1
|
Testa U, Castelli G, Pelosi E. Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Med Sci (Basel) 2018; 6:E85. [PMID: 30279357 PMCID: PMC6313628 DOI: 10.3390/medsci6040085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Brain tumors are highly heterogeneous and have been classified by the World Health Organization in various histological and molecular subtypes. Gliomas have been classified as ranging from low-grade astrocytomas and oligodendrogliomas to high-grade astrocytomas or glioblastomas. These tumors are characterized by a peculiar pattern of genetic alterations. Pediatric high-grade gliomas are histologically indistinguishable from adult glioblastomas, but they are considered distinct from adult glioblastomas because they possess a different spectrum of driver mutations (genes encoding histones H3.3 and H3.1). Medulloblastomas, the most frequent pediatric brain tumors, are considered to be of embryonic derivation and are currently subdivided into distinct subgroups depending on histological features and genetic profiling. There is emerging evidence that brain tumors are maintained by a special neural or glial stem cell-like population that self-renews and gives rise to differentiated progeny. In many instances, the prognosis of the majority of brain tumors remains negative and there is hope that the new acquisition of information on the molecular and cellular bases of these tumors will be translated in the development of new, more active treatments.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
2
|
Wang B, Gogia B, Fuller GN, Ketonen LM. Embryonal Tumor with Multilayered Rosettes, C19MC-Altered: Clinical, Pathological, and Neuroimaging Findings. J Neuroimaging 2018; 28:483-489. [DOI: 10.1111/jon.12524] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 11/27/2022] Open
Affiliation(s)
- Bing Wang
- Department of Diagnostic Radiology, Section of Neuroradiology; University of Texas MD Anderson Cancer Center; Houston TX
| | - Bhanu Gogia
- Department of Diagnostic Radiology, Section of Neuroradiology; University of Texas MD Anderson Cancer Center; Houston TX
| | - Gregory N. Fuller
- Department of Pathology, Section of Neuropathology; University of Texas MD Anderson Cancer Center; Houston TX
| | - Leena M. Ketonen
- Department of Diagnostic Radiology, Section of Neuroradiology; University of Texas MD Anderson Cancer Center; Houston TX
| |
Collapse
|
3
|
Abramczuk MK, Burkard TR, Rolland V, Steinmann V, Duchek P, Jiang Y, Wissel S, Reichert H, Knoblich JA. The splicing co-factor Barricade/Tat-SF1, is required for cell cycle and lineage progression in Drosophila neural stem cells. Development 2017; 144:3932-3945. [DOI: 10.1242/dev.152199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Stem cells need to balance self-renewal and differentiation for correct tissue development and homeostasis. Defects in this balance can lead to developmental defects or tumor formation. In recent years, mRNA splicing has emerged as one important mechanism regulating cell fate decisions. Here we address the role of the evolutionary conserved splicing co-factor Barricade (Barc)/Tat-SF1/CUS2 in Drosophila neural stem cell (neuroblast) lineage formation. We show that Barc is required for the generation of neurons during Drosophila brain development by ensuring correct neural progenitor proliferation and differentiation. Barc associates with components of the U2 small nuclear ribonucleic proteins (snRNP), and its depletion causes alternative splicing in form of intron retention in a subset of genes. Using bioinformatics analysis and a cell culture based splicing assay, we found that Barc-dependent introns share three major traits: they are short, GC rich and have weak 3' splice sites. Our results show that Barc, together with the U2snRNP, plays an important role in regulating neural stem cell lineage progression during brain development and facilitates correct splicing of a subset of introns.
