1
|
Peng F, Liu J, Ping J, Dong Y, Xie L, Zhou Y, Liao L, Song H. An effective strategy for biodegradation of high concentration phenol in soil via biochar-immobilized Rhodococcus pyridinivorans B403. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33752-33762. [PMID: 38687450 DOI: 10.1007/s11356-024-33386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
High concentration of phenol residues in soil are harmful to human health and ecological safety. However, limited information is available on the in-situ bioremediation of phenol-contaminated soil using biochar as a carrier for bacteria. In this study, bamboo -derived biochar was screened as a carrier to assemble microorganism-immobilized composite with Rhodococcus pyridinivorans B403. Then, SEM used to observe the micromorphology of composite and its bioactivity was detected in solution and soil. Finally, we investigated the effects of free B403 and biochar-immobilized B403 (BCJ) on phenol biodegradation in two types of soils and different initial phenol concentrations. Findings showed that bacterial cells were intensively distributed in/onto the carriers, showing high survival. Immobilisation increased the phenol degradation rate of strain B403 by 1.45 times (37.7 mg/(L·h)). The phenol removed by BCJ in soil was 81% higher than free B403 on the first day. Moreover, the removal of BCJ remained above 51% even at phenol concentration of 1,500 mg/kg, while it was only 15% for free B403. Compared with the other treatment groups, BCJ showed the best phenol removal effect in both tested soils. Our results indicate that the biochar-B403 composite has great potential in the remediation of high phenol-contaminated soil.
Collapse
Affiliation(s)
- Fang Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Jiapeng Ping
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yuji Dong
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Liuan Xie
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yishan Zhou
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Lipei Liao
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Huiting Song
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
2
|
Bi J, Xing S, Shan G, Zhao Y, Ji Z, Zhu D, Hao H. Electro-intensified simultaneous decontamination of coexisting pollutants in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166949. [PMID: 37696408 DOI: 10.1016/j.scitotenv.2023.166949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The treatment of wastewater has become increasingly challenging as a result of its growing complexity. To achieve synergistic removal of coexisting pollutants in wastewater, one promising approach involves the integration of electric fields. We conducted a comprehensive literature review to explore the potential of integrating electric fields and developing efficient electro-intensified simultaneous decontamination systems for wastewater containing coexisting pollutants. The review focused on comprehending the applications and mechanisms of these systems, with a particular emphasis on the deliberate utilization of positive and negative charges. After analyzing the advantages, disadvantages, and application efficacy of these systems, we observed electro-intensified systems exhibit flexible potential through their rational combination, allowing for an expanded range of applications in addressing simultaneous decontamination challenges. Unlike the reviews focusing on single elimination, this work aims to provide guidance in addressing the environmental problems resulting from the coexistence of hazardous contaminants.
Collapse
Affiliation(s)
- Jingtao Bi
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Siyang Xing
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingying Zhao
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhiyong Ji
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, TX 77005, United States
| | - Hongxun Hao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Ye Y, Hao R, Shan B, Zhang J, Li J, Lu A. Mechanism of Cr(VI) removal by efficient Cr(VI)-resistant Bacillus mobilis CR3. World J Microbiol Biotechnol 2023; 40:21. [PMID: 37996766 DOI: 10.1007/s11274-023-03816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Cr(VI) is a hazardous environmental pollutant that poses significant risks to ecosystems and human health. We successfully isolated a novel strain of Bacillus mobilis, strain CR3, from Cr(VI)-contaminated soil. Strain CR3 showed 86.70% removal capacity at 200 mg/L Cr(VI), and a good Cr(VI) removal capacity at different pH, temperature, coexisting ions, and electron donor conditions. Different concentrations of Cr(VI) affected the activity of CR3 cells and the removal rate of Cr(VI), and approximately 3.46% of total Cr was immobilized at the end of the reaction. The combination of SEM-EDS and TEM-EDS analysis showed that Cr accumulated both on the cell surface and inside the cells after treatment with Cr(VI). XPS analysis showed that both Cr(III) and Cr(VI) were present on the cell surface, and FTIR results indicated that the presence of Cr on the cell surface was mainly related to functional groups, such as O-H, phosphate, and -COOH. The removal of Cr(VI) was mainly achieved through bioreduction, which primarily occurred outside the cell. Metabolomics analysis revealed the upregulation of five metabolites, including phenol and L-carnosine, was closely associated with Cr(VI) reduction, heavy metal chelation, and detoxification mechanisms. In addition, numerous metabolites were linked to cellular homeostasis exhibited differential expression. Cr(VI) exerted inhibitory effects on the division rate and influenced critical pathways, including energy metabolism, nucleotide metabolism, and amino acid synthesis and catabolism. These findings reveal the molecular mechanism of Cr(VI) removal by strain CR3 and provide valuable insights to guide the remediation of Cr(VI)-contaminated sites.
