1
|
Sun D, Qi H, Dou G, Mao S, Lu F, Tian K, Qin HM. Ancestral sequence reconstruction of a robust β-1,4-xylanase and efficient expression in Bacillus subtilis. Int J Biol Macromol 2024; 282:137188. [PMID: 39489259 DOI: 10.1016/j.ijbiomac.2024.137188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Xylanases are a class of glycoside hydrolases commonly used in the food, papermaking, and textile industries. However, most xylanases are rapidly inactivated under harsh industrial conditions. Here, a unique and robust GH11 xylanase, AncXyn18, was designed using an ancestral sequence reconstruction strategy, sequence analysis, structure prediction, and experimental verification. It displayed desirable robustness with high alkali resistance and thermostability, retaining >50 % of the initial activity after incubation at pH 10.0 or 70 °C for 10 h. Furthermore, the engineered strain Bs-AncXyn18-Du12 based on the dual promoter PsigW-P43 increased the enzyme activity of AncXyn18 7.5-fold, reaching 58.2 U/mL. This work offers a theoretical basis for the improvement of xylanases, which will benefit the enzymatic bioconversion of xylan-containing agricultural waste into high-value oligosaccharide products and promote green industrial development.
Collapse
Affiliation(s)
- Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Hongbin Qi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Guangpeng Dou
- Shandong Bailong Chuangyuan Bio-tech Co., Ltd, Dezhou 251200, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Kangming Tian
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China.
| |
Collapse
|
2
|
Xiao R, Du C, Li H, Zhang M, Wu Y, Xing L, Bu K, Wang P. Heterologous expression and characterization of an unsaturated glucuronyl hydrolase from Alteromonas sp. A321. Int J Biol Macromol 2024:137012. [PMID: 39486732 DOI: 10.1016/j.ijbiomac.2024.137012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Strong promoters and stable mRNAs are essential for the overproduction of heterologous proteins in Bacillus subtilis. To improve the strength of natural promoters and ensure robust protein output, promoter and genetic insulator engineering have been used. A series of plasmids containing single and dual promoters and genetic insulators to express alt3796 were engineered, which encoded an unsaturated glucuronyl hydrolase (UGL). As a first step, we screened the host and deleted the signal peptide (SPALT) of alt3796, successfully expressed secreted ALT3796 from B. subtilis WB800. Subsequently, to improve expression, we screened the dual promoter PHag-spoVG from a collection of 22 promoters, which yielded higher enzymatic activity. Finally, using a recombinant strain carrying a plasmid with the PHag-spoVG dual promoter and a genetic insulator, we obtained 40.9 U/mL of activity. Purified recombinant ALT3796 exhibited good stability and specifically degraded ulvan. In conclusion, a system for the heterologous expression of ALT3796 was constructed, and the obtained protein exhibited favorable properties, suggesting its potential for preparing novel ulvan oligosaccharides.
Collapse
Affiliation(s)
- Rui Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huawei Li
- School of Nursing, Qingdao University, Qingdao 266011, China
| | - Man Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yinglu Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Laigui Xing
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Kaixuan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
3
|
Zhao G, Wang J, Tian Y, Wang H, Huang X. Nitroreductase DnrA, Utilizing Strategies Secreted in Bacillus sp. Za and SCK6, Enhances the Detoxification of Acifluorfen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15633-15642. [PMID: 38950134 DOI: 10.1021/acs.jafc.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Juanjuan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hancheng Wang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou 550081, PR China
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
4
|
Ferrando J, Miñana-Galbis D, Picart P. The Construction of an Environmentally Friendly Super-Secreting Strain of Bacillus subtilis through Systematic Modulation of Its Secretory Pathway Using the CRISPR-Cas9 System. Int J Mol Sci 2024; 25:6957. [PMID: 39000067 PMCID: PMC11240994 DOI: 10.3390/ijms25136957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Achieving commercially significant yields of recombinant proteins in Bacillus subtilis requires the optimization of its protein production pathway, including transcription, translation, folding, and secretion. Therefore, in this study, our aim was to maximize the secretion of a reporter α-amylase by overcoming potential bottlenecks within the secretion process one by one, using a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system. The strength of single and tandem promoters was evaluated by measuring the relative α-amylase activity of AmyQ integrated into the B. subtilis chromosome. Once a suitable promoter was selected, the expression levels of amyQ were upregulated through the iterative integration of up to six gene copies, thus boosting the α-amylase activity 20.9-fold in comparison with the strain harboring a single amyQ gene copy. Next, α-amylase secretion was further improved to a 26.4-fold increase through the overexpression of the extracellular chaperone PrsA and the signal peptide peptidase SppA. When the final expression strain was cultivated in a 3 L fermentor for 90 h, the AmyQ production was enhanced 57.9-fold. The proposed strategy allows for the development of robust marker-free plasmid-less super-secreting B. subtilis strains with industrial relevance.
Collapse
Affiliation(s)
| | | | - Pere Picart
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; (J.F.); (D.M.-G.)
| |
Collapse
|
5
|
Chen Y, Li M, Yan M, Chen Y, Saeed M, Ni Z, Fang Z, Chen H. Bacillus subtilis: current and future modification strategies as a protein secreting factory. World J Microbiol Biotechnol 2024; 40:195. [PMID: 38722426 DOI: 10.1007/s11274-024-03997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.
Collapse
Affiliation(s)
- Yanzhen Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Miaomiao Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yong Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhen Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
6
|
Yu X, Zhang K, Zhu X, Lv H, Wu J. High level food-grade expression of maltogenic amylase in Bacillus subtilis through dal gene auxotrophic selection marker. Int J Biol Macromol 2024; 254:127372. [PMID: 37838136 DOI: 10.1016/j.ijbiomac.2023.127372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
As a food-safe microorganism, Bacillus subtilis has been widely utilized in the production of food enzyme, where a food-grade expression system without antibiotic is required. However, there is no mature system for such expression, since the recombinant plasmid in existing food-grade expression system is unstable especially in high-density fermentation. In this study, we constructed a food-grade expression system based on the dal gene auxotrophic selection marker. Specifically, maltogenic amylase (AmyM) was expressed in dal deletion strain without antibiotic, yielding an activity of 519 U/mL. To increase the expression of AmyM, the promoter of amyM (gene encoding AmyM) was optimized. Furthermore, we found that excessive expression of dal gene was detrimental to the stability of plasmid, and the ribosome binding site (RBS) of dal was mutated with the reduced synthesis of D-alanine. After that, AmyM activity increased to 1364 U/mL with the 100 % stability of plasmid. The 3-L fermentor cultivation was performed with the highest value ever reported in food-grade microorganisms, an activity of 2388 U/mL, showing the scale-up production capability of this system. Besides, it is also able to apply the system for other food enzymes, which indicating the great generalizability of this system for different application.
Collapse
Affiliation(s)
- Xinrui Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Kang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xuyang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
7
|
Zhou J, Shi Y, Fang J, Gan T, Lu Y, Zhu L, Chen X. Efficient production of α-monoglucosyl hesperidin by cyclodextrin glucanotransferase from Bacillus subtilis. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12628-8. [PMID: 37335363 DOI: 10.1007/s00253-023-12628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
α-Monoglucosyl hesperidin is a promising food additive with various activities. However, there are a few reports about the production of α-monoglucosyl hesperidin. Here, to develop a practical and safe process for α-monoglucosyl hesperidin synthesis, we used nonpathogenic Bacillus subtilis as a host to express cyclodextrin glucanotransferase (CGTase) from Bacillus sp. A2-5a. The promoters and signal peptides were screened to optimize the transcription and secretion of CGTase in B. subtilis. The results of optimization showed that the best signal peptide and promoter were YdjM and PaprE, respectively. Finally, the enzyme activity increased to 46.5 U mL-1, 8.7 times that of the enzyme expressed from the strain containing pPHpaII-LipA, and the highest yield of α-monoglucosyl hesperidin was 2.70 g L-1 by enzymatic synthesis using the supernatant of the recombinant B. subtilis WB800 harboring the plasmid pPaprE-YdjM. This is the highest α-monoglucosyl hesperidin production level using recombinant CGTase to date. This work provides a generally applicable method for the scaled-up production of α-monoglucosyl hesperidin. KEY POINTS: • A three-step procedure was created for high throughput signal peptide screening. • YdjM and PaprE were screened from 173 signal peptides and 13 promoters. • α-Monoglucosyl hesperidin was synthesized by CGTase with a yield of 2.70 g L-1.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuan Shi
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingyi Fang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tian Gan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
8
|
Gan T, Fang J, Wang Y, Liu K, Sang Y, Chen H, Lu Y, Zhu L, Chen X. Promoter engineering for efficient production of sucrose phosphorylase in Bacillus subtilis and its application in enzymatic synthesis of 2-O-α-D-glucopyranosyl-L-ascorbic acid. Enzyme Microb Technol 2023; 169:110267. [PMID: 37321017 DOI: 10.1016/j.enzmictec.2023.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), a stable glucoside derivative of L-ascorbic acid (L-AA), can be one-step synthesized by sucrose phosphorylase (SPase). In this study, we attempted to produce extracellular SPase in Bacillus subtilis WB800 for the food-grade production of AA-2G. The results showed that the secretion of SPases did not require signal peptide. Promoter and its compatibility to target SPase gene were proved to be the key factors for high-level secretion. The strong promoter P43 and synthetic SPase gene derived from Bifidobacterium longum (BloSPase) were selected due to generate a relatively high extracellular activity (0.94 U/mL) for L-AA glycosylation. A highly active dual-promoter system PsigH-100-P43 was further constructed, which produced the highest extracellular and intracellular activity were 5.53 U/mL and 6.85 U/mL in fed-batch fermentation, respectively. Up to 113.58 g/L of AA-2G could be achieved by the supernatant of fermentation broth and a higher yield of 146.42 g/L was obtained by whole-cells biotransformation. Therefore, the optimal dual-promoter system in B. subtilis is suitable for the food-grade scale-up production of AA-2G.
