1
|
Hassan MNF, Yazid MD, Yunus MHBM, Lokanathan Y, Ng MH, Idrus RBH, Tang YL, Ng SN, Law JX. Comparing the growth kinetics and characteristics of Wharton's jelly derived mesenchymal stem cells expanded using different culture mediums. Cytotechnology 2025; 77:24. [PMID: 39711971 PMCID: PMC11659549 DOI: 10.1007/s10616-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/07/2024] [Indexed: 12/24/2024] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) can be isolated from umbilical cords which is abundant and easy to obtain. Due to their potent immunosuppressive properties, multilineage differentiation potential, and lack of ethical issues, WJ-MSCs are considered a promising candidate for therapeutic applications. However, large-scale in vitro expansion is necessary to obtain enough cells for therapeutic purposes. Therefore, this study aimed to optimize cell culture conditions and determine the characteristics of expanded WJ-MSCs. WJ-MSCs were seeded in 6-well plates at a density of 5000 cells/cm2 and cultured with different mediums, including DMEM-LG+10% FBS, DMEM-LG+10% HPL, serum-free commercial medium 1, serum-free GMP grade commercial medium 2, and HPL supplemented commercial medium 3. The cell morphology and growth kinetics were compared, and the three most suitable mediums were selected for further experiments. WJ-MSCs were then cultured in the selected mediums at seeding densities ranging from 1000 to 5000 cells/cm2, and cell growth kinetics were analysed. WJ-MSCs cultured in the selected mediums were characterized by their immunophenotype, tri-lineage differentiation potential and immunosuppression property. WJ-MSCs cultured with DMEM-LG+10% HPL, commercial medium 1 and commercial medium 2 showed smaller size, significantly higher cell yield, and shorter population doubling time than those cultured in other mediums. Hence, these three mediums were selected for further experiments. Only DMEM-LG + 10% HPL medium maintained high cell yields (1.48 ± 0.14 × 106 with bFGF and 1.56 ± 0.17 × 106 without bFGF) at the lowest seeding density tested. However, WJ-MSCs cultured in all three mediums expressed the MSC surface markers, were able to suppress PBMC proliferation, and could differentiate into adipogenic, chondrogenic and osteogenic lineages. In summary, DMEM-LG+10% HPL is the best medium for WJ-MSC expansion, as it provides the highest cell yield without compromising cell characteristics and functionality. The potential of this medium for large-scale expansion using a bioreactor or multilayered flask should be investigated in the future.
Collapse
Affiliation(s)
- Muhammad Najib Fathi Hassan
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yee Loong Tang
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - See Nguan Ng
- Ming Medical Sdn Bhd, D3-3 (2Nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301 Petaling Jaya, Selangor Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Bernardini C, Romagnoli N, Casalini I, Turba ME, Spadari A, Forni M, Gentilini F. Freeze-drying protocols and methods of maintaining the in-vitro biological activity of horse platelet lysate. Int J Vet Sci Med 2024; 12:71-80. [PMID: 39119550 PMCID: PMC11308971 DOI: 10.1080/23144599.2024.2380586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Platelet lysate, derived from platelets, are valuable biological products rich in bioactive molecules. Their use promotes tissue healing and modulates inflammation. However, maintaining the stability and bioactivity of platelet lysate is challenging since they degrade rapidly at room temperature. This study focused on the possibility to confer enhanced stability to freeze-dried equine platelet lysate as an alternative to platelet-rich plasma (PRP). Platelet lysate (PL) was derived from PRP and freeze-dried either as such or using various adjuvants. Primary cell cultures of porcine Vascular Wall-Mesenchymal Stem Cells were treated with different PL formulations, and cell viability was assessed using an MTT assay. Overall, the addition of PL significantly improved cell viability as compared to controls without growth factor supplementation or with foetal bovine serum. Notably, the freeze-drying process maintained the effectiveness of the PL for at least a week. Furthermore, the study revealed that varying the horse as the source of PL could yield varying effects on cell viability. Detailed freeze-drying protocols were established, including freezing, primary drying and secondary drying phases, and the type of adjuvant. This study demonstrated the potential of freeze-dried equine PL as a viable alternative to PRP and highlighted the importance of precise freeze-drying protocols and adjuvants for standardization. Equine PL showed promise for medical treatment in horses, offering advantages such as extended shelf life, ease of handling, and reduced transportation costs, with the potential for broadened therapeutic usage.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| | - Isabelle Casalini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| | | | - Alessandro Spadari
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell ’Emilia, Bologna, Italy
| |
Collapse
|
3
|
Le NTN, Han CL, Delila L, Nebie O, Chien HT, Wu YW, Buée L, Blum D, Burnouf T. Proteomics of human platelet lysates and insight from animal studies on platelet protein diffusion to hippocampus upon intranasal administration. APL Bioeng 2024; 8:026111. [PMID: 38726021 PMCID: PMC11080963 DOI: 10.1063/5.0196553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Human platelet lysates (HPLs) from allogeneic platelet concentrates (PCs) are biomaterials, which are rich in various trophic factors, increasingly used in regenerative medicine and biotherapy. Understanding how preparation methods influence the HPL protein profile, biological function, and clinical outcomes is crucial. Our study sheds light on the proteomes and functionality of different HPLs, with the aim of advancing their scientifically grounded clinical applications. To achieve this, PCs suspended in plasma underwent three distinct processing methods, resulting in seven HPL types. We used three characterization techniques: label-free proteomics and tandem mass tag (TMT)-based quantitative proteomics, both before and after the immunodepletion of