Collapse
Affiliation(s)
- Monika K. Abramczuk
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Thomas R. Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Vivien Rolland
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
- Current address: Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Canberra, ACT 2601, Australia
| | - Victoria Steinmann
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Yanrui Jiang
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
- Current address: D-BSSE ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Sebastian Wissel
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Juergen A. Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| |
Collapse
|
4
|
Dietl S, Schwinn S, Dietl S, Riedel S, Deinlein F, Rutkowski S, von Bueren AO, Krauss J, Schweitzer T, Vince GH, Picard D, Eyrich M, Rosenwald A, Ramaswamy V, Taylor MD, Remke M, Monoranu CM, Beilhack A, Schlegel PG, Wölfl M. MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties. BMC Cancer 2016; 16:115. [PMID: 26883117 PMCID: PMC4756501 DOI: 10.1186/s12885-016-2170-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 02/14/2016] [Indexed: 11/18/2022] Open
Abstract
Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2170-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Dietl
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Stefanie Schwinn
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Susanne Dietl
- Department of Surgery II, University of Würzburg, Würzburg, Germany
| | - Simone Riedel
- Interdisciplinary Center for Clinical Research Laboratory (IZKF Würzburg), Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Frank Deinlein
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre O von Bueren
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Jürgen Krauss
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | | | - Giles H Vince
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology / Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Matthias Eyrich
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | | | - Vijay Ramaswamy
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology / Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.,Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | | | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF Würzburg), Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Paul G Schlegel
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Matthias Wölfl
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Muzumdar D, Ventureyra ECG. Treatment of posterior fossa tumors in children. Expert Rev Neurother 2014; 10:525-46. [DOI: 10.1586/ern.10.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Qiao G, Li Q, Peng G, Ma J, Fan H, Li Y. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models. Neural Regen Res 2013; 8:2360-9. [PMID: 25206546 PMCID: PMC4146040 DOI: 10.3969/j.issn.1673-5374.2013.25.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/25/2013] [Indexed: 11/29/2022] Open
Abstract
Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cells were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibrillary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibrillary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibrillary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cells. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.
Collapse
Affiliation(s)
- Guanqun Qiao
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Qingquan Li
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Gang Peng
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Jun Ma
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Hongwei Fan
- Department of Pharmacology, the Third Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Yingbin Li
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
7
|
Andolfo I, Liguori L, De Antonellis P, Cusanelli E, Marinaro F, Pistollato F, Garzia L, De Vita G, Petrosino G, Accordi B, Migliorati R, Basso G, Iolascon A, Cinalli G, Zollo M. The micro-RNA 199b-5p regulatory circuit involves Hes1, CD15, and epigenetic modifications in medulloblastoma. Neuro Oncol 2012; 14:596-612. [PMID: 22411914 DOI: 10.1093/neuonc/nos002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Micro-RNA (miR) 199b-5p targets Hes1 in medulloblastoma, one of the downstream effectors of both the canonical Notch and noncanonical Sonic Hedgehog pathways. In medulloblastoma patients, expression of miR-199b-5p is significantly decreased in metastatic cases, thus suggesting a downregulation mechanism. We studied this mechanism, which is mediated mostly by Hes1 and epigenetic promoter modifications. The miR-199b-5p promoter region was characterized, which identified a Hes1 binding site, thus demonstrating a negative feedback loop of regulation. MiR-199b-5p was shown to be downregulated in several medulloblastoma cell lines and in tumors by epigenetic methylation of a cytosine-phosphate-guanine island upstream of the miR-199b-5p promoter. Furthermore, the cluster of differention (CD) carbohydrate antigen CD15, a marker of medulloblastoma tumor-propagating cells, is an additional direct target of miR-199b-5p. Most importantly, regulation of miR-199b-5p expression in these CD15+/CD133+ tumor-propagating cells was influenced by only Hes1 expression and not by any epigenetic mechanism of regulation. Moreover, reverse-phase protein array analysis showed both the Akt and extracellular-signal-regulated kinase pathways as being mainly negatively regulated by miR-199b-5p expression in several medulloblastoma cell lines and in primary cell cultures. We present here the finely tuned regulation of miR-199b-5p in medulloblastoma, underlining its crucial role by its additional targeting of CD15.