Collapse
Affiliation(s)
- Tian Gan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyi Fang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuxin Wang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kaiqiang Liu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yumin Sang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hanchi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Zhang P, Gong JS, Xie ZH, Su C, Zhang XM, Rao ZM, Xu ZH, Shi JS. Efficient secretory expression of phospholipase D for the high-yield production of phosphatidylserine and phospholipid derivates from soybean lecithin. Synth Syst Biotechnol 2023; 8:273-280. [PMID: 37033293 PMCID: PMC10073938 DOI: 10.1016/j.synbio.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Phospholipase D (PLD) is an essential biocatalyst for the biological production of phosphatidylserine and phospholipid modification. However, the efficient heterologous expression of PLD is limited by its cell toxicity. In this study, a PLD was secretory expressed efficiently in Bacillus subtilis with an activity around 100 U/mL. A secretory expression system containing the signal peptide SPEstA and the dual-promoter PHpaII-SrfA was established, and the extracellular PLD activity further reached 119.22 U/mL through scale-up fermentation, 191.30-fold higher than that of the control. Under optimum reaction conditions, a 61.61% conversion ratio and 21.07 g/L of phosphatidylserine production were achieved. Finally, the synthesis system of PL derivates was established, which could efficiently synthesis novel PL derivates. The results highlight that the secretory expression system constructed in this study provides a promising PLD producing strain in industrial application, and laid the foundation for the biosynthesis of phosphatidylserine and other PL derivates. As far as we know, this work reports the highest level of extracellular PLD expression to date and the enzymatic production of several PL derivates for the first time.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
- Corresponding author. Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| | - Zhi-Hao Xie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Xiao-Mei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Zhi-Ming Rao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, PR China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, PR China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
- Corresponding author. Lihu Avenue No. 1800, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
10
|
Chu PTB, Phan TTP, Nguyen TTT, Truong TTT, Schumann W, Nguyen HD. Potent IPTG-inducible integrative expression vectors for production of recombinant proteins in Bacillus subtilis. World J Microbiol Biotechnol 2023; 39:143. [PMID: 37004690 DOI: 10.1007/s11274-023-03566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
The IPTG-inducible promoter family, Pgrac, allows high protein expression levels in an inducible manner. In this study, we constructed IPTG-inducible expression vectors containing strong Pgrac promoters that allow integration of the transgene at either the amyE or lacA locus or both loci in Bacillus subtilis. Our novel integrative expression vectors based on Pgrac promoters could control the repression of protein production in the absence and the induction in the presence of an inducer, IPTG. The β-galactosidase (BgaB) protein levels were 9.0%, 15% and 30% of the total cellular protein in the B. subtilis strains carrying single cassettes with the Pgrac01, Pgrac100 or Pgrac212 promoters, respectively. The maximal induction ratio of Pgrac01-bgaB was 35.5 while that of Pgrac100-bgaB was 7.5 and that of Pgrac212-bgaB was 9. The inducible expression of GFP and BgaB protein was stably maintained for 24 h, with the highest yield of GFP being 24% of cell total protein while the maximum amount of BgaB was found to be 38%. A dual integration of two copies of the gfp+ gene into the B. subtilis genome at the lacA and amyE loci resulted in a yield of about 40% of total cellular protein and a 1.74-fold increase in GFP compared with single-integrated strains containing the same Pgrac212 promoter. The capability of protein production from low to high levels of these inducible integrative systems is useful for fundamental and applied research in B. subtilis.
Collapse
Affiliation(s)
- Phuong Thi Bich Chu
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
| | - Tam Thi Thanh Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, Vietnam
| | - Tuom Thi Tinh Truong
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
11
|
Jiang Z, Zhang L, Zhou W, Li H, Li Y, Qin W, Wang F, Wei D, Gao B. The Rational Modification of the Secretion Pathway: The Bidirectional Grinding Strategy on Signal Peptide and SecA in Bacillus subtilis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Zhang W, Wei M, Sun X, Lu F, Guan L, Mao S, Qin HM. Fine-Tuning of Carbon Flux and Artificial Promoters in Bacillus subtilis Enables High-Level Biosynthesis of d-Allulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13935-13944. [PMID: 36278912 DOI: 10.1021/acs.jafc.2c05585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
d-Allulose is an attractive rare sugar that can be used as a low-calorie sweetener with significant health benefits. To meet the increasing market demands, it is necessary to develop an efficient and extensive microbial fermentation platform for the synthesis of d-allulose. Here, we applied a comprehensive systematic engineering strategy in Bacillus subtilis WB600 by introducing d-allulose 3-epimerase (DAEase), combined with the deactivation of fruA, levDEFG, and gmuE, to balance the metabolic network for the efficient production of d-allulose. This resulting strain initially produced 3.24 g/L of d-allulose with a yield of 0.93 g of d-allulose/g d-fructose. We further screened and obtained a suitable dual promoter combination and performed fine-tuning of its spacer region. After 64 h of fed-batch fermentation, the optimized engineered B. subtilis produced d-allulose at titers of 74.2 g/L with a yield of 0.93 g/g and a conversion rate of 27.6%. This d-allulose production strain is a promising platform for the industrial production of rare sugar.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Meijing Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Xiaoxuan Sun
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Lijun Guan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| |
Collapse
|
13
|
Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022; 59:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) found in a wide range of animal, insect, and plant species are host defense peptides forming an integral part of their innate immunity. Although the exact mode of action of some AMPs is yet to be deciphered, many exhibit membrane lytic activity or interact with intracellular targets. The ever-growing threat of antibiotic resistance has brought attention to research on AMPs to enhance their clinical use as a therapeutic alternative. AMPs have several advantages over antibiotics such as broad range of antimicrobial activities including anti-fungal, anti-viral and anti-bacterial, and have not reported to contribute to resistance development. Despite the numerous studies to develop efficient production methods for AMPs, limitations including low yield, degradation, and loss of activity persists in many recombinant approaches. In this review, we outline available approaches for AMP production and various expression systems used to achieve higher yield and quality. In addition, recent advances in recombinant strategies, suitable fusion protein partners, and other molecular engineering strategies for improved AMP production are surveyed.
Collapse
Affiliation(s)
- Soumya Deo
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristi L Turton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB T1K 3M4, Canada
| | - Tajinder Kainth
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hans-Joachim Wieden
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
14
|
Chen H, Wu J, Huang X, Feng X, Ji H, Zhao L, Wang J. Overexpression of Bacillus circulans alkaline protease in Bacillus subtilis and its potential application for recovery of protein from soybean dregs. Front Microbiol 2022; 13:968439. [PMID: 36090104 PMCID: PMC9459226 DOI: 10.3389/fmicb.2022.968439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Proteases are important for decomposition of proteins to generate peptides or amino acids and have a broad range of applications in different industries. Herein, a gene encoding an alkaline protease (AprBcp) from Bacillus circulans R1 was cloned and bioinformatics analyzed. In addition, a series of strategies were applied to achieve high-level expression of AprBcp in Bacillus subtilis. The maximum activity of AprBcp reached 165,870 U/ml after 60 h fed-batch cultivation in 50 l bioreactor. The purified recombinant AprBcp exhibited maximum activity at 60°C and pH 10.0, and remained stable in the range from pH 8.0 to 11.0 and 30 to 45°C. Metal ions Ca2+, Mn2+, and Mg2+ could improve the stability of AprBcp. Furthermore, the recombinant AprBcp displayed great potential application on the recovery of protein from soybean dregs. The results of this study will provide an effective method to prepare AprBcp in B. subtilis and its potential application on utilization of soybean dregs.