Collapse
Affiliation(s)
- Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
| | - Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| |
Collapse
|
4
|
Fernandez M, Callegari EA, Paez MD, González PS, Agostini E. Proteomic analysis to unravel the biochemical mechanisms triggered by Bacillus toyonensis SFC 500-1E under chromium(VI) and phenol stress. Biometals 2023; 36:1081-1108. [PMID: 37209221 DOI: 10.1007/s10534-023-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
Bacillus toyonensis SFC 500-1E is a member of the consortium SFC 500-1 able to remove Cr(VI) and simultaneously tolerate high phenol concentrations. In order to elucidate mechanisms utilized by this strain during the bioremediation process, the differential expression pattern of proteins was analyzed when it grew with or without Cr(VI) (10 mg/L) and Cr(VI) + phenol (10 and 300 mg/L), through two complementary proteomic approaches: gel-based (Gel-LC) and gel-free (shotgun) nanoUHPLC-ESI-MS/MS. A total of 400 differentially expressed proteins were identified, out of which 152 proteins were down-regulated under Cr(VI) and 205 up-regulated in the presence of Cr(VI) + phenol, suggesting the extra effort made by the strain to adapt itself and keep growing when phenol was also added. The major metabolic pathways affected include carbohydrate and energetic metabolism, followed by lipid and amino acid metabolism. Particularly interesting were also ABC transporters and the iron-siderophore transporter as well as transcriptional regulators that can bind metals. Stress-associated global response involving the expression of thioredoxins, SOS response, and chaperones appears to be crucial for the survival of this strain under treatment with both contaminants. This research not only provided a deeper understanding of B. toyonensis SFC 500-1E metabolic role in Cr(VI) and phenol bioremediation process but also allowed us to complete an overview of the consortium SFC 500-1 behavior. This may contribute to an improvement in its use as a bioremediation strategy and also provides a baseline for further research.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - María D Paez
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
5
|
Zhou X, Liang M, Zheng Y, Zhang J, Liang J. Sustained degradation of phenol under extreme conditions by polyurethane-based Bacillus sp. ZWB3. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1194-1206. [PMID: 37771222 PMCID: wst_2023_259 DOI: 10.2166/wst.2023.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Phenol is a serious pollutant to the environment, therefore, it is urgent to find a rapid and effective method for its removal. In this study, Bacillus cereus ZWB3 immobilized on a polyurethane (PUF) carrier was studied. The PUF-ZWB3 required only 20 h for the degradation of 1,500 mg L-1 of phenol, shortened by 8 h than the free bacteria. In addition, the PUF-ZWB3 could increase the degradation concentration of phenol from 1,500 to 2,000 mg L-1, and the complete degradation of 2,000 mg L-1 phenol only used 44 h. In addition, the PUF-ZWB3 showed much higher removal of phenol than the free bacteria at different pH values, salt concentrations, and heavy metal ions. Particularly, the PUF-ZWB3 could still completely remove phenol in a strongly alkaline environment, such as pH 10 and 11. In addition, the removal efficiency of phenol by PUF-ZWB3 was still 100% after 10 cycles. This study showed that the PUF immobilization system had great potential in the field of remediation of organic pollution.