abundant plasma proteins. Bioinformatic tools assessed the proteome, and western blotting validated our quantitative proteomics data. Subsequent pre-clinical studies with fluorescent labeling and label-free proteomics were used as a proof of concept for brain diffusion. Our findings revealed 1441 proteins detected using the label-free method, 952 proteins from the TMT experiment before and after depletion, and 1114 proteins from the subsequent TMT experiment on depleted HPLs. Most detected proteins were cytoplasmic, playing key roles in catalysis, hemostasis, and immune responses. Notably, the processing methodologies significantly influenced HPL compositions, their canonical pathways, and, consequently, their functionality. Each HPL exhibited specific abundant proteins, providing valuable insight for tailored clinical applications. Immunoblotting results for selected proteins corroborated our quantitative proteomics data. The diffusion and differential effects to the hippocampus of a neuroprotective HPL administered intranasally to mice were demonstrated. This proteomics study advances our understanding of HPLs, suggesting ways to standardize and customize their production for better clinical efficacy in regenerative medicine and biotherapy. Proteomic analyses also offered objective evidence that HPPL, upon intranasal delivery, not only effectively diffuses to the hippocampus but also alters protein expression in mice, bolstering its potential as a treatment for memory impairments.
Collapse
Affiliation(s)
- Nhi Thao Ngoc Le
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | | | - Hsin-Tung Chien
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | | | - David Blum
- Authors to whom correspondence should be addressed: and . Tel.: +886 988 925 235
| | - Thierry Burnouf
- Authors to whom correspondence should be addressed: and . Tel.: +886 988 925 235
| |
Collapse
|
4
|
De Korte D, Delabie W, Feys HB, Klei T, Larsen R, Sigurjónsson Ó, Sousa AP. Towards standardized human platelet lysate production in Europe: An initiative of the European Blood Alliance. Vox Sang 2024; 119:79-87. [PMID: 38049931 DOI: 10.1111/vox.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
Human platelet lysate (hPL) is a supplement for cell culture media that can be derived from platelet concentrates. As not-for-profit blood establishments, we endorse the evolution of maximally exploiting the potential of donated blood and its derived components, including platelets. The decision to use platelet concentrates to supply hPL as a cell culture supplement should align with the principles and values that blood establishments hold towards the use of donated blood components in transfusion. As a consequence, questions on ethics, practical standardization of hPL production and logistics as well as on assuring hPL quality and safety need careful consideration. We therefore propose an opinion on some of these matters based on available literature and on discussions within the proceedings of the Working Group on Innovation and New Products of the European Blood Alliance. In addition, we propose collaboration among European blood establishments to streamline efforts of hPL supply to maximize the potential of hPL and its application in the wider field of medicine.
Collapse
Affiliation(s)
- Dirk De Korte
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Willem Delabie
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Thomas Klei
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Rune Larsen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Ólafur Sigurjónsson
- The Blood Bank, Landspitali University Hospital, Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Ana Paula Sousa
- Blood and Transplantation Centre of Lisboa, Portuguese Institute for Blood and Transplantation (IPST), Lisbon, Portugal
| |
Collapse
|
5
|
Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci 2023; 30:79. [PMID: 37704991 PMCID: PMC10500824 DOI: 10.1186/s12929-023-00972-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
6
|
Valerio LSA, Carrick FR, Bedoya L, Sreerama S, Sugaya K. Neural Differentiation of Induced Pluripotent Stem Cells for a Xenogeneic Material-Free 3D Neurological Disease Model Neurulation from Pluripotent Cells Using a Human Hydrogel. Curr Issues Mol Biol 2023; 45:4574-4588. [PMID: 37367039 DOI: 10.3390/cimb45060290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's Disease (AD) is characterized by synapse and neuronal loss and the accumulation of neurofibrillary tangles and Amyloid β plaques. Despite significant research efforts to understand the late stages of the disease, its etiology remains largely unknown. This is in part because of the imprecise AD models in current use. In addition, little attention has been paid to neural stem cells (NSC), which are the cells responsible for the development and maintenance of brain tissue during an individual's lifespan. Thus, an in vitro 3D human brain tissue model using induced pluripotent stem (iPS) cell-derived neural cells in human physiological conditions may be an excellent alternative to standard models to investigate AD pathology. Following the differentiation process mimicking development, iPS cells can be turned into NSCs and, ultimately, neural cells. During differentiation, the traditionally used xenogeneic products may alter the cells' physiology and prevent accurate disease pathology modeling. Hence, establishing a xenogeneic material-free cell culture and differentiation protocol is essential. This study investigated the differentiation of iPS cells to neural cells using a novel extracellular matrix derived from human platelet lysates (PL Matrix). We compared the stemness properties and differentiation efficacies of iPS cells in a PL matrix against those in a conventional 3D scaffold made of an oncogenic murine-matrix. Using well-defined conditions without xenogeneic material, we successfully expanded and differentiated iPS cells into NSCs via dual-SMAD inhibition, which regulates the BMP and TGF signaling cascades in a manner closer to human conditions. This in vitro, 3D, xenogeneic-free scaffold will enhance the quality of disease modeling for neurodegenerative disease research, and the knowledge produced could be used in developing more effective translational medicine.