Collapse
Affiliation(s)
- Hao Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Jie Wu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Xiaodan Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Xuzhong Feng
- Shenzhen Shanggutang Food Development Co., Ltd.,Shenzhen, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- *Correspondence: Liangzhong Zhao,
| | - Jianrong Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Shenzhen Raink Ecology and Environment Co., Ltd.,Shenzhen, China
- Jianrong Wang,
| |
Collapse
|
15
|
Li H, Yao D, Pan Y, Chen X, Fang Z, Xiao Y. Enhanced extracellular raw starch-degrading α-amylase production in Bacillus subtilis by promoter engineering and translation initiation efficiency optimization. Microb Cell Fact 2022; 21:127. [PMID: 35761342 PMCID: PMC9235159 DOI: 10.1186/s12934-022-01855-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background A raw starch-degrading α-amylase from Pontibacillus sp. ZY (AmyZ1), previously screened by our laboratory, showed a promising application potential for starch-processing industries. However, the AmyZ1 secretory production still under investigation, which seriously restricts its application in the starch-processing industry. On the other hand, Bacillus subtilis is widely used to achieve the extracellular expression of target proteins. Results AmyZ1 secretory production was achieved in B. subtilis and was enhanced by promoter engineering and translation initiation efficiency optimization. First, based on the different phase-dependent promoters, the dual-promoter PspoVG–PspoVG142 was constructed by combining dual-promoter engineering and promoter modification. The corresponding strain BZd34 showed an extracellular AmyZ1 activity of 1437.6 U/mL during shake flask cultivation, which was 3.11-fold higher than that of the original strain BZ1 (PgroE). Then, based on translation initiation efficiency optimization, the best strain BZd343 containing optimized 5'-proximal coding sequence (opt3) produced the highest extracellular α-amylase activity of 1691.1 U/mL, which was 3.65-fold higher than that of the strain BZ1. Finally, cultivation of BZd343 in 3-L fermenter exhibited an extracellular AmyZ1 activity of 14,012 U/mL at 48 h, with productivity of 291.9 U/mL·h. Conclusions This is the first report of recombinant expression of AmyZ1 in B. subtilis and the expression level of AmyZ1 represents the highest raw starch-degrading α-amylase level in B. subtilis to date. The high-level expression of AmyZ1 in this work provides a foundation for its industrial production. The strategies used in this study also provide a strategic reference for improving the secretory expression of other enzymes in B. subtilis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01855-9.
Collapse
Affiliation(s)
- He Li
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Dongbang Yao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Yan Pan
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China. .,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China. .,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
16
|
Niu J, Yan R, Shen J, Zhu X, Meng F, Lu Z, Lu F. Cis-Element Engineering Promotes the Expression of Bacillus subtilis Type I L-Asparaginase and Its Application in Food. Int J Mol Sci 2022; 23:ijms23126588. [PMID: 35743032 PMCID: PMC9224341 DOI: 10.3390/ijms23126588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Type I L-asparaginase from Bacillus licheniformis Z-1 (BlAase) was efficiently produced and secreted in Bacillus subtilis RIK 1285, but its low yield made it unsuitable for industrial use. Thus, a combined method was used in this study to boost BlAase synthesis in B. subtilis. First, fifteen single strong promoters were chosen to replace the original promoter P43, with PyvyD achieving the greatest BlAase activity (436.28 U/mL). Second, dual-promoter systems were built using four promoters (PyvyD, P43, PaprE, and PspoVG) with relatively high BlAase expression levels to boost BlAase output, with the engine of promoter PaprE-PyvyD reaching 502.11 U/mL. The activity of BlAase was also increased (568.59 U/mL) by modifying key portions of the PaprE-PyvyD promoter. Third, when the ribosome binding site (RBS) sequence of promoter PyvyD was replaced, BlAase activity reached 790.1 U/mL, which was 2.27 times greater than the original promoter P43 strain. After 36 h of cultivation, the BlAase expression level in a 10 L fermenter reached 2163.09 U/mL, which was 6.2 times greater than the initial strain using promoter P43. Moreover, the application potential of BlAase on acrylamide migration in potato chips was evaluated. Results showed that 89.50% of acrylamide in fried potato chips could be removed when combined with blanching and BlAase treatment. These findings revealed that combining transcription and translation techniques are effective strategies to boost recombinant protein output, and BlAase can be a great candidate for controlling acrylamide in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +86-25-8439-5963
| |
Collapse
|
17
|
Optimal Secretory Expression of Acetaldehyde Dehydrogenase from Issatchenkia terricola in Bacillus subtilis through a Combined Strategy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030747. [PMID: 35164011 PMCID: PMC8838704 DOI: 10.3390/molecules27030747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/20/2023]
Abstract
Acetaldehyde dehydrogenases are potential enzyme preparations that can be used to detoxify acetaldehyde and other exogenous aldehydes from pharmaceuticals, food, and biofuel production. In this study, we enhanced the expression of acetaldehyde dehydrogenase sourced from Issatchenkia terricola (istALDH) in Bacillus subtilis using a combinatorial strategy for the optimization of signal peptides, promoters, and growth conditions. First, a library of various signal peptides was constructed to identify the optimal signal peptides for efficient istALDH secretion. The signal peptide yqzG achieved the highest extracellular istALDH activity (204.85 ± 3.31 U/mL). Second, the aprE promoter was replaced by a constitutive promoter (i.e., P43) and an inducible promoter (i.e., Pglv), resulting in 12.40% and 19.97% enhanced istALDH, respectively. Furthermore, the tandem promoter P43-Pglv provided a better performance, resulting in 30.96% enhanced istALDH activity. Third, the production of istALDH was optimized by testing one factor at a time. Physical parameters were optimized including the inducer (e.g., maltose) concentrations, incubation temperatures, and inoculation amounts, and the results were 2.0%, 35 °C, and 2.0%, respectively. The optimized medium results were 2.0% glucose, 1.5% peptone, 2.5% yeast extract, 1% NaCl, and 0.5% (NH4)2SO4. The extracellular istALDH activity was 331.19 ± 4.19 U/mL, yielding the highest production reported in the literature to date.
Collapse
|
18
|
Peng C, Guo Y, Ren S, Li C, Liu F, Lu F. SPSED: A Signal Peptide Secretion Efficiency Database. Front Bioeng Biotechnol 2022; 9:819789. [PMID: 35118058 PMCID: PMC8804277 DOI: 10.3389/fbioe.2021.819789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chong Peng
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes (NELIE), Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yixue Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shaodong Ren
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Cen Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes (NELIE), Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes (NELIE), Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
19
|
Lenz P, Hilgers F, Burmeister A, Zimmermann L, Volkenborn K, Grünberger A, Kohlheyer D, Drepper T, Jaeger KE, Knapp A. The iSplit GFP assay detects intracellular recombinant proteins in Bacillus subtilis. Microb Cell Fact 2021; 20:174. [PMID: 34488765 PMCID: PMC8419962 DOI: 10.1186/s12934-021-01663-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bacillus subtilis is one of the most important microorganisms for recombinant protein production. It possesses the GRAS (generally recognized as safe) status and a potent protein secretion capacity. Secretory protein production greatly facilitates downstream processing and thus significantly reduces costs. However, not all heterologous proteins are secreted and intracellular production poses difficulties for quantification. To tackle this problem, we have established a so-called intracellular split GFP (iSplit GFP) assay in B. subtilis as a tool for the in vivo protein detection during expression in batch cultures and at a single-cell level. For the iSplit GFP assay, the eleventh β-sheet of sfGFP is fused to a target protein and can complement a detector protein consisting of the respective truncated sfGFP (GFP1-10) to form fluorescent holo-GFP. RESULTS As proof of concept, the GFP11-tag was fused C-terminally to the E. coli β-glucuronidase GUS, resulting in fusion protein GUS11. Variable GUS and GUS11 production levels in B. subtilis were achieved by varying the ribosome binding site via spacers of increasing lengths (4-12 nucleotides) for the GUS-encoding gene. Differences in intracellular enzyme accumulation were determined by measuring the GUS11 enzymatic activity and subsequently by adding the detector protein to respective cell extracts. Moreover, the detector protein was co-produced with the GUS11 using a two-plasmid system, which enabled the in vivo detection and online monitoring of glucuronidase production. Using this system in combination with flow cytometry and microfluidics, we were able to monitor protein production at a single-cell level thus yielding information about intracellular protein distribution and culture heterogeneity. CONCLUSION Our results demonstrate that the iSplit GFP assay is suitable for the detection, quantification and online monitoring of recombinant protein production in B. subtilis during cultivation as well as for analyzing production heterogeneity and intracellular localization at a single-cell level.