Collapse
Affiliation(s)
- Xu Zhou
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China E-mail:
| | - Mingzhao Liang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Yujing Zheng
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jianfeng Zhang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Liang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Immobilized enzymes and cell systems: an approach to the removal of phenol and the challenges to incorporate nanoparticle-based technology. World J Microbiol Biotechnol 2022; 38:42. [PMID: 35043353 DOI: 10.1007/s11274-022-03229-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/04/2022] [Indexed: 12/07/2022]
Abstract
The presence of phenol in wastewater poses a risk to ecosystems and human health. The traditional processes to remove phenol from wastewater, although effective, have several drawbacks. The best alternative is the application of ecological biotechnology tools since they involve biological systems (enzymes and microorganisms) with moderate economic and environmental impact. However, these systems have a high sensitivity to environmental factors and high substrate concentrations that reduce their effectiveness in phenol removal. This can be overcome by immobilization-based technology to increase the performance of enzymes and bacteria. A key component to ensure successful immobilization is the material (polymeric matrices) used as support for the biological system. In addition, by incorporating magnetic nanoparticles into conventional immobilized systems, a low-cost process is achieved but, most importantly, the magnetically immobilized system can be recovered, recycled, and reused. In this review, we study the existing alternatives for treating wastewater with phenol, from physical and chemical to biological techniques. The latter focus on the immobilization of enzymes and microorganisms. The characteristics of the support materials that ensure the viability of the immobilization are compared. In addition, the challenges and opportunities that arise from incorporating magnetic nanoparticles in immobilized systems are addressed.
Collapse
|
7
|
Jiang Y, Yang F, Dai M, Ali I, Shen X, Hou X, Alhewairini SS, Peng C, Naz I. Application of microbial immobilization technology for remediation of Cr(VI) contamination: A review. CHEMOSPHERE 2022; 286:131721. [PMID: 34352550 DOI: 10.1016/j.chemosphere.2021.131721] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The discharge of chromium (Cr) contaminated wastewater is creating a serious threat to aquatic environment due to the rapid pace in agricultural and industrial activities. Particularly, the long-term exposure of Cr(VI) polluted wastewater to the environment is causing serious harm to human health. Therefore, the treatment of Cr(VI) contaminated wastewater is demanding widespread attention. Regarding this, the bioremediation is being considered as a reliable and feasible option to handle Cr(VI) contaminated wastewater because of having low technical investment and operating costs. However, certain factors such as loss of microorganisms, toxicity to microorganisms and uneven microbial growth cycle in the presence of high concentrations of Cr(VI) are hindering its commercial applications. Regarding this, microbial immobilization technology (MIT) is getting great research interest because it could overcome the shortcomings of bioremediation technology's poor tolerance against Cr. Therefore, this review is the first attempt to emphases recent research developments in the remediation of Cr(VI) contamination via MIT. Starting from the selection of immobilized carrier, the present review is designed to critically discuss the various microbial immobilizing methods i.e., adsorption, embedding, covalent binding and medium interception. Further, the mechanism of Cr(VI) removal by immobilized microorganism has also been explored, precisely. In addition, three kinds of microorganism immobilization devices have been critically examined. Finally, knowledge gaps/key challenges and future perspectives are also discussed that would be helpful for the experts in improving MIT for the remediation of Cr(VI) contamination.
Collapse
Affiliation(s)
- Yating Jiang
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China; The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China
| | - Fei Yang
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China
| | - Imran Ali
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xing Shen
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China
| | - Xiaoting Hou
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China; Sunwater Environmental Science & Technology Co. Ltd., Rizhao, 262300, China
| | - Saleh S Alhewairini
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Qassim, Saudi Arabia
| | - Changsheng Peng
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China; The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China.