Collapse
Affiliation(s)
- Luis Sebastian Alexis Valerio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Institute for Scientific Research and Technology Services (INDICASAT), City of Knowledge 0801, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India
| | - Frederick Robert Carrick
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- MGH Institute of Health Professions, Boston, MA 02129, USA
- Centre for Mental Health Research in Association, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA
| | - Lina Bedoya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sandeep Sreerama
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Institute for Scientific Research and Technology Services (INDICASAT), City of Knowledge 0801, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India
| |
Collapse
|
7
|
Platelets Facilitate Wound Healing by Mitochondrial Transfer and Reducing Oxidative Stress in Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2345279. [PMID: 36860732 PMCID: PMC9970712 DOI: 10.1155/2023/2345279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023]
Abstract
As a critical member in wound healing, vascular endothelial cells (ECs) impaired under high levels of reactive oxygen species (ROS) would hamper neovascularization. Mitochondria transfer can reduce intracellular ROS damage under pathological condition. Meanwhile, platelets can release mitochondria and alleviate oxidative stress. However, the mechanism by which platelets promote cell survival and reduce oxidative stress damage has not been clarified. Here, first, we selected ultrasound as the best method for subsequent experiments by detecting the growth factors and mitochondria released from manipulation platelet concentrates (PCs), as well as the effect of manipulation PCs on the proliferation and migration of HUVECs. Then, we found that sonicate platelet concentrates (SPC) decreased the level of ROS in HUVECs treated with hydrogen peroxide in advance, increased mitochondrial membrane potential, and reduced apoptosis. By transmission electron microscope, we saw that two kinds of mitochondria, free or wrapped in vesicles, were released by activated platelets. In addition, we explored that platelet-derived mitochondria were transferred to HUVECs partly by means of dynamin-dependent clathrin-mediated endocytosis. Consistently, we determined that platelet-derived mitochondria reduced apoptosis of HUVECs caused by oxidative stress. What is more, we screened survivin as the target of platelet-derived mitochondria via high-throughput sequencing. Finally, we demonstrated that platelet-derived mitochondria promoted wound healing in vivo. Overall, these findings revealed that platelets are important donors of mitochondria, and platelet-derived mitochondria can promote wound healing by reducing apoptosis caused by oxidative stress in vascular endothelial cells. And survivin is a potential target. These results further expand the knowledge of the platelet function and provide new insights into the role of platelet-derived mitochondria in wound healing.
Collapse
|
8
|
Widyaningrum R, Wu YW, Delila L, Lee DY, Wang TJ, Burnouf T. In vitro evaluation of platelet extracellular vesicles (PEVs) for corneal endothelial regeneration. Platelets 2022; 33:1237-1250. [PMID: 35949054 DOI: 10.1080/09537104.2022.2105829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Corneal endothelial cells (CECs) slowly decrease in number with increasing age, which is a clinical issue as these cells have very limited regenerative ability. Therapeutic platelet biomaterials are increasingly used in regenerative medicine and cell therapy because of their safety, cost-effective manufacture, and global availability from collected platelet concentrates (PCs). Platelet extracellular vesicles (PEVs) are a complex mixture of potent bioactive vesicles rich in molecules believed to be instrumental in tissue repair and regeneration. In this study we investigated the feasibility of using a PEVs preparation as an innovative regenerative biotherapy for corneal endothelial dysfunction. The PEVs were isolated from clinical-grade human PC supernatants by 20,000 × g ultracentrifugation and resuspension. PEVs exhibited a regular, fairly rounded shape, with an average size of <200 nm and were present at a concentration of approximately 1011 /mL. PEVs expressed cluster of differentiation 41 (CD41) and CD61, characteristic platelets membrane markers, and CD9 and CD63. ELISA and LC-MS/MS proteomic analyses revealed that the PEVs contained mixtures of growth factors and multiple other trophic factors, as well as proteins related to extracellular exosomes with functional activities associated with cell cadherin and adherens pathways. CECs treated with PEVs showed increased viability, an enhanced wound-healing rate, stronger proliferation markers, and an improved adhesion rate. PEVs did not exert cellular toxicity as evidenced by the maintenance of cellular morphology and preservation of corneal endothelial proteins. These findings clearly support further investigations of PEV biomaterials in animal models for translation as a new CEC regeneration biotherapy.