Collapse
Affiliation(s)
- Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alina Burmeister
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, 33615, Bielefeld, Germany
| | - Leonie Zimmermann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Kristina Volkenborn
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alexander Grünberger
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, 33615, Bielefeld, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- RWTH Aachen University, Microscale Bioengineering (AVT.MSB), 52074, Aachen, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Castrol Germany GmbH, 41179, Mönchengladbach, Germany.
| |
Collapse
|
20
|
Souza CCD, Guimarães JM, Pereira SDS, Mariúba LAM. The multifunctionality of expression systems in Bacillus subtilis: Emerging devices for the production of recombinant proteins. Exp Biol Med (Maywood) 2021; 246:2443-2453. [PMID: 34424091 PMCID: PMC8649419 DOI: 10.1177/15353702211030189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a successful host for producing recombinant proteins. Its GRAS (generally recognized as safe) status and its remarkable innate ability to absorb and incorporate exogenous DNA into its genome make this organism an ideal platform for the heterologous expression of bioactive substances. The factors that corroborate its value can be attributed to the scientific knowledge obtained from decades of study regarding its biology that has fostered the development of several genetic engineering strategies, such as the use of different plasmids, engineering of constitutive or double promoters, chemical inducers, systems of self-inducing expression with or without a secretion system that uses a signal peptide, and so on. Tools that enrich the technological arsenal of this expression platform improve the efficiency and reduce the costs of production of proteins of biotechnological importance. Therefore, this review aims to highlight the major advances involving recombinant expression systems developed in B. subtilis, thus sustaining the generation of knowledge and its application in future research. It was verified that this bacterium is a model in constant demand and studies of the expression of recombinant proteins on a large scale are increasing in number. As such, it represents a powerful bacterial host for academic research and industrial purposes.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil
| | - Jander Matos Guimarães
- Centro Multiusuário de Análise de Fenômenos Biomédicos (CMABio) da Universidade do Estado do Amazonas (UEA), Manaus, AM 69065-00, Brazil
| | - Soraya Dos Santos Pereira
- Fundação Oswaldo Cruz (FIOCRUZ) Unidade de Rondônia, Porto Velho-RO 76812-245, Brazil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia-PGBIOEXP/UNIR, Porto Velho-RO 76801-974, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro 21040-360, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM 69067-00, Brazil
| |
Collapse
|
21
|
Su L, Li Y, Wu J. Efficient secretory expression of Bacillus stearothermophilus α/β-cyclodextrin glycosyltransferase in Bacillus subtilis. J Biotechnol 2021; 331:74-82. [PMID: 33741407 DOI: 10.1016/j.jbiotec.2021.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Bacillus stearothermophilus α/β-cyclodextrin glycosyltransferase (α/β-CGTase) is an excellent transglycosylase with broad potential for food application, but its expression level is low in Bacillus subtilis. In this study, the optimal signal peptide for α/β-CGTase expression was screened from 173 signal peptides in B. subtilis WS11. The α/β-CGTase activity in a 3-L fermentor reached 151.93 U⋅ mL-1, but substantial amounts of inclusion bodies were produced. The N-terminal 12 amino acids of α/β-CGTase were then replaced with the N-terminal 15 amino acids of a β-CGTase from the same family that has a high percentage of disorder-promoting amino acids. As a result, the inclusion bodies were significantly reduced, and the enzyme activity increased to 249.35 U mL-1, 2.3 times that of the strain constructed previously. Finally, the ppsE and sfp genes of B. subtilis WS11, which are related to lipopeptide biosurfactant synthesis, were knocked out to produce B. subtilis WS13. When B. subtilis WS13 was used to produce α/β-CGTase in a 3-L fermentor, 70 % less defoaming agent was required than with B. subtilis WS11. Furthermore, enzyme production and growth of WS13 were equivalent to those of WS11. This study is of great significance for future research to efficiently scale-up production of α/β-CGTase.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yunfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
22
|
Movahedpour A, Asadi M, Khatami SH, Taheri-Anganeh M, Adelipour M, Shabaninejad Z, Ahmadi N, Irajie C, Mousavi P. A brief overview on the application and sources of α-amylase and expression hosts properties in order to production of recombinant α-amylase. Biotechnol Appl Biochem 2021; 69:650-659. [PMID: 33655550 DOI: 10.1002/bab.2140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 01/29/2023]
Abstract
By reducing the activation energy, enzymes accelerate the chemical reaction; therefore, they are good alternative for industrial catalysts. Amylase is a suitable enzyme as a catalyst for the chemical decomposition of starch. This enzyme is of great importance, and its production is highly profitable. α-Amylase is among the most important amylases produced naturally by animals, plants, and microorganisms. Still, the α-amylases produced by bacteria have a special place in industry and commerce. Moreover, a large volume of this enzyme can be produced by selecting an appropriate and optimized host to clone and express the α-amylase gene. The present study briefly reviews the structure, application, sources, and hosts used to produce recombinant α-amylase.
Collapse
Affiliation(s)
- Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Shahid Arefian Hospital, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Ahmadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
23
|
Zhao X, Zheng H, Zhen J, Shu W, Yang S, Xu J, Song H, Ma Y. Multiplex genetic engineering improves endogenous expression of mesophilic α-amylase gene in a wild strain Bacillus amyloliquefaciens 205. Int J Biol Macromol 2020; 165:609-618. [PMID: 33010275 DOI: 10.1016/j.ijbiomac.2020.09.210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
A wild strain Bacillus amyloliquefaciens 205 was screened for its high activity of α-amylase. A mesophilic α-amylase encoding gene amyE-205 was revealed and analyzed by genome sequencing. In order to facilitate plasmid transformation to strain 205, an interspecific plasmid transformation method was improved with 5-13 times higher in transformants than that of electronic transformation. A series of CRISPR genome editing tools have been successfully constructed for gene knockout, transcript repression and activation in 205 genome. At this basis, sporulation related genes spo0A and spoIIAC were knockout and suppressed with CRISPR/Cas9 and CRISPR/dCas9 respectively. The double knockout strain 205spo- was eliminated sporulation with 22.8% increasing of α-amylase activity. The optimal binding site G8 for dCas9-ω has been confirmed in the transcript activation. When amyE-205 was over-expressed with high copy plasmid pUC980-2, its whole upstream sequences containing G8 were also cloned. Whereafter, dCas9-ω was used to activate amyE-205 expression both at genome and plasmid. The final engineered strain 205PG8spo- achieved 784.3% promotion on α-amylase activity than the starting strain 205. The novel genetic tool box containing an efficient interspecific transformation method and functional CRISPR systems, superadded the multiplex regulation strategies used in strain modification would be also applicative in many Bacillus species.
Collapse
Affiliation(s)
- Xingya Zhao
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongchen Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Jie Zhen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenju Shu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shibin Yang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianyong Xu
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Song
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yanhe Ma
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
24
|
Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin. Metab Eng 2020; 61:406-415. [DOI: 10.1016/j.ymben.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
|
25
|
Volkenborn K, Kuschmierz L, Benz N, Lenz P, Knapp A, Jaeger KE. The length of ribosomal binding site spacer sequence controls the production yield for intracellular and secreted proteins by Bacillus subtilis. Microb Cell Fact 2020; 19:154. [PMID: 32727460 PMCID: PMC7392706 DOI: 10.1186/s12934-020-01404-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Bacillus subtilis is widely used for the industrial production of recombinant proteins, mainly due to its high secretion capacity, but higher production yields can be achieved only if bottlenecks are removed. To this end, a crucial process is translation initiation which takes place at the ribosome binding site enclosing the Shine Dalgarno sequence, the start codon of the target gene and a short spacer sequence in between. Here, we have studied the effects of varying spacer sequence lengths in vivo on the production yield of different intra- and extracellular proteins. RESULTS The shuttle vector pBSMul1 containing the strong constitutive promoter PHpaII and the optimal Shine Dalgarno sequence TAAGGAGG was used as a template to construct a series of vectors with spacer lengths varying from 4 to 12 adenosines. For the intracellular proteins GFPmut3 and β-glucuronidase, an increase of spacer lengths from 4 to 7-9 nucleotides resulted in a gradual increase of product yields up to 27-fold reaching a plateau for even longer spacers. The production of secreted proteins was tested with cutinase Cut and swollenin EXLX1 which were N-terminally fused to one of the Sec-dependent signal peptides SPPel, SPEpr or SPBsn. Again, longer spacer sequences resulted in up to tenfold increased yields of extracellular proteins. Fusions with signal peptides SPPel or SPBsn revealed the highest production yields with spacers of 7-10nt length. Remarkably, fusions with SPEpr resulted in a twofold lower production yield with 6 or 7nt spacers reaching a maximum with 10-12nt spacers. This pattern was observed for both secreted proteins fused to SPEpr indicating a dominant role also of the nucleotide sequence encoding the respective signal peptide for translation initiation. This conclusion was corroborated by RT qPCR revealing only slightly different amounts of transcript. Also, the effect of a putative alternative translation initiation site could be ruled out. CONCLUSION Our results confirm the importance of the 5' end sequence of a target gene for translation initiation. Optimizing production yields thus may require screenings for optimal spacer sequence lengths. In case of secreted proteins, the 5' sequence encoding the signal peptide for Sec-depended secretion should also be considered.