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452, Saudi Arabia.
| |
Collapse
|
8
|
Bi J, Tao Q, Huang X, Wang J, Wang T, Hao H. Simultaneous decontamination of multi-pollutants: A promising approach for water remediation. CHEMOSPHERE 2021; 284:131270. [PMID: 34323782 DOI: 10.1016/j.chemosphere.2021.131270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Water remediation techniques have been extensively investigated due to the increasing threats of soluble pollutants posed on the human health, ecology and sustainability. Confronted with the complex composition matrix of wastewater, the simultaneous elimination of coexisting multi-pollutants remains a great challenge due to their different physicochemical properties. By integrating multi-contaminants elimination processes into one unit operation, simultaneous decontamination attracted more and more attention under the consideration of versatile applications and economical benefits. In this review, the state-of-art simultaneous decontamination methods were systematically summarized as chemical precipitation, adsorption, photocatalysis, oxidation-reduction, biological removal and membrane filtration. Their applications, mechanisms, mutual interactions, sustainability and recyclability were outlined and discussed in detail. Finally, the prospects and opportunities for future research were proposed for further development of simultaneous decontamination. This work could provide guidelines for the design and fabrication of well-organized simultaneous decontaminating system.
Collapse
Affiliation(s)
- Jingtao Bi
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qingqing Tao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Huang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| | - Jingkang Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, China
| | - Ting Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Hongxun Hao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Sánchez-Castro I, Martínez-Rodríguez P, Abad MM, Descostes M, Merroun ML. Uranium removal from complex mining waters by alginate beads doped with cells of Stenotrophomonas sp. Br8: Novel perspectives for metal bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113411. [PMID: 34351286 DOI: 10.1016/j.jenvman.2021.113411] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Uranium-containing effluents generated by nuclear energy industry must be efficiently remediated before release to the environment. Currently, numerous microbial-based strategies are being developed for this purpose. In particular, the bacterial strain Stenotrophomonas sp. Br8, isolated from U mill tailings porewaters, has been already shown to efficiently precipitate U(VI) as stable U phosphates mediated by phosphatase activity. However, the upscaling of this strategy should overcome some constraints regarding cell exposure to harsh environmental conditions. In the present study, the immobilization of Br8 biomass in an inorganic matrix was optimized to provide protection to the cells as well as to make the process more convenient for real-scale utilization. The use of biocompatible, highly porous alginate beads for Br8 cells immobilization resulted the best alternative when investigating by a multidisciplinary approach (High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM), Environmental Scanning Electron Microscopy (ESEM), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance, etc.) several consolidated entrapment methods. This biomaterial was applied to complex real U mining porewaters (containing 47 mg/L U) in presence of an organic phosphate source (glycerol-2-phosphate) to produce reactive free orthophosphates through Br8 phosphatase activity. Uranium immobilization rates around 98 % were observed after one cycle of 72 h. In terms of U removal ability as a function of biomass, Br8-doped alginate beads were determined to remove up to 1199.5 mg U/g dry biomass over two treatment cycles. Additionally, optimized conditions for storing Br8-doped beads and for a correct application were assessed. Results for U accumulation kinetics and HAADF-STEM/ESEM analyses revealed that U removal by the immobilized cells is a biphasic process combining a first passive U sorption onto bead and/or cell surfaces and a second slow active biomineralization. This work provides new practical insights into the biological and physico-chemical parameters governing a high-efficient U bioremediation process based on the phosphatase activity of immobilized bacterial cells when applied to complex mining waters under laboratory conditions.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.
| | - Pablo Martínez-Rodríguez
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - María M Abad
- Centro de Instrumentación Científica (CIC), University of Granada, Campus Fuentenueva, Granada, Spain
| | | | - Mohamed Larbi Merroun
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
10
|
Liu Y, Deng YY, Zhang Q, Liu H. Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143901. [PMID: 33310303 DOI: 10.1016/j.scitotenv.2020.143901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
As the rapid increase of the worldwide population, recovering valuable resources from wastewater have attracted more and more attention by governments and academia. Electrochemical technologies have been extensively investigated over the past three decades to purify wastewater. However, the application of these technologies for resource recovery from wastewater has just attracted limited attention. In this review, the recent (2010-2020) electrochemical technologies for resource recovery from wastewater are summarized and discussed for the first time. Fundamentals of typical electrochemical technologies are firstly summarized and analyzed, followed by the specific examples of electrochemical resource recovery technologies for different purposes. Based on the fundamentals of electrochemical reactions and without the addition of chemical agents, metallic ions, nutrients, sulfur, hydrogen and chemical compounds can be effectively recovered by means of electrochemical reduction, electrochemical induced precipitation, electrochemical stripping, electrochemical oxidation and membrane-based electrochemical processes, etc. Pros and cons of each electrochemical technology in practical applications are discussed and analyzed. Single-step electrochemical process seems ineffectively to recover valuable resources from the wastewater with complicated constituents. Multiple-step processes or integrated with biological and membrane-based technologies are essential to improve the performance and purity of products. Consequently, this review attempts to offer in-depth insights into the developments of next-generation of electrochemical technologies to minimize energy consumption, boost recovery efficiency and realize the commercial application.