Collapse
Affiliation(s)
- Rifa Widyaningrum
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Ophthalmology, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada-Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Deng-Yao Lee
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Santos SC, Custódio CA, Mano JF. Human Protein-Based Porous Scaffolds as Platforms for Xeno-Free 3D Cell Culture. Adv Healthc Mater 2022; 11:e2102383. [PMID: 35182104 DOI: 10.1002/adhm.202102383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Extracellular matrix and protein-based biomaterials emerge as attractive sources to produce scaffolds due to their great properties regarding biocompatibility and bioactivity. In addition, there are concerns regarding the use of animal-derived supplements in cell culture not only due to the risk of transmission of xenogeneic contaminants and antigens but also due to ethical issues associated with collection methods. Herein, a novel human protein-derived porous scaffold produced from platelet lysates (PL) as platform for xeno-free 3D cell culture has been proposed. Human PL are chemically modified with methacryloyl groups (PLMA) to make them photocrosslinkable and used as precursor material to produce PLMA-based sponges. The herein reported human-based sponges have highly tunable morphology and mechanical properties, with an internal porous structure and Young's modulus dependent on the concentration of the polymer. Human adipose-derived stem cells (hASCs) are cultured on top of PLMA sponges to validate their use for 3D cell culture in xeno-free conditions. After 14 days hASCs remained viable, and results show that cells are able to proliferate during time even in the absence of animal-derived supplementation. This study reveals for the first time that such scaffolds can be promising platforms for culture of human cells avoiding the use of any animal-derived supplement.
Collapse
Affiliation(s)
- Sara C. Santos
- Department of Chemistry CICECO University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Catarina A. Custódio
- Department of Chemistry CICECO University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- Department of Chemistry CICECO University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
10
|
Barro L, Delila L, Nebie O, Wu YW, Knutson F, Watanabe N, Takahara M, Burnouf T. Removal of minute virus of mice-mock virus particles by nanofiltration of culture growth medium supplemented with 10% human platelet lysate. Cytotherapy 2021; 23:902-907. [PMID: 34238658 DOI: 10.1016/j.jcyt.2021.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AIMS Platelet concentrates (PCs) are pooled to prepare human platelet lysate (HPL) supplements of growth media to expand primary human cells for transplantation; this increases the risk of contamination by known, emerging, and unknown viruses. This possibility should be of concern because viral contamination of cell cultures is difficult to detect and may have detrimental consequences for recipients of cell therapies. Viral reduction treatments of chemically defined growth media have been proposed, but they are not applicable when media contain protein supplements currently needed to expand primary cell cultures. Recently, we successfully developed a Planova 35NPlanova 20N nanofiltration sequence of growth media supplemented with two types of HPL. The nanofiltered medium was found to be suitable for mesenchymal Stromal cell (MSC) expansion. METHODS Herein, we report viral clearance achieved by this nanofiltration process used for assessing a new experimental model using non-infectious minute virus of mice-mock virus particle (MVM-MVP) and its quantification by an immunoqPCR. Then, high doses of MVM-MVP (1012 MVPs/mL) were spiked to obtain a final concentration of 1010 MVPs/mL in Planova 35N-nanofiltered growth medium supplemented with both types of HPLs [serum converted platelet lysate SCPL) and intercept human platelet lysate (I-HPL)] at 10% (v/v) and then filtering through Planova 20N. RESULTS No substantial interference of growth medium matrices by the immune-qPCR assay was first verified. Log reduction values (LRVs) were ≥ 5.43 and ≥ 5.36 respectively, SCPL and I-HPL media. MVM-MVPs were also undetectable by dynamic light scattering and transmission electron microscopy. CONCLUSIONS The nanofiltration of growth media supplemented with 10% HPL provides robust removal of small nonenveloped viruses, and is an option to improve the safety of therapeutic cells expanded using HPL supplements.
Collapse
Affiliation(s)
- Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | | | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Developing a Glyoxal-Crosslinked Chitosan/Gelatin Hydrogel for Sustained Release of Human Platelet Lysate to Promote Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22126451. [PMID: 34208633 PMCID: PMC8234746 DOI: 10.3390/ijms22126451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022] Open
Abstract
The clinical application of human platelet lysate (HPL) holds promise for tissue regeneration, and the development of an efficient vehicle for its delivery is desired. Chitosan-based hydrogels are potential candidates, but they often exhibit weak mechanical properties. In this study, a chitosan/gelatin (CS-GE) hydrogel crosslinked by glyoxal was fabricated for sustained release of HPL. The influence of HPL on Hs68 fibroblast and human umbilical vein endothelial cell (HUVEC) culture was evaluated, and we found that supplementing 5% HPL in the medium could significantly improve cell proliferation relative to supplementing 10% fetal bovine serum (FBS). Moreover, HPL accelerated the in vitro wound closure of Hs68 cells and facilitated the tube formation of HUVECs. Subsequently, we fabricated CS-GE hydrogels crosslinked with different concentrations of glyoxal, and the release pattern of FITC-dextrans (4, 40 and 500 kDa) from the hydrogels was assessed. After an ideal glyoxal concentration was determined, we further characterized the crosslinked CS-GE hydrogels encapsulated with different amounts of HPL. The HPL-incorporated hydrogel was shown to significantly promote the proliferation of Hs68 cells and the migration of HUVECs. Moreover, the release pattern of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB) from hydrogel was examined in vitro, demonstrating a sustained release profile of the growth factors. Finally, the chick chorioallantoic membrane assay revealed that HPL encapsulation in the hydrogel significantly stimulated angiogenesis in ovo. These results demonstrate the great potential of the crosslinked CS-GE hydrogel to serve as an effective delivery system for HPL to promote tissue regeneration.