Collapse
Affiliation(s)
- Kristina Volkenborn
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), C/o Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Laura Kuschmierz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Environmental Microbiology and Biotechnology-Molecular Enzyme Technology and Biochemistry, University Duisburg-Essen, 45141, Essen, Germany
| | - Nuka Benz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), C/o Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Bioeconomy Science Center (BioSC), C/o Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), C/o Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
26
|
Construction of a High-Expression System in Bacillus through Transcriptomic Profiling and Promoter Engineering. Microorganisms 2020; 8:microorganisms8071030. [PMID: 32664655 PMCID: PMC7409208 DOI: 10.3390/microorganisms8071030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 01/24/2023] Open
Abstract
Bacillus subtilis is an ideal host for secretion and expression of foreign proteins. The promoter is one of the most important elements to facilitate the high-level production of recombinant protein. To expand the repertoire of strong promoters for biotechnological applications in Bacillus species, 14 highly transcribed genes based on transcriptome profiling of B. pumilus BA06 were selected and evaluated for their promoter strength in B. subtilis. Consequently, a strong promoter P2069 was obtained, which could drive the genes encoding alkaline protease (aprE) and green fluorescent protein (GFP) to express more efficiency by an increase of 3.65-fold and 18.40-fold in comparison with the control promoter (PaprE), respectively. Further, promoter engineering was applied to P2069, leading to a mutation promoter (P2069M) that could increase GFP expression by 3.67-fold over the wild-type promoter (P2069). Moreover, the IPTG-inducible expression systems were constructed using the lac operon based on the strong promoters of P2069 and P2069M, which could work well both in B. subtilis and B. pumilus. In this study, highly efficient expression system for Bacillus was constructed based on transcriptome data and promoter engineering, which provide not only a new option for recombinant expression in B. subtilis, but also novel genetic tool for B. pumilus.
Collapse
|
27
|
Zhang F, You S, Huang T, Wang JZ, Zhu LL, Wang B, Ye WS, Herman RA, Luo H, Wang J. Dual promoter strategy enhances co-expression of α-L-rhamnosidase and enhanced fluorescent protein for whole-cell catalysis and bioresource valorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137865. [PMID: 32192973 DOI: 10.1016/j.scitotenv.2020.137865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Developing circular economy is the only way to improve the efficiency of resource utilization. Whole-cell catalysis is an effective method to recycle enzymes, improve catalytic efficiency, and reduce production costs. The enzyme, α-L-rhamnosidase has considerable application prospects in the field of biocatalysis as it can hydrolyze a variety of α-L rhamnoses. In the present study, the genes for α-L-rhamnosidase (rhaB1) and enhanced fluorescent protein (EGFP) were co-expressed using a bi-promoter expression vector pRSFDuet1 and their enzymatic properties were evaluated. To our knowledge, this study has established an effective rhamnosidase-fluorescent indicator and whole-cell catalytic system for the first time. Moreover, we analyzed the change in the activity of the crude rhaB1-EGFP as well as its whole-cell during the biocatalysis process using fluorescence intensity. Recombinant rhaB1-EGFP as a product which contains rhaB1 and EGFP showed higher thermal stability, pH stability, and conversion efficiency than rhaB1, and its optimum temperature for rutin catalysis was ideal for industrial applications. Moreover, under the optimal conditions of a rutin concentration of 0.05 g/L, pH of 6.0, temperature of 40 °C, a yield of 92.5% was obtained. Furthermore, we demonstrated the relationship between the fluorescence intensity and enzyme activity. This study established a highly efficient whole-cell catalytic system whose activity can be evaluated by fluorescence intensity, providing a reference for enzyme recycling.
Collapse
Affiliation(s)
- Fan Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Shuai You
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212018, PR China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang 212018, PR China
| | - Ting Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Jin-Zheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Lin-Lin Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Bo Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Wang-Sheng Ye
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Richard Ansah Herman
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Heng Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212018, PR China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang 212018, PR China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212018, PR China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang 212018, PR China.
| |
Collapse
|
28
|
Pang B, Zhou L, Cui W, Liu Z, Zhou Z. Production of a Thermostable Pullulanase in
Bacillus subtilis
by Optimization of the Expression Elements. STARCH-STARKE 2020. [DOI: 10.1002/star.202000018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bo Pang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| |
Collapse
|
29
|
Gong JS, Ye JP, Tao LY, Su C, Qin J, Zhang YY, Li H, Li H, Xu ZH, Shi JS. Efficient keratinase expression via promoter engineering strategies for degradation of feather wastes. Enzyme Microb Technol 2020; 137:109550. [PMID: 32423677 DOI: 10.1016/j.enzmictec.2020.109550] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/29/2020] [Accepted: 03/08/2020] [Indexed: 01/13/2023]
Abstract
Keratinases are promising alternatives over ordinary proteases in several industrial applications due to their unique properties compared with their counterparts in the protease categories. However, their large-scale industrial application is limited by the low expression and poor fermentation efficiency of keratinase. Here, we demonstrate that the expression level of keratinase can be improved by constructing a more efficient enzyme expression system hereby enables the highest production titer as regarding recombinant keratinase production to date. Specially, ten promoters were evaluated and the aprE promoter exhibits a significant promotion of keratinase (kerBv) titer from 165 U/mL to 2605 U/mL in Bacillus subtilis. The batch fermentation mode resulted in a maximum keratinase activity of 7176 U/mL at 36 h in a 5-L fermenter. Furthermore, the extracellular keratinase activity attained up to 16,860 U/mL via fed-batch fermentation within 30 h. The combination of keratinase with l-cysteine brings about 66.4 % degree of degradation of feather. Our work provides a new insight into the development of efficient keratinase fermentation processes with B. subtilis cell factory.
Collapse
Affiliation(s)
- Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Peng Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Li-Yan Tao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yan-Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
30
|
Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. J Biotechnol 2020; 312:1-10. [DOI: 10.1016/j.jbiotec.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
|
31
|
Han L, Chen Q, Lin Q, Cheng J, Zhou L, Liu Z, Guo J, Zhang L, Cui W, Zhou Z. Realization of Robust and Precise Regulation of Gene Expression by Multiple Sigma Recognizable Artificial Promoters. Front Bioeng Biotechnol 2020; 8:92. [PMID: 32140461 PMCID: PMC7042180 DOI: 10.3389/fbioe.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/31/2020] [Indexed: 01/28/2023] Open
Abstract
Precise regulation of gene expression is fundamental for tailor-made gene circuit design in synthetic biology. Current strategies for this type of development are mainly based on directed evolution beginning with a native promoter template. The performances of engineered promoters are usually limited by the growth phase because only one promoter is recognized by one type of sigma factor (σ). Here, we constructed multiple-σ recognizable artificial hybrid promoters (AHPs) composed of tandems of dual and triple natural minimal promoters (NMPs). These NMPs, which use σA, σH and σW, had stable functions in different growth phases. The functions of these NMPs resulted from an effect called transcription compensation, in which AHPs sequentially use one type of σ in the corresponding growth phase. The strength of the AHPs was influenced by the combinatorial order of each NMP and the length of the spacers between the NMPs. More importantly, the output of the precise regulation was achieved by equipping AHPs with synthetic ribosome binding sites and by redesigning them for induced systems. This strategy might offer promising applications to rationally design robust synthetic promoters in diverse chassis to spur the construction of more complex gene circuits, which will further the development of synthetic biology.