Collapse
|
8
|
Guerrero-Cazares H, Attenello FJ, Noiman L, Quiñones-Hinojosa A. Stem cells in gliomas. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:63-73. [PMID: 22230436 DOI: 10.1016/b978-0-444-52138-5.00006-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Hugo Guerrero-Cazares
- Department of Neurosurgery, John Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
9
|
Raso A, Mascelli S, Biassoni R, Nozza P, Kool M, Pistorio A, Ugolotti E, Milanaccio C, Pignatelli S, Ferraro M, Pavanello M, Ravegnani M, Cama A, Garrè ML, Capra V. High levels of PROM1 (CD133) transcript are a potential predictor of poor prognosis in medulloblastoma. Neuro Oncol 2011; 13:500-8. [PMID: 21486962 DOI: 10.1093/neuonc/nor022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The surface marker PROM1 is considered one of the most important markers of tumor-initiating cells, and its expression is believed to be an adverse prognostic factor in gliomas and in other malignancies. To date, to our knowledge, no specific studies of its expression in medulloblastoma series have been performed. The aims of our study were to evaluate the expression profile of the PROM1 gene in medulloblastoma and to assess its possible role as a prognostic factor. The PROM1 gene expression was evaluated by quantitative- polymerase chain reaction on 45 medulloblastoma samples by using specific dye-labeled probe systems. A significantly higher expression of PROM1 was found both in patients with poorer prognosis (P= .007) and in those with metastasis (P= .03). Kaplan-Meier analysis showed that both overall survival (OS) and progression-free survival (PFS) were shorter in patients with higher PROM1 mRNA levels than in patients with lower expression, even when the desmoplastic cases were excluded (P= .0004 and P= .002, for OS and PFS for all cases, respectively; P= .002 and P= .008 for OS and PFS for nondesmoplastic cases, respectively). Cox regression model demonstrated that PROM1 expression is an independent prognostic factor (hazard ratio, 4.56; P= .008). The result was validated on an independent cohort of 42 cases by microarray-based analysis (P= .019). This work suggests that high mRNA levels of PROM1 are associated with poor outcome in pediatric medulloblastoma. Furthermore, high PROM1 expression levels seem to increase the likelihood of metastases. Such results need to be confirmed in larger prospective series to possibly incorporate PROM1 gene expression into risk classification systems to be used in the clinical setting.
Collapse
Affiliation(s)
- Alessandro Raso
- Neurosurgery Unit, Giannina Gaslini Children's Research Hospital, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Magnetic resonance imaging spectrum of medulloblastoma. Neuroradiology 2011; 53:387-96. [PMID: 21279509 DOI: 10.1007/s00234-010-0829-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Two medulloblastoma variants were recently added to the WHO classification of CNS tumours. We retrospectively analysed the imaging findings of 37 classic and 27 cases of variant medulloblastomas to identify imaging characteristics that might suggest a particular MB subtype. METHODS Sixty-four patients from three institutions were included. Location, tumour margins, signal intensities on conventional MRI, enhancement pattern, the presence of haemorrhage, calcifications and hydrocephalus were recorded and analysed. Signal characteristics on diffusion-weighted MR images and MR spectra were evaluated when available. RESULTS Thirty-seven classic type of MB (CMB), twelve cases of desmoplastic/nodular medulloblastoma (DMB), nine medulloblastomas with extensive nodularity (MB-EN), five cases of anaplastic and one of large-cell medulloblastoma were included. Fifty of 64 tumours were located in the 4th ventricle region. On T2WI, CMB were all hyperintense, whereas DMB and MB-EN showed isointensity in up to 66%. One third of the classic MB showed only subtle marginal or linear enhancement. All medulloblastoma variants showed marked enhancement. CONCLUSION The results of our study suggest: (a) an age-dependent distribution of MB variants, with DMB and MB-EN more common in younger children; (b) a female predominance in DMB; (c) a more common off-midline location in DMB (50%) and MB-EN (33%) variants.