Collapse
|
12
|
Barro L, Burnouf PA, Chou ML, Nebie O, Wu YW, Chen MS, Radosevic M, Knutson F, Burnouf T. Human platelet lysates for human cell propagation. Platelets 2020; 32:152-162. [PMID: 33251940 DOI: 10.1080/09537104.2020.1849602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A pathogen-free and standardized xeno-free supplement of growth media is required for the ex vivo propagation of human cells used as advanced therapeutic medicinal products and for clinical translation in regenerative medicine and cell therapies. Human platelet lysate (HPL) made from therapeutic-grade platelet concentrate (PC) is increasingly regarded as being an efficient xeno-free alternative growth medium supplement to fetal bovine serum (FBS) for clinical-grade isolation and/or propagation of human cells. Most experimental studies establishing the superiority of HPL over FBS were conducted using mesenchymal stromal cells (MSCs) from bone marrow or adipose tissues. Data almost unanimously concur that MSCs expanded in a media supplemented with HPL have improved proliferation, shorter doubling times, and preserved clonogenicity, immunophenotype, in vitro trilineage differentiation capacity, and T-cell immunosuppressive activity. HPL can also be substituted for FBS when propagating MSCs from various other tissue sources, including Wharton jelly, the umbilical cord, amniotic fluid, dental pulp, periodontal ligaments, and apical papillae. Interestingly, HPL xeno-free supplementation is also proving successful for expanding human-differentiated cells, including chondrocytes, corneal endothelium and corneal epithelium cells, and tenocytes, for transplantation and tissue-engineering applications. In addition, the most recent developments suggest the possibility of successfully expanding immune cells such as macrophages, dendritic cells, and chimeric antigen receptor-T cells in HPL, further broadening its use as a growth medium supplement. Therefore, strong scientific rationale supports the use of HPL as a universal growth medium supplement for isolating and propagating therapeutic human cells for transplantation and tissue engineering. Efforts are underway to ensure optimal standardization and pathogen safety of HPL to secure its reliability for clinical-grade cell-therapy and regenerative medicine products and tissue engineering.
Collapse
Affiliation(s)
- Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering,Taipei Medical University, Taipei, Taiwan
| | - Pierre-Alain Burnouf
- Technological Intelligence Department, Human Protein Process Sciences, Lille, France
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,INSERM UMRS 938, CdR Saint-Antoine, Laboratory Immune System, Neuroinflammation and Neurodegenerative Diseases, Saint-Antoine Hospital, Paris, France
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ming-Sheng Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Miryana Radosevic
- Technological Intelligence Department, Human Protein Process Sciences, Lille, France
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering,Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Delila L, Wu YW, Nebie O, Widyaningrum R, Chou ML, Devos D, Burnouf T. Extensive characterization of the composition and functional activities of five preparations of human platelet lysates for dedicated clinical uses. Platelets 2020; 32:259-272. [PMID: 33245683 DOI: 10.1080/09537104.2020.1849603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelet lysates (HPLs), rich in various growth factors and cell growth-promoting molecules, encompass a new range of blood products that are being used for regenerative medicine, cell therapies, and tissue engineering. Well-characterized dedicated preparations, tailor-made to best fit specific therapeutic applications, are needed for optimal clinical efficacy and safety. Here, five types of HPL were prepared from the same platelet concentrates and extensively characterized to determine and compare their proteins, growth factors, cytokines, biochemical profiles, thrombin-generating capacities, thrombin-associated proteolytic activities, phospholipid-associated procoagulant potential, contents of extracellular vesicles expressing phosphatidylserine and tissue factor, and antioxidative properties. Our results revealed that all five HPL preparations contained detectable supraphysiological levels, in the ca. 0.1 ~ 350-ng/ml range, of all growth factors assessed, except insulin-like growth factor-1 detected only in HPL containing plasma. There were significant differences observed among these HPLs in total protein content, fibrinogen, complement components C3 and C4, albumin, and immunoglobulin G, and, most importantly, in their functional coagulant and procoagulant activities and antioxidative capacities. Our data revealed that the biochemical and functional properties of HPL preparations greatly vary depending upon their mode of production, with potential impacts on the safety and efficacy for certain clinical indications. Modes of preparation of HPLs should be carefully designed, and the product properties carefully evaluated based on the intended therapeutic use to ensure optimal clinical outcomes.
