliation(s)
- Chiara Samorì
- Centro Interdipartimentale di Ricerca Industriale Energia Ambiente (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy.
| | - Federica Abbondanzi
- Centro Interdipartimentale di Ricerca Industriale Energia Ambiente (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Paola Galletti
- Centro Interdipartimentale di Ricerca Industriale Energia Ambiente (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via Selmi 2, Bologna, Italy
| | - Loris Giorgini
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, viale del Risorgimento 4, Bologna, Italy; Centro Interdipartimentale di Ricerca Industriale per la Meccanica Avanzata e i Materiali (CIRI MAM), University of Bologna, Viale Risorgimento 2, Bologna, Italy
| | - Laura Mazzocchetti
- Centro Interdipartimentale di Ricerca Industriale per la Meccanica Avanzata e i Materiali (CIRI MAM), University of Bologna, Viale Risorgimento 2, Bologna, Italy
| | - Cristian Torri
- Centro Interdipartimentale di Ricerca Industriale Energia Ambiente (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via Selmi 2, Bologna, Italy
| | - Emilio Tagliavini
- Centro Interdipartimentale di Ricerca Industriale Energia Ambiente (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via Selmi 2, Bologna, Italy
| |
Collapse
|
46
|
Ecobiotechnological Approach for Exploiting the Abilities of Bacillus to Produce Co-polymer of Polyhydroxyalkanoate. Indian J Microbiol 2014; 54:151-7. [PMID: 25320415 DOI: 10.1007/s12088-014-0457-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/05/2014] [Indexed: 10/25/2022] Open
Abstract
Ecobiotechnological approach is an attractive and economical strategy to enrich beneficial microbes on waste biomass for production of Polyhydroxyalkanoate (PHA). Here, six strains of Bacillus spp. were used to produce co-polymers of PHA from pea-shells. Of the 57 mixed bacterial cultures (BCs) screened, two of the BCs, designated as 5BC1 and 5BC2, each containing 5 strains could produce PHA co-polymer at the rate of 505-560 mg/l from feed consisting of pea-shell slurry (PSS, 2 % total solids) and 1 % glucose (w/v). Co-polymer production was enhanced from 65-560 mg/l on untreated PSS to 1,610-1,645 mg/l from PSS treated with defined hydrolytic bacteria and 1 % glucose. Supplementation of the PSS hydrolysate with sodium propionate enabled 5BC1 to produce co-polymer P(3HB-co-3HV) with a 3HV content up to 13 % and a concomitant 1.46-fold enhancement in PHA yield. Using the principles of ecobiotechnology, this is the first demonstration of PHA co-polymer production by defined co-cultures of Bacillus from biowaste as feed under non-axenic conditions.
Collapse
|