Collapse
Affiliation(s)
- Yuan Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Ying-Ying Deng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
11
|
Pereira PP, Fernandez M, Cimadoro J, González PS, Morales GM, Goyanes S, Agostini E. Biohybrid membranes for effective bacterial vehiculation and simultaneous removal of hexavalent chromium (CrVI) and phenol. Appl Microbiol Biotechnol 2021; 105:827-838. [PMID: 33394154 DOI: 10.1007/s00253-020-11031-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to obtain an effective vehiculation system in which bacterial agents could maintain viability improving their removal capacity. Herein, we present a novel biohybrid membrane of polymeric nanofibers and free-living bacteria for the simultaneous removal of pollutants. In this system, bacteria are free within the pores between the nanofibers and adsorbed to the surface of the membranes. Association between bacteria and the membranes was performed through a self-formulated medium, and the presence of the bacteria in the polymeric matrix was evidenced through atomic force microscopy (AFM). Biohybrid membranes associated with the remediation agents Bacillus toyonensis SFC 500-1E and Acinetobacter guillouiae SFC 500-1A promoted a reduction of up to 2.5 mg/L of hexavalent chromium and up to 200 mg/L of phenol after 24 h of treatment in synthetic medium containing the contaminants. Similarly, more than 46% of the hexavalent chromium and all of the phenol content were removed after treatment of a tannery effluent with initial concentrations of 7 mg/L of Cr(VI) and 305 mg/L of phenol. Counts of the remediation agents from the membranes were always above 1.107 CFU/g, also in the reutilization assays performed without reinoculation. Biohybrid membranes were hydrolysis-resistant, reusable, and effective in the simultaneous removal of contaminants for more than 5 cycles. Viability of the microorganisms was maintained after long-term storage of the membranes at 4 °C, without the use of microbiological media or the addition of cryoprotectants. Graphical abstract KEY POINTS: • Polymeric membranes were effectively associated with the SFC 500-1 remediation consortium • Biohybrid membranes removed hexavalent chromium and phenol from different matrices • Removal of contaminants was achieved in many successive cycles without reinoculation.
Collapse
Affiliation(s)
- Paola P Pereira
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Rio Cuarto, CP, Argentina.,Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Río Cuarto, Argentina
| | - Marilina Fernandez
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Rio Cuarto, CP, Argentina.,Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Río Cuarto, Argentina
| | - Jonathan Cimadoro
- Laboratorio de Polímeros y Materiales Compuestos, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Física de Buenos Aires IFIBA, CONICET, Buenos Aires, Argentina
| | - Paola S González
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Rio Cuarto, CP, Argentina.,Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Río Cuarto, Argentina
| | - Gustavo M Morales
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina.,Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, IITEMA-CONICET, Río Cuarto, Argentina
| | - Silvia Goyanes
- Laboratorio de Polímeros y Materiales Compuestos, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Física de Buenos Aires IFIBA, CONICET, Buenos Aires, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Rio Cuarto, CP, Argentina. .,Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Río Cuarto, Argentina.