Collapse
Affiliation(s)
- Laichuang Han
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiaoqing Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiao Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jintao Cheng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
32
|
Yang H, Ma Y, Zhao Y, Shen W, Chen X. Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis. Appl Microbiol Biotechnol 2020; 104:2973-2985. [DOI: 10.1007/s00253-020-10435-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 01/25/2023]
|
33
|
Zhao X, Xu J, Tan M, Zhen J, Shu W, Yang S, Ma Y, Zheng H, Song H. High copy number and highly stable Escherichia coli-Bacillus subtilis shuttle plasmids based on pWB980. Microb Cell Fact 2020; 19:25. [PMID: 32028973 PMCID: PMC7006159 DOI: 10.1186/s12934-020-1296-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background pWB980 derived from pUB110 is a promising expression vector in Bacillus for its high copy number and high stability. However, the low transformation rate of recombinant plasmids to the wild cells limited the application of it. On the basis of pWB980, constructing an E. coli–B. subtilis shuttle plasmid could facilitate the transformation rate to Bacillus cells. Because the insertion site for E. coli replication origin sequence (ori) is not unique in pWB980, in order to investigate the best insertion site, eight shuttle plasmids (pUC980-1 ~ pUC980-8) containing all possible insertion sites and directions were constructed. Results The results showed that all the selected insertion sites could be used to construct shuttle plasmid but some sites required a specific direction. And different insertion sites led to different properties of the shuttle plasmids. The best shuttle plasmids pUC980-1 and pUC980-2, which showed copies more than 450 per cell and segregational stabilities up to 98%, were selected for heterologous expressions of an alkaline pectate lyase gene pelN, an alkaline protease spro1 and a pullulanase gene pulA11, respectively. The highest extracellular activities of PelN, Spro1 and PulA11 were up to 5200 U/mL, 21,537 U/mL and 504 U/mL correspondingly after 54 h, 60 h and 48 h fermentation in a 10 L fermentor. Notably, PelN and Spro1 showed remarkably higher yields in Bacillus than previous reports. Conclusion The optimum ori insertion site was the upstream region of BA3-1 in pWB980 which resulted in shuttle plasmids with higher copy numbers and higher stabilities. The novel shuttle plasmids pUC980-1 and pUC980-2 will be promising expression vectors in B. subtilis. Moreover, the ori insertion mechanism revealed in this work could provide theoretical guidance for further studies of pWB980 and constructions of other shuttle plasmids.
Collapse
Affiliation(s)
- XingYa Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - JianYong Xu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ming Tan
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jie Zhen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - WenJu Shu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - ShiBin Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - YanHe Ma
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - HongChen Zheng
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Hui Song
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
34
|
Kang XM, Cai X, Huang ZH, Liu ZQ, Zheng YG. Construction of a highly active secretory expression system in Bacillus subtilis of a recombinant amidase by promoter and signal peptide engineering. Int J Biol Macromol 2020; 143:833-841. [DOI: 10.1016/j.ijbiomac.2019.09.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
|
35
|
Sun W, Wu Y, Ding W, Wang L, Wu L, Lin L, Che Z, Zhu L, Liu Y, Chen X. An auto-inducible expression and high cell density fermentation of Beefy Meaty Peptide with Bacillus subtilis. Bioprocess Biosyst Eng 2019; 43:701-710. [PMID: 31844973 DOI: 10.1007/s00449-019-02268-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Currently, some cases about the expression of flavor peptides with microorganisms were reported owing to the obvious advantages of biological expression over traditional methods. However, beefy meaty peptide (BMP), the focus of umami peptides, has neither been concerned in its safe expression nor its overproduction in fermenter. In this study, multi-copy BMP (8BMP) was successfully auto-inducibly expressed and efficiently produced in Bacillus subtilis 168. First, 8BMP was successfully auto-inducibly expressed with srfA promoter in B. subtilis 168. Further, the efficient production of 8BMP was researched in a 5-L fermenter: the fermentation optimized by Pontryagin's maximum principle obtained the highest 8BMP yield (3.16 g/L), which was 1.2 times and 1.8 times than that of two-stage feeding cultivation (2.67 g/L) and constant-rate feeding cultivation (1.75 g/L), respectively. Overall, the auto-inducible expression of 8BMP in B. subtilis and fermentation with Pontryagin's maximum principle are conductive for overproduction of BMP and other peptides.
Collapse
Affiliation(s)
- Weifeng Sun
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China.
| | - Yuanming Wu
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Wenwu Ding
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Li Wang
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Lunjie Wu
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Lu Lin
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Zhenming Che
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Longbao Zhu
- School of Biochemical Engineering, Anhui Polytechnic University, Anhui, 241000, China
| | - Yi Liu
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China
| | - Xiaohua Chen
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China
| |
Collapse
|
36
|
Liu Y, Shi C, Li D, Chen X, Li J, Zhang Y, Yuan H, Li Y, Lu F. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. Int J Biol Macromol 2019; 138:903-911. [DOI: 10.1016/j.ijbiomac.2019.07.175] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023]
|
37
|
Asadi M, Taheri-Anganeh M, Jamali Z, Khatami SH, Irajie C, Savardashtaki A, Ghasemi Y. In silico analysis of signal peptides for secretory production of a-amylase in Bacillus subtilis. ACTA ACUST UNITED AC 2019. [DOI: 10.35118/apjmbb.2019.027.3.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
α-Amylases are important commercial enzymes and have a broad application in industrial processes and medicine. Gram-positive bacteria such as Bacillus subtilis are possible host organisms for α-amylases secretory production. Secretion of α-amylases to the culture medium versus intracellular production has several advantages such as prevention of inclusion bodies accumulation, higher product stability and solubility. Signal peptides are considered as one of the most essential elements for successful secretory synthesis of the recombinant proteins. Therefore, by the selection of an efficient signal peptide, secretion of the recombinant protein can be enhanced. The goal of this investigation was the in silico evaluation of several peptides to find the most suitable leader peptides for secretory production of α-amylase in B. subtilis. In present work, 30 signal peptides were selected, and numerous online servers such as SignalP, ProtParam, SOLpro, PRED-TAT and ProtComp was used for investigation of suitable signal peptides. According to in silico predictions all other signal peptides connected to α-amylase were stable and soluble except PPBD_BACSU. PPBD_BACSU because of having D-score below cut-off could not be recognized as a suitable signal peptide for α-amylase. Computational analysis identified QOX2_BACSU may direct protein into transmembrane location and was ignored. All 28 remained were predicted as secretory signal peptides which can excrete protein out of the bacteria. The signal peptides recommended by the present study are valuable for rational designing of secretory soluble α-amylase. Although, such information can be useful for future experimental production of these mentioned secretory proteins.
Collapse
Affiliation(s)
- Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morgaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Accurately cleavable goat β-lactoglobulin signal peptide efficiently guided translation of a recombinant human plasminogen activator in transgenic rabbit mammary gland. Biosci Rep 2019; 39:BSR20190596. [PMID: 31196965 PMCID: PMC6597847 DOI: 10.1042/bsr20190596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022] Open
Abstract
Poor expression is the key factor hampering the large-scale application of transgenic animal mammary gland bioreactors. A very different approach would be to evaluate the secretion of recombinant proteins into milk in response to a cleavable signal peptide of highly secreted lactoproteins.We previously reported rabbits harboring mammary gland-specific expression vector containing a fusion cDNA (goat β-lactoglobulin (BLG) signal peptide and recombinant human plasminogen activator (rhPA) coding sequences) expressed rhPA in the milk, but we did not realize the signal peptide contributed to the high rhPA concentration and did not mention it at that time. And the molecular structure and biological characteristics still remain unknown. So, rhPA in the milk was purified and characterized in the present study.rhPA was purified from the milk, and the purity of the recovered product was 98% with no loss of biological activity. Analysis of the N-terminal sequence, C-terminal sequence, and the molecular mass of purified rhPA revealed that they matched the theoretical design requirements. The active systemic anaphylaxis (ASA) reactions of the purified rhPA were negative. Taken together, these results indicated that the goat BLG signal peptide can efficiently mediate rhPA secretion into milk and was accurately cleaved off from rhPA by endogenous rabbit signal peptidase.We have reinforced the importance of a rhPA coding region fused to a cleavable heterologous signal peptide from highly secreted goat BLG to improve recombinant protein expression. It is anticipated that these findings will be widely applied to high-yield production of medically important recombinant proteins.
Collapse
|
39
|
Peng C, Shi C, Cao X, Li Y, Liu F, Lu F. Factors Influencing Recombinant Protein Secretion Efficiency in Gram-Positive Bacteria: Signal Peptide and Beyond. Front Bioeng Biotechnol 2019; 7:139. [PMID: 31245367 PMCID: PMC6579943 DOI: 10.3389/fbioe.2019.00139] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
Signal peptides are short peptides directing newly synthesized proteins toward the secretory pathway. These N-terminal signal sequences are ubiquitous to all prokaryotes and eukaryotes. Signal peptides play a significant role in recombinant protein production. Previous studies have demonstrated that the secretion amount of a given target protein varies significantly depending on the signal peptide that is fused to the protein. Signal peptide selection and signal peptide modification are the two main methods for the optimization of a recombinant protein secretion. However, the highly efficient signal peptide for a target protein with a specific bacterial expression host is not predictable so far. In this article, we collect several signal peptides that have previously performed well for recombinant protein secretion in gram-positive bacteria. We also discuss several factors influencing recombinant protein secretion efficiency in gram-positive bacteria. Signal peptides with a higher charge/length ratio in n-region, more consensus residues at the-3 and-1positions in c-region and a much higher proportion of coils are more likely to perform well in the secretion of recombinant proteins. These summaries can be utilized to the selection and directed modification of signal peptides for a given recombinant protein.