Collapse
|
11
|
Swartling FJ, Grimmer MR, Hackett CS, Northcott PA, Fan QW, Goldenberg DD, Lau J, Masic S, Nguyen K, Yakovenko S, Zhe XN, Gilmer HCF, Collins R, Nagaoka M, Phillips JJ, Jenkins RB, Tihan T, Vandenberg SR, James CD, Tanaka K, Taylor MD, Weiss WA, Chesler L. Pleiotropic role for MYCN in medulloblastoma. Genes Dev 2010; 24:1059-72. [PMID: 20478998 DOI: 10.1101/gad.1907510] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Sonic Hedgehog (SHH) signaling drives a minority of MB, correlating with desmoplastic pathology and favorable outcome. The majority, however, arises independently of SHH and displays classic or large cell anaplastic (LCA) pathology and poor prognosis. To identify common signaling abnormalities, we profiled mRNA, demonstrating misexpression of MYCN in the majority of human MB and negligible expression in normal cerebella. We clarified a role in pathogenesis by targeting MYCN (and luciferase) to cerebella of transgenic mice. MYCN-driven MB showed either classic or LCA pathologies, with Shh signaling activated in approximately 5% of tumors, demonstrating that MYCN can drive MB independently of Shh. MB arose at high penetrance, consistent with a role for MYCN in initiation. Tumor burden correlated with bioluminescence, with rare metastatic spread to the leptomeninges, suggesting roles for MYCN in both progression and metastasis. Transient pharmacological down-regulation of MYCN led to both clearance and senescence of tumor cells, and improved survival. Targeted expression of MYCN thus contributes to initiation, progression, and maintenance of MB, suggesting a central role for MYCN in pathogenesis.
Collapse
Affiliation(s)
- Fredrik J Swartling
- University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Dysregulated signal transduction through the notch pathway has been noted in human and mouse medulloblastoma studies. Gamma secretase inhibitors (GSIs) impair notch signaling by preventing the cleavage of transmembrane notch proteins into their active intracellular domain fragments. Previous studies have shown that GSI treatment caused apoptosis and impaired medulloblastoma cell engraftment in xenograft systems. In this study, we used in vivo genetic and pharmacologic approaches to quantify the contribution of notch signaling to sonic hedgehog (shh)-activated mouse medulloblastoma models. In contrast to prior in vitro studies, pharmacologic inhibition of notch pathways did not reduce the efficiency of medulloblastoma xenotransplantation nor did systemic therapy impact tumor size, proliferation, or apoptosis in genetically engineered mouse medulloblastoma models. The incidence and pathology of medulloblastomas driven by the SmoA1 transgene was unchanged by the bi-allelic absence of Notch1, Notch2, or Hes5 genes. These data show that notch signaling is not essential for the initiation, engraftment, or maintenance of sonic hedgehog pathway-driven medulloblastomas.
Collapse
|
13
|
Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 2010; 28:5-16. [PMID: 19904829 DOI: 10.1002/stem.254] [Citation(s) in RCA: 455] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are thought to be critical for the engraftment and long-term growth of many tumors, including glioblastoma (GBM). The cells are at least partially spared by traditional chemotherapies and radiation therapies, and finding new treatments that can target CSCs may be critical for improving patient survival. It has been shown that the NOTCH signaling pathway regulates normal stem cells in the brain, and that GBMs contain stem-like cells with higher NOTCH activity. We therefore used low-passage and established GBM-derived neurosphere cultures to examine the overall requirement for NOTCH activity, and also examined the effects on tumor cells expressing stem cell markers. NOTCH blockade by gamma-secretase inhibitors (GSIs) reduced neurosphere growth and clonogenicity in vitro, whereas expression of an active form of NOTCH2 increased tumor growth. The putative CSC markers CD133, NESTIN, BMI1, and OLIG2 were reduced following NOTCH blockade. When equal numbers of viable cells pretreated with either vehicle (dimethyl sulfoxide) or GSI were injected subcutaneously into nude mice, the former always formed tumors, whereas the latter did not. In vivo delivery of GSI by implantation of drug-impregnated polymer beads also effectively blocked tumor growth, and significantly prolonged survival, albeit in a relatively small cohort of animals. We found that NOTCH pathway inhibition appears to deplete stem-like cancer cells through reduced proliferation and increased apoptosis associated with decreased AKT and STAT3 phosphorylation. In summary, we demonstrate that NOTCH pathway blockade depletes stem-like cells in GBMs, suggesting that GSIs may be useful as chemotherapeutic reagents to target CSCs in malignant gliomas.
Collapse
Affiliation(s)
- Xing Fan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nasonkin I, Mahairaki V, Xu L, