1
|
Liu S, Ni J, Yan F, Yin N, Li X, Ma R, Wu J, Zhou G, Feng J. Functional changes of the prefrontal cortex, insula, caudate and associated cognitive impairment (chemobrain) in NSCLC patients receiving different chemotherapy regimen. Front Oncol 2022; 12:1027515. [PMID: 36408140 PMCID: PMC9667024 DOI: 10.3389/fonc.2022.1027515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Chemotherapy-induced cognitive impairment (CICI), termed "chemobrain", is highly prevalent in cancer patients following the administration of chemotherapeutic agents. However, the potential pathophysiological mechanisms underlying CICI remain unknown. This study aimed to explore the functional changes of the brain and associated cognitive impairment in non-small cell lung cancer (NSCLC) patients receiving different chemotherapy regimen. METHODS A total of 49 NSCLC patients (25 patients receiving pemetrexed plus carboplatin chemotherapy (PeCC) and 24 patients receiving paclitaxel plus carboplatin chemotherapy (PaCC)) and 61 healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning, as well as cognitive function tests including Mini Mental State Exam (MMSE), Montreal Cognitive Assessment (MoCA), Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog). Brain functional activities were measured by regional homogeneity (ReHo) values, which were calculated and compared between groups. In addition, the associations between ReHo values of changed brain regions and scores of cognitive scales were evaluated. RESULTS NSCLC patients showed decreased scores of MMSE, MoCA and FACT-Cog and decreased ReHo values in the bilateral superior frontal gyrus (medial), middle frontal gyrus, left inferior frontal gyrus (orbital part) and increased ReHo values in the bilateral insula and caudate. Compared with HCs, patients receiving PeCC demonstrated decreased ReHo values in the right superior frontal gyrus (dorsolateral), left superior frontal gyrus (medial orbital), middle frontal gyrus, insula and rectus gyrus while patients receiving PaCC presented increased ReHo values in the right rolandic operculum, left insula and right caudate. Compared with patients receiving PaCC, patients receiving PeCC had decreased ReHo values in the left superior frontal gyrus (orbital part), middle frontal gyrus and increased ReHo values in the left inferior temporal gyrus, lingual gyrus. Moreover, positive relationships were found between ReHo values of the left and right superior frontal gyrus (medial) and the total scores of FACT-Cog in the patient group. CONCLUSION The findings provided evidences that carboplatin-based chemotherapy could cause CICI accompanied by functional changes in the prefrontal cortex, insula, caudate. These might be the pathophysiological basis for CICI of NSCLC patients and were affected by the differences of chemotherapeutic agent administration through different biological mechanisms.
Collapse
Affiliation(s)
- Siwen Liu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Ni
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Yan
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Na Yin
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyou Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Jifeng Feng, ; Guoren Zhou,
| | - Jifeng Feng
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Jifeng Feng, ; Guoren Zhou,
| |
Collapse
|
2
|
Tower SS, Medlin DJ, Bridges RL, Cho CS. Corrosion of Polished Cobalt-Chrome Stems Presenting as Cobalt Encephalopathy. Arthroplast Today 2020; 6:1022-1027. [PMID: 33385045 PMCID: PMC7772456 DOI: 10.1016/j.artd.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Adverse reactions to metallic debris from corrosion of polished cobalt-chromium–cemented femoral stems are reported. Cobaltism (systemic cobalt poisoning) has not been reported from this phenomenon. Three patients presented to their surgeon for ongoing care 10-20 years after primary metal-on-plastic hip arthroplasty with the same polished cobalt-chromium–cemented femoral stems (Heritage, Zimmer). Urine cobalt was elevated, and the patients had symptoms consistent with cobaltism. Quantitative-F16DG-PET-CT brain imaging was performed showing generalized and focal brain hypometabolism consistent with cobalt encephalopathy. At revision, all stems were well fixed and grossly corroded. At 1 year after revision, cobalturia and cognitive symptoms were resolved or improved. Mechanically assisted crevice corrosion at the polymethylmethacrylate interface is a complication of polished cobalt-chromium–cemented stems that can result in systemic cobalt exposure and toxic encephalopathy. Our cases had only minor periprosthetic symptoms. Patients implanted with polished cobalt-chromium–cemented stems warrant monitoring with urine cobalt. Patients with cobaltemia warrant an evaluation for toxic encephalopathy.