| |
Collapse
|
12
|
Mei R, Zhou M, Xu L, Zhang Y, Su X. Characterization of a pH-Tolerant Strain Cobetia sp. SASS1 and Its Phenol Degradation Performance Under Salinity Condition. Front Microbiol 2019; 10:2034. [PMID: 31551971 PMCID: PMC6737460 DOI: 10.3389/fmicb.2019.02034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Biological treatment of complex saline phenolic wastewater remains a great challenge due to the low activity of bacterial populations under stressful conditions. Acid mine drainage (AMD) as a typically extreme environment, shaped unique AMD microbial communities. Microorganisms survived in the AMD environment have evolved various mechanisms of resistance to low pH, high salinity and toxic heavy metals. The primary goal of this work was to determine whether a strain isolated from an AMD could degrade phenol under stressful conditions such as low pH, high salinity and heavy metals. The results suggested that the strain Cobetia sp. SASS1 isolated from AMD presented different physiological characteristics in comparison with five most closely related species. SASS1 can efficiently degrade phenol at wide ranges of pH (3.0-9.0) and NaCl concentration (0-40 g/L), as well as the existence of Cu2+ and Mn2+. Specifically, the SASS1 could completely degrade 1500 mg/L phenol in 80 h at 10 g/L NaCl. Meanwhile, mineralization of phenol was achieved with complete degradation of 900 mg/L phenol and simultaneously COD decreasing from 2239 mg/L to 181.6 mg/L in 36 h. Based on biodegradation metabolites identification and enzyme activities analysis, both ortho-cleavage pathway and benzoic acid pathway for phenol degradation were proposed. These findings suggested that SASS1 was an efficient phenol degrader under salinity and acidic conditions, and could be considered as key population for bioremediation of industrial phenolic wastewaters under stressful conditions.
Collapse
Affiliation(s)
- Rongwu Mei
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, China
| | - Meng Zhou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Luning Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Yu Zhang
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
13
|
Hu M, Sun Z, Hu J, Lei H, Jin W. Simultaneous Phenol Detoxification and Dilute Metal Recovery in Cyclone Electrochemical Reactor. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meiqing Hu
- School of Chemical and Material Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhi Sun
- Institute of Process Engineering, Chinese Academy of Sciences, 1th Ber-er-tiao Zhongguancun, Beijing 100190, People’s Republic of China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, No. 932 South Lushan Road, Changsha, Hunan 410083, China
| | - Hong Lei
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Wei Jin
- School of Chemical and Material Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Institute of Process Engineering, Chinese Academy of Sciences, 1th Ber-er-tiao Zhongguancun, Beijing 100190, People’s Republic of China
| |
Collapse
|
14
|
Wondraczek L, Pohnert G, Schacher FH, Köhler A, Gottschaldt M, Schubert US, Küsel K, Brakhage AA. Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900284. [PMID: 30993782 DOI: 10.1002/adma.201900284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
From the smallest ecological niche to global scale, communities of microbial life present a major factor in system regulation and stability. As long as laboratory studies remain restricted to single or few species assemblies, however, very little is known about the interaction patterns and exogenous factors controlling the dynamics of natural microbial communities. In combination with microfluidic technologies, progress in the manufacture of functional and stimuli-responsive materials makes artificial microbial arenas accessible. As habitats for natural or multispecies synthetic consortia, they are expected to not only enable detailed investigations, but also the training and the directed evolution of microbial communities in states of balance and disturbance, or under the effects of modulated stimuli and spontaneous response triggers. Here, a perspective on how materials research will play an essential role in generating answers to the most pertinent questions of microbial engineering is presented, and the concept of adaptive microbial arenas and possibilities for their construction from particulate microniches to 3D habitats is introduced. Materials as active and tunable components at the interface of living and nonliving matter offer exciting opportunities in this field. Beyond forming the physical horizon for microbial cultivates, they will enable dedicated intervention, training, and observation of microbial consortia.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Georg Pohnert
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743, Jena, Germany
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Felix H Schacher
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Angela Köhler
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Michael Gottschaldt
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Kirsten Küsel
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Dornburger Str. 159, 07743, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103, Leipzig, Germany
| | - Axel A Brakhage
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| |
Collapse
|
15
|
Fluoranthene Biodegradation by Serratia sp. AC-11 Immobilized into Chitosan Beads. Appl Biochem Biotechnol 2019; 188:1168-1184. [DOI: 10.1007/s12010-019-02980-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/20/2019] [Indexed: 01/14/2023]
|
16
|
Peng SY, Yang L, Yu L, Li XY, Zhou YZ, Lv Y, Zhu F. Well-defined Pd anchoring on the surface of porous ZnO nanocomposites with excellent photocatalytic activity and good reusability for the removal of phenol from water. NEW J CHEM 2019. [DOI: 10.1039/c9nj04127c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-defined Pd/ZnO nanocomposites prepared by modifying ZnO nanosheets with Pd nanoparticles exhibit excellent photocatalytic activity and good reusability for the removal of phenol from water.