Collapse
Affiliation(s)
- Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Rifa Widyaningrum
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - David Devos
- Univ. Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,Research Center of Biomedical Devices, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine Taipei Medical University, Taipei, Taiwan.,PhD Program in Graduate Institute of Mind Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Guiotto M, Raffoul W, Hart AM, Riehle MO, di Summa PG. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review. J Transl Med 2020; 18:351. [PMID: 32933520 PMCID: PMC7493356 DOI: 10.1186/s12967-020-02489-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Foetal bovine serum (FBS), is the most commonly used culture medium additive for in vitro cultures, despite its undefined composition, its potential immunogenicity and possible prion/zoonotic transmission. For these reasons, significant efforts have been targeted at finding a substitute, such as serum free-media or human platelet-lysates (hPL). Our aim is to critically appraise the state-of-art for hPL in the published literature, comparing its impact with FBS. MATERIALS AND METHODS In June 2019 a systematic search of the entire Web of Science, Medline and PubMed database was performed with the following search terms: (mesenchymal stem cells) AND (fetal bovine serum OR fetal bovine calf) AND (human platelet lysate). Excluded from this search were review articles that were published before 2005, manuscripts in which mesenchymal stem cells (MSCs) were not from human sources, and when the FBS controls were missing. RESULTS Based on our search algorithm, 56 papers were selected. A review of these papers indicated that hMSCs cultured with hPL showed a spindle-shaped elongated morphology, had higher proliferation indexes, similar cluster of differentiation (CD) markers and no significant variation in differentiation lineage (osteocyte, adipocyte, and chondrocyte) compared to those cultured with FBS. Main sources of primary hMSCs were either fat tissue or bone marrow; in a few studies cells isolated from alternative sources showed no relevant difference in their response. CONCLUSION Despite the difference in medium choice and a lack of standardization of hPL manufacturing, the majority of publications support that hPL was at least as effective as FBS in promoting adhesion, survival and proliferation of hMSCs. We conclude that hPL should be considered a viable alternative to FBS in hMSCs culture-especially with a view for their clinical use.
Collapse
Affiliation(s)
- M Guiotto
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. .,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.
| | - W Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - A M Hart
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.,Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - M O Riehle
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| | - P G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
15
|
Mareschi K, Castiglia S, Adamini A, Rustichelli D, Marini E, Banche Niclot AGS, Bergallo M, Labanca L, Ferrero I, Fagioli F. Inactivated Platelet Lysate Supports the Proliferation and Immunomodulant Characteristics of Mesenchymal Stromal Cells in GMP Culture Conditions. Biomedicines 2020; 8:biomedicines8070220. [PMID: 32708843 PMCID: PMC7400095 DOI: 10.3390/biomedicines8070220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) isolated from bone marrow (BM-MSCs) are considered advanced therapy medicinal products (ATMPs) and need to be produced according to good manufacturing practice (GMP) in their clinical use. Human platelet lysate (HPL) is a good GMP-compliant alternative to animal serum, and we have demonstrated that after pathogen inactivation with psoralen, it was safer and more efficient to use psoralen in the production of MSCs following GMP guidelines. In this study, the MSCs cultivated in fetal bovine serum (FBS-MSC) or inactivated HPL (iHPL-MSC) were compared for their immunomodulatory properties. We studied the effects of MSCs on (1) the proliferation of total lymphocytes (Ly) and on naïve T Ly subsets induced to differentiate in Th1 versus Th2 Ly; (2) the immunophenotype of different T-cell subsets; (3) and the cytokine release to verify Th1, Th2, and Th17 polarization. These were analyzed by using an in vitro co-culture system. We observed that iHPL-MSCs showed the same immunomodulatory properties observed in the FBS-MSC co-cultures. Furthermore, a more efficient effect on the increase of naïve T- cells and in the Th1 cytokine release from iHPL was observed. This study confirms that iHPL, used as a medium supplement, may be considered a good alternative to FBS for a GMP-compliant MSC expansion, and also to preserve their immunomodulatory proprieties.
Collapse
Affiliation(s)
- Katia Mareschi
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
- Correspondence: ; Tel.: +39-11-3135420
| | - Sara Castiglia
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Aloe Adamini
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Deborah Rustichelli
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Elena Marini
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
| | - Alessia Giovanna Santa Banche Niclot
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
| | - Massimiliano Bergallo
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
| | - Luciana Labanca
- Blood Component Production and Validation Center, City of Health and Science of Turin, S. Anna Hospital, 10126 Turin, Italy;
| | - Ivana Ferrero
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Franca Fagioli
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| |
Collapse
|
16
|
Barro L, Nebie O, Chen MS, Wu YW, Koh MB, Knutson F, Watanabe N, Takahara M, Burnouf T. Nanofiltration of growth media supplemented with human platelet lysates for pathogen-safe xeno-free expansion of mesenchymal stromal cells. Cytotherapy 2020; 22:458-472. [PMID: 32536505 PMCID: PMC7205656 DOI: 10.1016/j.jcyt.2020.04.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/02/2023]
Abstract
Background aims Human platelet lysate can replace fetal bovine serum (FBS) for xeno-free ex vivo expansion of mesenchymal stromal cells (MSCs), but pooling of platelet concentrates (PCs) increases risks of pathogen transmission. We evaluated the feasibility of performing nanofiltration of platelet lysates and determined the impact on expansion of bone marrow–derived MSCs. Methods Platelet lysates were prepared by freeze-thawing of pathogen-reduced (Intercept) PCs suspended in 65% storage solution (SPP+) and 35% plasma, and by serum-conversion of PCs suspended in 100% plasma. Lysates were added to the MSC growth media at 10% (v/v), filtered and subjected to cascade nanofiltration on 35- and 19-nm Planova filters. Media supplemented with 10% starting platelet lysates or FBS were used as the controls. Impacts of nanofiltration on the growth media composition, removal of platelet extracellular vesicles (PEVs) and MSC expansion were evaluated. Results Nanofiltration did not detrimentally affect contents of total protein and growth factors or the biochemical composition. The clearance factor of PEVs was >3 log values. Expansion, proliferation, membrane markers, differentiation potential and immunosuppressive properties of cells in nanofiltered media were consistently better than those expanded in FBS-supplemented media. Compared with FBS, chondrogenesis and osteogenesis genes were expressed more in nanofiltered media, and there were fewer senescent cells over six passages. Conclusions Nanofiltration of growth media supplemented with two types of platelet lysates, including one prepared from pathogen-reduced PCs, is technically feasible. These data support the possibility of developing pathogen-reduced xeno-free growth media for clinical-grade propagation of human cells.