Collapse
Affiliation(s)
- Stephen S Tower
- Affiliated Professor Alaska's Medical School, Tower Orthopedic and Joint Replacement Clinic, Anchorage, AK, USA
| | | | | | - Christina S Cho
- Tower Orthopedic and Joint Replacement Clinic, Anchorage, AK, USA
| |
Collapse
|
3
|
Winter SF, Loebel F, Loeffler J, Batchelor TT, Martinez-Lage M, Vajkoczy P, Dietrich J. Treatment-induced brain tissue necrosis: a clinical challenge in neuro-oncology. Neuro Oncol 2020; 21:1118-1130. [PMID: 30828724 DOI: 10.1093/neuonc/noz048] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/04/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer therapy-induced adverse effects on the brain are a major challenge in neuro-oncology. Brain tissue necrosis (treatment necrosis [TN]) as a consequence of brain directed cancer therapy remains an insufficiently characterized condition with diagnostic and therapeutic difficulties and is frequently associated with significant patient morbidity. A better understanding of the underlying mechanisms, improvement of diagnostic tools, development of preventive strategies, and implementation of evidence-based therapeutic practices are pivotal to improve patient management. In this comprehensive review, we address existing challenges associated with current TN-related clinical and research practices and highlight unanswered questions and areas in need of further research with the ultimate goal to improve management of patients affected by this important neuro-oncological condition.
Collapse
Affiliation(s)
- Sebastian F Winter
- MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Charité‒Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Franziska Loebel
- Department of Neurosurgery, Charité‒Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jay Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tracy T Batchelor
- MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Martinez-Lage
- C S Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité‒Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jorg Dietrich
- MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Noll KR, Bradshaw ME, Parsons MW, Dawson EL, Rexer J, Wefel JS. Monitoring of Neurocognitive Function in the Care of Patients with Brain Tumors. Curr Treat Options Neurol 2019; 21:33. [PMID: 31250277 DOI: 10.1007/s11940-019-0573-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW A detailed characterization of the nature of neurocognitive impairment in patients with brain tumors is provided, as well as considerations for clinical practice regarding neuropsychological assessment throughout the disease course. RECENT FINDINGS Neurocognitive impairment is common in patients with brain tumors and may result from the tumor itself, as a consequence of treatment, including surgery, chemotherapy, and radiation, or in association with supportive care medications (e.g., anticonvulsant and pain medications). Serial surveillance of neurocognitive functioning in this population can facilitate medical decision-making and inform recommendations to improve patient daily functioning and quality of life. Neuropsychological assessment is increasingly recognized as a critical component of the multidisciplinary care of patients with brain tumors and has already had practice-changing effects. Further understanding of genetic risk factors for neurocognitive decline along with the development of novel assessment and intervention strategies may further enhance functioning and general well-being in this patient population.
Collapse
Affiliation(s)
- Kyle R Noll
- Section of Neuropsychology, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
| | - Mariana E Bradshaw
- Section of Neuropsychology, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
| | - Michael W Parsons
- Department of Neuro-Oncology, Psychology Assessment Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Erica L Dawson
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Jennie Rexer
- Section of Neuropsychology, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
| | - Jeffrey S Wefel
- Section of Neuropsychology, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA. .,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Tom MC, Cahill DP, Buckner JC, Dietrich J, Parsons MW, Yu JS. Management for Different Glioma Subtypes: Are All Low-Grade Gliomas Created Equal? Am Soc Clin Oncol Educ Book 2019; 39:133-145. [PMID: 31099638 DOI: 10.1200/edbk_238353] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Following the identification of key molecular alterations that provided superior prognostication and led to the updated 2016 World Health Organization (WHO) Central Nervous System (CNS) Tumor Classification, the understanding of glioma behavior has rapidly evolved. Mutations in isocitrate dehydrogenase (IDH) 1 and 2 are present in the majority of adult grade 2 and 3 gliomas, and when used in conjunction with 1p/19q codeletion for classification, the prognostic distinction between grade 2 versus grade 3 is diminished. As such, the previously often used term of "low-grade glioma," which referred to grade 2 gliomas, has now been replaced by the phrase "lower-grade glioma" to encompass both grade 2 and 3 tumors. Additional molecular characterization is ongoing to even further classify this heterogeneous group of tumors. With such a colossal shift in the understanding of lower-grade gliomas, management of disease is being redefined in the setting of emerging molecular-genetic biomarkers. In this article, we review recent progress and future directions regarding the surgical, radiotherapeutic, chemotherapeutic, and long-term management of adult lower-grade gliomas.
Collapse
Affiliation(s)
- Martin C Tom
- 1 Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel P Cahill
- 2 Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jan C Buckner
- 3 Department of Oncology, Mayo Clinic, Rochester, MN
| | - Jörg Dietrich
- 4 Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Michael W Parsons
- 4 Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Jennifer S Yu
- 1 Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.,5 Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
6
|
|
7
|
Abstract
PURPOSE OF REVIEW This article reviews key principles in the identification of tumors of the central nervous system (CNS) using standard and advanced imaging modalities. This article highlights the pitfalls and pearls of the imaging evaluation of patients with cancer at time of diagnosis and during cancer therapy and discusses the challenges of the imaging evaluation of treatment-related toxicities. RECENT FINDINGS Treatment of CNS tumors with surgery, chemotherapy, or radiation alters the imaging appearance of the tumor and can be associated with a variety of treatment-related toxicities. The clinician must be familiar with how to assess response to treatment and how to differentiate tumor progression from treatment-related effects. SUMMARY Management and follow-up of neuro-oncology patients is optimized by a comprehensive radiologic approach to CNS tumors and recognition of the challenges in the assessment of response to treatments.
Collapse
|
8
|
Jadvar H. The Use of Imaging in the Prediction and Assessment of Cancer Treatment Toxicity. Diagnostics (Basel) 2017; 7:diagnostics7030043. [PMID: 28726731 PMCID: PMC5617943 DOI: 10.3390/diagnostics7030043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 01/15/2023] Open
Abstract
Multimodal imaging is commonly used in the management of patients with cancer. Imaging plays pivotal roles in the diagnosis, initial staging, treatment response assessment, restaging after treatment and the prognosis of many cancers. Indeed, it is difficult to imagine modern precision cancer care without the use of multimodal molecular imaging, which is advancing at a rapid pace with innovative developments in imaging sciences and an improved understanding of the complex biology of cancer. Cancer therapy often leads to undesirable toxicity, which can range from an asymptomatic subclinical state to severe end organ damage and even death. Imaging is helpful in the portrayal of the unwanted effects of cancer therapy and may assist with optimal clinical decision-making, clinical management, and overall improvements in the outcomes and quality of life for patients.
Collapse
Affiliation(s)
- Hossein Jadvar
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
9
|
Klein JP. Imaging of progressive weakness or numbness of central or peripheral origin. HANDBOOK OF CLINICAL NEUROLOGY 2017; 136:923-37. [PMID: 27430450 DOI: 10.1016/b978-0-444-53486-6.00047-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Weakness and numbness occur in a variety of patterns that reflect injury to different parts of the central and peripheral nervous system. Progressive symptoms most often signify an underlying structural or degenerative problem. Familiarity with the major descending motor and ascending sensory tracts of the central nervous system, as well as radicular (dermatome and myotome) and peripheral nerve anatomy, is essential. Damage to these tracts and nerve fibers produces characteristic clinical symptoms and signs. Imaging, when used in a hypothesis-driven way, can be a valuable adjunct to the clinical history and physical examination. One of the most useful aspects of imaging is that it allows for differentiation of edema and inflammation from gliosis and atrophy, both of which can be associated with progressive weakness or numbness. Compression of nervous system structures by nonnervous system tissue can also be easily detected. The spectrum of diseases and imaging abnormalities associated with progressive weakness and numbness is highlighted in this review via a series of illustrative cases. In each case, anatomic localization and the key imaging findings are emphasized.
Collapse
Affiliation(s)
- Joshua P Klein
- Departments of Neurology and Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Abstract
Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.
Collapse
Affiliation(s)
- Md Torequl Islam
- a Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology , Federal University of Piauí (UFPI) , Teresina , Brazil.,b Department of Pharmacy, Faculty of Science and Engineering , Southern University Bangladesh (SUB) , Chittagong , Bangladesh
| |
Collapse
|