Collapse
Affiliation(s)
- Si-Yan Peng
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
- State Key Laboratory of Structural Chemistry
| | - Liusai Yang
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Leshu Yu
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Xiao-Yun Li
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Yuan-Zhen Zhou
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Yingying Lv
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Feng Zhu
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| |
Collapse
|
17
|
Lu H, Wang J, Li F, Huang X, Tian B, Hao H. Highly Efficient and Reusable Montmorillonite/Fe₃O₄/Humic Acid Nanocomposites for Simultaneous Removal of Cr(VI) and Aniline. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E537. [PMID: 30018225 PMCID: PMC6070813 DOI: 10.3390/nano8070537] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 11/30/2022]
Abstract
Recyclable nanomaterials are in great need to develop clean technology for applications in the removal of water contaminants. In this work, easily separable montmorillonite/Fe₃O₄/humic acid (MFH) nanocomposites were fabricated through a facile hydrothermal route. It was found the adsorption ability and stability of MFH was significantly enhanced due to the synergistic effects between montmorillonite, Fe₃O₄ nanoparticles and humic acid. The MFH nanocomposites are highly efficient and recyclable as they can remove at least 82.3% of Cr(VI) and 95.1% of aniline in six consecutive runs. The adsorption mechanism was investigated by analyzing the kinetic parameters of pseudo first-order, pseudo second-order, and intraparticle diffusion models and describing the equilibrium isotherms of Langmuir and Freundlich models. Results indicated different adsorption mechanisms of Cr(VI) and aniline by MFH. The readily synthesized MFH nanocomposites can act as effective and practical materials for environmental applications.
Collapse
Affiliation(s)
- Haijiao Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| | - Jingkang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| | - Fei Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| | - Xin Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| | - Beiqian Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| | - Hongxun Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| |
Collapse
|
18
|
Ontañon OM, Fernandez M, Agostini E, González PS. Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(VI) by Bacillus sp. SFC 500-1E. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16111-16120. [PMID: 29594905 DOI: 10.1007/s11356-018-1764-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Chromium pollution is a problem that affects different areas worldwide and, therefore, must be solved. Bioremediation is a promising alternative to treat environmental contamination, but finding bacterial strains able to tolerate and remove different contaminants is a major challenge, since most co-polluted sites contain mixtures of organic and inorganic substances. In the present work, Bacillus sp. SFC 500-1E, isolated from the bacterial consortium SFC 500-1 native to tannery sediments, showed tolerance to various concentrations of different phenolic compounds and heavy metals, such as Cr(VI). This strain was able to efficiently remove Cr(VI), even in the presence of phenol. The detection of the chrA gene suggested that Cr(VI) extrusion could be a mechanism that allowed this strain to tolerate the heavy metal. However, reduction through cytosolic NADH-dependent chromate reductases may be the main mechanism involved in the remediation. The information provided in this study about the mechanisms through which Bacillus sp. SFC 500-1E removes Cr(VI) should be taken into account for the future application of this strain as a possible candidate to remediate contaminated environments.
Collapse
Affiliation(s)
- Ornella M Ontañon
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
| | - Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
19
|
Liu J, Fang W, Wang Y, Xing M, Zhang J. Gold-loaded graphene oxide/PDPB composites for the synchronous removal of Cr(VI) and phenol. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62933-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
|
21
|
Zhou Y, Fang W, Deng Y, Pan L, Shen B, Li H, Hu Y, Chen H, Xing M, Zhang J. Enhanced photoreduction of Cr(vi) and photooxidation of NO over TiO2−x mesoporous single crystals. RSC Adv 2017. [DOI: 10.1039/c7ra09903g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extended wide-spectrum absorption and the high-active holes and electrons on Ti3+-MSCs lead to the high decontamination ability and an improved selectivity of NO2 in the NOx photo-oxidation process.
Collapse
|