Collapse
Affiliation(s)
- Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ming-Sheng Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Mickey Bc Koh
- Department of Haematology, St George's University Hospitals Foundation NHS Trust, London, UK; Blood Sciences Group, Health Sciences Authority, Singapore
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | | | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
17
|
Nebie O, Devos D, Vingtdeux V, Barro L, Devedjian JC, Jonneaux A, Chou ML, Bordet R, Buée L, Knutson F, Blum D, Burnouf T. The neuroprotective activity of heat-treated human platelet lysate biomaterials manufactured from outdated pathogen-reduced (amotosalen/UVA) platelet concentrates. J Biomed Sci 2019; 26:89. [PMID: 31666073 PMCID: PMC6822406 DOI: 10.1186/s12929-019-0579-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background Effective neurorestorative therapies of neurodegenerative diseases must be developed. There is increasing interest in using human platelet lysates, rich in neurotrophic factors, as novel disease-modifying strategy of neurodegeneration. To ensure virus safety, pathogen reduction treatments should be incorporated in the preparation process of the platelet concentrates used as source material. We therefore investigated whether platelet concentrates (PC) pathogen-inactivated using a licensed photo-inactivation treatment combining photosensitive psoralen (amotosalen) and UVA irradiation (Intercept) can serve as source material to prepare platelet lysates with preserved neuroprotective activity in Parkinson’s disease models. Methods Intercept treated-PCs were centrifuged, when reaching expiry day (7 days after collection), to remove plasma and platelet additive solution. The platelet pellet was re-suspended and concentrated in phosphate buffer saline, subjected to 3 freeze-thaw cycles (− 80 °C/37 °C) then centrifuged to remove cell debris. The supernatant was recovered and further purified, or not, by heat-treatment as in our previous investigations. The content in proteins and neurotrophic factors was determined and the toxicity and neuroprotective activity of the platelet lysates towards LUHMES cells or primary cortical/hippocampal neurons were assessed using ELISA, flow cytometry, cell viability and cytotoxicity assays and proteins analysis by Western blot. Results Platelet lysates contained the expected level of total proteins (ca. 7–14 mg/mL) and neurotrophic factors. Virally inactivated and heat-treated platelet lysates did not exert detectable toxic effects on neither Lund human mesencephalic dopaminergic LUHMES cell line nor primary neurons. When used at doses of 5 and 0.5%, they enhanced the expression of tyrosine hydroxylase and neuron-specific enolase in LUHMES cells and did not significantly impact synaptic protein expression in primary neurons, respectively. Furthermore, virally-inactivated platelet lysates tested were found to exert very strong neuroprotection effects on both LUHMES and primary neurons exposed to erastin, an inducer of ferroptosis cell death. Conclusion Outdated Intercept pathogen-reduced platelet concentrates can be used to prepare safe and highly neuroprotective human heat-treated platelet pellet lysates. These data open reassuring perspectives in the possibility to develop an effective biotherapy using virally-inactivated platelet lysates rich in functional neurotrophins for neuroregenerative medicine, and for further bio-industrial development. However, the data should be confirmed in animal models. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
| | - David Devos
- Univ Lille, Inserm, CHU Lille, UMR-S1171. Lille Neuroscience & Cognition, Degenerative and vascular cognitive disorders, F-59000, Lille, France
| | - Valérie Vingtdeux
- Univ. Lille, Inserm, CHU-Lille, UMR-S1172, Lille Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000, Lille, France
| | - Lassina Barro
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Jean-Christophe Devedjian
- Univ Lille, Inserm, CHU Lille, UMR-S1171. Lille Neuroscience & Cognition, Degenerative and vascular cognitive disorders, F-59000, Lille, France
| | - Aurélie Jonneaux
- Univ Lille, Inserm, CHU Lille, UMR-S1171. Lille Neuroscience & Cognition, Degenerative and vascular cognitive disorders, F-59000, Lille, France
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.,Present address: INSERM UMRS 938, CdR Saint-Antoine, Laboratory Immune System, Neuroinflammation and Neurodegenerative Diseases, Saint-Antoine Hospital, Paris, France
| | - Régis Bordet
- Univ Lille, Inserm, CHU Lille, UMR-S1171. Lille Neuroscience & Cognition, Degenerative and vascular cognitive disorders, F-59000, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, UMR-S1172, Lille Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000, Lille, France
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - David Blum
- Univ. Lille, Inserm, CHU-Lille, UMR-S1172, Lille Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000, Lille, France.