Collapse
Affiliation(s)
- Chong Peng
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chaoshuo Shi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xue Cao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
40
|
Expression of a Pseudomonas aeruginosa-targeted antimicrobial peptide T9W in Bacillus subtilis using a maltose-inducible vector. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Han L, Cui W, Suo F, Miao S, Hao W, Chen Q, Guo J, Liu Z, Zhou L, Zhou Z. Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in Bacillus subtilis. Microb Cell Fact 2019; 18:96. [PMID: 31142347 PMCID: PMC6540529 DOI: 10.1186/s12934-019-1148-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
Background Promoter evolution by synthetic promoter library (SPL) is a powerful approach to development of functional synthetic promoters to synthetic biology. However, it requires much tedious and time-consuming screenings because of the plethora of different variants in SPL. Actually, a large proportion of mutants in the SPL are significantly lower in strength, which contributes only to fabrication of a promoter library with a continuum of strength. Thus, to effectively obtain the evolved synthetic promoter exhibiting higher strength, it is essential to develop novel strategies to construct mutant library targeting the pivotal region rather than the arbitrary region of the template promoter. In this study, a strategy termed stepwise evolution targeting the spacer of core promoter (SETarSCoP) was established in Bacillus subtilis to effectively evolve the strength of bacterial promoter. Results The native promoter, PsrfA, from B. subtilis, which exhibits higher strength than the strong promoter P43, was set as the parental template. According to the comparison of conservation of the spacer sequences between − 35 box and − 10 box among a set of strong and weak native promoter, it revealed that 7-bp sequence immediately upstream of the − 10 box featured in the regulation of promoter strength. Based on the conservative feature, two rounds of consecutive evolution were performed targeting the hot region of PsrfA. In the first round, a primary promoter mutation library (pPML) was constructed by mutagenesis targeting the 3-bp sequence immediately upstream of the − 10 box of the PsrfA. Subsequently, four evolved mutants from pPML were selected to construction of four secondary promoter mutation libraries (sPMLs) based on mutagenesis of the 4-bp sequence upstream of the first-round target. After the consecutive two-step evolution, the mutant PBH4 was identified and verified to be a highly evolved synthetic promoter. The strength of PBH4 was higher than PsrfA by approximately 3 times. Moreover, PBH4 also exhibited broad suitability for different cargo proteins, such as β-glucuronidase and nattokinase. The proof-of-principle test showed that SETarSCoP successfully evolved both constitutive and inducible promoters. Conclusion Comparing with the commonly used SPL strategy, SETarSCoP facilitates the evolution process to obtain strength-evolved synthetic bacterial promoter through fabrication and screening of small-scale mutation libraries. This strategy will be a promising method to evolve diverse bacterial promoters to expand the toolbox for synthetic biology. Electronic supplementary material The online version of this article (10.1186/s12934-019-1148-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Shengnan Miao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenliang Hao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qiaoqing Chen
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Junling Guo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhongmei Liu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
42
|
Liu Z, Zheng W, Ge C, Cui W, Zhou L, Zhou Z. High-level extracellular production of recombinant nattokinase in Bacillus subtilis WB800 by multiple tandem promoters. BMC Microbiol 2019; 19:89. [PMID: 31064343 PMCID: PMC6505213 DOI: 10.1186/s12866-019-1461-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 04/18/2019] [Indexed: 01/24/2023] Open
Abstract
Background Nattokinase (NK), which is a member of the subtilisin family, is a potent fibrinolytic enzyme that might be useful for thrombosis therapy. Extensive work has been done to improve its production for the food industry. The aim of our study was to enhance NK production by tandem promoters in Bacillus subtilis WB800. Results Six recombinant strains harboring different plasmids with a single promoter (PP43, PHpaII, PBcaprE, PgsiB, PyxiE or PluxS) were constructed, and the analysis of the fibrinolytic activity showed that PP43 and PHpaII exhibited a higher expression activity than that of the others. The NK yield that was mediated by PP43 and PHpaII reached 140.5 ± 3.9 FU/ml and 110.8 ± 3.6 FU/ml, respectively. These promoters were arranged in tandem to enhance the expression level of NK, and our results indicated that the arrangement of promoters in tandem has intrinsic effects on the NK expression level. As the number of repetitive PP43 or PHpaII increased, the expression level of NK was enhanced up to the triple-promoter, but did not increase unconditionally. In addition, the repetitive core region of PP43 or PHpaII could effectively enhance NK production. Eight triple-promoters with PP43 and PHpaII in different orders were constructed, and the highest yield of NK finally reached 264.2 ± 7.0 FU/ml, which was mediated by the promoter PHpaII-PHpaII-PP43. The scale-up production of NK that was promoted by PHpaII-PHpaII-PP43 was also carried out in a 5-L fermenter, and the NK activity reached 816.7 ± 30.0 FU/mL. Conclusions Our studies demonstrated that NK was efficiently overproduced by tandem promoters in Bacillus subtilis. The highest fibrinolytic activity was promoted by PHpaII-PHpaII-PP43, which was much higher than that had been reported in previous studies. These multiple tandem promoters were used successfully to control NK expression and might be useful for improving the expression level of the other genes. Electronic supplementary material The online version of this article (10.1186/s12866-019-1461-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongmei Liu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Wenhui Zheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Chunlei Ge
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
43
|
Heinrich J, Drewniok C, Neugebauer E, Kellner H, Wiegert T. The YoaW signal peptide directs efficient secretion of different heterologous proteins fused to a StrepII-SUMO tag in Bacillus subtilis. Microb Cell Fact 2019; 18:31. [PMID: 30732606 PMCID: PMC6366066 DOI: 10.1186/s12934-019-1078-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Background Heterologous gene expression is well established for various prokaryotic model systems. However, low yield, incorrect folding and instability still impede the production of soluble, bioactive proteins. To improve protein production with the Gram-positive host Bacillus subtilis, a secretory expression system was designed that enhances translocation, folding and stability of heterologous proteins, and simplifies purification. Based on the theta-replication plasmid pHT01, a B. subtilis secretory expression vector was constructed that encodes a fusion protein consisting of a signal peptide and a StrepII-tag linked to a SUMO-tag serving as a folding catalyst. The gene of a protein of interest can be translationally fused to the SUMO cassette and an additional 6xHis-tag encoding region. In order to maximize secretory expression of the construct by fitting the signal peptide to the StrepII-SUMO part of the fusion protein, a B. subtilis signal-peptide library was screened with the Escherichia coli alkaline phosphatase PhoA as a reporter. Results The YoaW signal peptide-encoding region (SPyoaW) was identified with highest secretory expression capacity in context with the StrepII-SUMO-tag fusion in a B. subtilis eightfold extracellular protease deletion strain. PhoA activity and fusion protein production was elevated by a factor of approximately five when compared to an α-amylase (AmyQ) signal peptide construct. Replacement of PhoA with a single-chain variable fragment antibody specific for GFP or the B. amyloliquefaciens RNase barnase, respectively, resulted in a similar enhancement of secretory expression, demonstrating universality of the YoaW signal peptide-StrepII-SUMO encoding cassette for secretory expression in B. subtilis. Optimisation of codon usage and culture conditions further increased GFP-specific scFv fusion-protein production, and a simple affinity purification strategy from culture supernatant with removal of the StrepII-SUMO-tag by SenP-processing yielded 4 mg of pure, soluble and active GFP-specific scFv from 1 l of culture under standard laboratory conditions. Conclusions The new expression system employing a YoaW signal peptide-StrepII-SUMO fusion will simplify secretory protein production and purification with B. subtilis. It can obviate the need for time consuming individual signal-peptide fitting to maximize yield for many different heterologous proteins of interest. Electronic supplementary material The online version of this article (10.1186/s12934-019-1078-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine Heinrich
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany
| | - Chris Drewniok
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany
| | - Eva Neugebauer
- EUROIMMUN AG, Im Kreppel 1, 02747, Herrnhut/Rennersdorf, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, Technical University of Dresden, Markt 23, 02763, Zittau, Germany
| | - Thomas Wiegert
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany.
| |
Collapse
|
44
|
Sha Y, Zhang Y, Qiu Y, Xu Z, Li S, Feng X, Wang M, Xu H. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid by Stable Overexpression of PgdS Hydrolase in Bacillus amyloliquefaciens NB. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:282-290. [PMID: 30543111 DOI: 10.1021/acs.jafc.8b05485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Low-molecular-weight poly-γ-glutamic acid (LMW-γ-PGA) has attracted much attention owing to its great potential in food, agriculture, medicine, and cosmetics. Current methods of LMW-γ-PGA production, including enzymatic hydrolysis, are associated with low operational stability. Here, an efficient method for stable biosynthesis of LMW-γ-PGA was conceived by overexpression of γ-PGA hydrolase in Bacillus amyloliquefaciens NB. To establish stable expression of γ-PGA hydrolase (PgdS) during fermentation, a novel plasmid pNX01 was constructed with a native replicon from endogenous plasmid p2Sip, showing a loss rate of 4% after 100 consecutive passages. Subsequently, this plasmid was applied in a screen of high activity PgdS hydrolase, leading to substantial improvements to γ-PGA titer with concomitant decrease in the molecular weight. Finally, a satisfactory yield of 17.62 ± 0.38 g/L LMW-γ-PGA with a weight-average molecular weight of 20-30 kDa was achieved by direct fermentation of Jerusalem artichoke tuber extract. Our study presents a potential method for commercial production of LMW-γ-PGA.