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan. .,International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. .,International Ph.D. Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Guadix JA, López-Beas J, Clares B, Soriano-Ruiz JL, Zugaza JL, Gálvez-Martín P. Principal Criteria for Evaluating the Quality, Safety and Efficacy of hMSC-Based Products in Clinical Practice: Current Approaches and Challenges. Pharmaceutics 2019; 11:pharmaceutics11110552. [PMID: 31652984 PMCID: PMC6921040 DOI: 10.3390/pharmaceutics11110552] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Human Mesenchymal Stem Cells (hMSCs) play an important role as new therapeutic alternatives in advanced therapies and regenerative medicine thanks to their regenerative and immunomodulatory properties, and ability to migrate to the exact area of injury. These properties have made hMSCs one of the more promising cellular active substances at present, particularly in terms of the development of new and innovative hMSC-based products. Currently, numerous clinical trials are being conducted to evaluate the therapeutic activity of hMSC-based products on specific targets. Given the rapidly growing number of hMSC clinical trials in recent years and the complexity of these products due to their cellular component characteristics and medicinal product status, there is a greater need to define more stringent, specific, and harmonized requirements to characterize the quality of the hMSCs and enhance the analysis of their safety and efficacy in final products to be administered to patients. These requirements should be implemented throughout the manufacturing process to guarantee the function and integrity of hMSCs and to ensure that the hMSC-based final product consistently meets its specifications across batches. This paper describes the principal phases involved in the design of the manufacturing process and updates the specific technical requirements needed to address the appropriate clinical use of hMSC-based products. The challenges and limitations to evaluating the safety, efficacy, and quality of hMSCs have been also reviewed and discussed.
Collapse
Affiliation(s)
- Juan Antonio Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, Málaga E-29071, Spain.
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), c/ Severo Ochoa nº25, Campanillas, Málaga E-29590, Spain.
| | - Javier López-Beas
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville 41092, Spain.
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain.
| | - José Luis Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain.
| | - José Luis Zugaza
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa E-48940, Spain.
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, building 205, Zamudio E-48170, Spain.
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Bilbao E-48013, Spain.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain.
- R&D Human Health, Bioibérica S.A.U., Barcelona E-08029, Spain.
| |
Collapse
|
19
|
Barro L, Su YT, Nebie O, Wu YW, Huang YH, Koh MB, Knutson F, Burnouf T. A double-virally-inactivated (Intercept-solvent/detergent) human platelet lysate for in vitro expansion of human mesenchymal stromal cells. Transfusion 2019; 59:2061-2073. [PMID: 30912158 DOI: 10.1111/trf.15251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pooled human platelet lysate (HPL) can replace fetal bovine serum (FBS) as xeno-free supplement for ex vivo expansion of mesenchymal stromal cells (MSCs). We evaluate here whether a double-virally-inactivated HPL (DVI-HPL) prepared from expired Intercept-treated platelet concentrates (PCs) and treated by solvent/detergent (S/D) can be used for MSC expansion. STUDY DESIGN AND METHODS Expired Intercept-treated PCs in 65% platelet (PLT) additive solution were pooled and subjected to a 1% tri-n-butyl phosphate/1% Triton X-45 treatment followed by soybean oil, hydrophobic interaction chromatography purification, and sterile filtration. Bone marrow-derived MSCs (BM-MSCs) were expanded for four passages in growth medium containing 10% DVI-HPL, I-HPL (from Intercept-PC only), untreated HPL, and FBS. MSC morphology, doubling time, immunophenotype, immunosuppressive activity, and differentiation capacity were compared. RESULTS Expanded cells had typical spindle morphology and showed higher viability in all HPL conditions than in FBS. The DVI-HPL and FBS-expanded cells were morphologically larger than in I-HPL and HPL supplements. The cumulative population doubling was lower using DVI-HPL than with HPL and I-HPL, but significantly higher than using FBS. Immunophenotype was not affected by the supplements used. Immunosuppressive activity was maintained with all supplements. Differentiation capacity into chondrocytes and osteocytes was more effective in DVI-HPL but less toward adipocytes compared to other supplements. CONCLUSIONS Human PLT lysate made from Intercept-PCs subjected to S/D treatment may be an alternative to untreated HPL and to I-HPL for BM-MSC expansion. This finding reinforces the potential of HPL as a virally safe alternative to FBS for clinical grade MSC expansion protocols.
Collapse
Affiliation(s)
- Lassina Barro
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Su
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mickey Bc Koh
- Stem Cell Transplantation Programme, St. George's University Hospitals NHS Foundation Trust, Tooting, London, SW17 0QT, United Kingdom.,Cell Therapy Programme, Blood Services Group, Health Sciences Authority, Singapore
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - Thierry Burnouf
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|