Collapse
Affiliation(s)
- Yuanyuan Sha
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yatao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Mingxuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
45
|
Huang X, Cao L, Qin Z, Li S, Kong W, Liu Y. Tat-Independent Secretion of Polyethylene Terephthalate Hydrolase PETase in Bacillus subtilis 168 Mediated by Its Native Signal Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13217-13227. [PMID: 30465427 DOI: 10.1021/acs.jafc.8b05038] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Widespread utilization of polyethylene terephthalate (PET) has caused critical environmental pollution. The enzymatic degradation of PET is a promising solution to this problem. In this study, PETase, which exhibits much higher PET-hydrolytic activity than other enzymes, was successfully secreted into extracellular milieu from Bacillus subtilis 168 under the direction of its native signal peptide (named SPPETase). SPPETase is predicted to be a twin-arginine signal peptide. Intriguingly, inactivation of twin-arginine translocation (Tat) complexes improved the secretion amount by 3.8-fold, indicating that PETase was exported via Tat-independent pathway. To the best of our knowledge, this is the first report on the improvement of Tat-independent secretion by inactivating Tat components of B. subtilis 168 in LB medium. Furthermore, PET film degradation assay showed that the secreted PETase was fully active. This study paves the first step to construct an efficient engineered strain for PET degradation.
Collapse
Affiliation(s)
- Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Shuifeng Li
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
46
|
Meng F, Zhu X, Nie T, Lu F, Bie X, Lu Y, Trouth F, Lu Z. Enhanced Expression of Pullulanase in Bacillus subtilis by New Strong Promoters Mined From Transcriptome Data, Both Alone and in Combination. Front Microbiol 2018; 9:2635. [PMID: 30450090 PMCID: PMC6224515 DOI: 10.3389/fmicb.2018.02635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
Pullulanase plays an important role as a starch hydrolysis enzyme in the production of bio-fuels and animal feed, and in the food industry. Compared to the methods currently used for pullulanase production, synthesis by Bacillus subtilis would be safer and easier. However, the current yield of pullulanase from B. subtilis is low to meet industrial requirements. Therefore, it is necessary to improve the yield of pullulanase by B. subtilis. In this study, we mined 10 highly active promoters from B. subtilis based on transcriptome and bioinformatic data. Individual promoters and combinations of promoters were used to improve the yield of pullulanase in B. subtilis BS001. Four recombinant strains with new promoters (Phag, PtufA, PsodA, and PfusA) had higher enzyme activity than the control (PamyE). The strain containing PsodA+fusA (163 U/mL) and the strain containing PsodA+fusA+amyE (336 U/mL) had the highest activity among the analyzed dual- and triple-promoter construct stains in shake flask, which were 2.29 and 4.73 times higher than that of the strain with PamyE, respectively. Moreover, the activity of the strain containing PsodA+fusA+amyE showed a maximum activity of 1,555 U/mL, which was 21.9 times higher than that of the flask-grown PamyE strain in a 50-liter fermenter. Our work showed that these four strong promoters mined from transcriptome data and their combinations could reliably increase the yield of pullulanase in quantities suitable for industrial applications.
Collapse
Affiliation(s)
- Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yingjian Lu
- Department of Food Science and Nutrition, University of Maryland, College Park, MD, United States
| | - Frances Trouth
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
47
|
Liu X, Wang H, Wang B, Pan L. High-level extracellular protein expression in Bacillus subtilis by optimizing strong promoters based on the transcriptome of Bacillus subtilis and Bacillus megaterium. Protein Expr Purif 2018; 151:72-77. [DOI: 10.1016/j.pep.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 10/14/2022]
|
48
|
Liu X, Wang H, Wang B, Pan L. Efficient production of extracellular pullulanase in Bacillus subtilis ATCC6051 using the host strain construction and promoter optimization expression system. Microb Cell Fact 2018; 17:163. [PMID: 30348150 PMCID: PMC6196424 DOI: 10.1186/s12934-018-1011-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Bacillus subtilis has been widely used as a host for heterologous protein expression in food industry. B. subtilis ATCC6051 is an alternative expression host for the production of industrial enzymes, and exhibits favorable growth properties compared to B. subtilis 168. Extracellular expression of pullulanase from recombinant B. subtilis is still limited due to the issues on promoters of B. subtilis expression system. This study was undertaken to develop a new, high-level expression system in B. subtilis ATCC6051. Results To further optimize B. subtilis ATCC6051 as a expression host, eight extracellular proteases (aprE, nprE, nprB, epr, mpr, bpr, vpr and wprA), the sigma factor F (spoIIAC) and a surfactin (srfAC) were deleted, yielding the mutant B. subtilis ATCC6051∆10. ATCC6051∆10 showed rapid growth and produced much more extracellular protein compared to the widetype strain ATCC6051, due to the inactivation of multiple proteases. Using this mutant as the host, eleven plasmids equipped with single promoters were constructed for recombinant expression of pullulanase (PUL) from Bacillus naganoensis. The plasmid containing the PspovG promoter produced the highest extracellular PUL activity, which achieved 412.9 U/mL. Subsequently, sixteen dual-promoter plasmids were constructed and evaluated using this same method. The plasmid containing the dual promoter PamyL–PspovG produced the maximum extracellular PUL activity (625.5 U/mL) and showed the highest expression level (the dry cell weight of 18.7 g/L). Conclusions Taken together, we constructed an effective B. subtilis expression system by deleting multiple proteases and screening strong promoters. The dual-promoter PamyL–PspovG system was found to support superior expression of extracellular proteins in B. subtilis ATCC6051. Electronic supplementary material The online version of this article (10.1186/s12934-018-1011-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Liu
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hai Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
49
|
Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 2018; 34:145. [DOI: 10.1007/s11274-018-2531-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
50
|
Cui W, Suo F, Cheng J, Han L, Hao W, Guo J, Zhou Z. Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis. Microb Biotechnol 2018; 11:930-942. [PMID: 29984489 PMCID: PMC6116739 DOI: 10.1111/1751-7915.13298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022] Open
Abstract
Nattokinase (NK) is an important serine‐protease with direct fibrinolytic activity involving the prevention of cardiovascular disease as an antithrombotic agent. Dozens of studies have focused on the characterization of intrinsic novel promoters and signal peptides to the secretory production of recombinant proteins in Bacillus subtilis. However, intrinsic genetic elements have several drawbacks, which cannot mediate the production of NK to the desired level. In this study, the genetic elements, which were used to overproduce the recombinant secretory NK, were rationally modified in B. subtilis in a stepwise manner. The first step was to select a suitable signal peptide for the highly efficient secretion of NK. By comparison of the secretory levels mediated by two different signal peptides, which were encoded by the genes of a minor extracellular protease epr (SPepr) and cell‐wall associated protease wapA (SPwapA), respectively, SPwapA was verified as the superior secretory element. Second, P04, which was a synthetic promoter screened from an array of mutants based on the promoter cloned from the operon of a quorum‐sensing associated gene srfA (PsrfA), was paired to SPwapA. The secretory level of NK was obviously augmented by the combination of these two genetic elements. Third, the cis‐acting element CodY‐binding sequence positioned at the 5′UTR was deleted (yielding P08), and thus the secretory level was significantly elevated. The activity of NK, which was defined as fibrinolytic units (FU), reached to a level of 270 FU ml−1. Finally, the superior genetic element composed of P08 and SPwapA was utilized to overproduce NK in the host B. subtilis WB800, which was able to produce the secretory NK at 292 FU ml−1. The strategy established in this study can not only be used to overproduce NK in B. subtilis but also might be a promising pipeline to modify the genetic element for the synthetic secretory system.
Collapse
Affiliation(s)
- Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jintao Cheng
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenliang Hao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Junling Guo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|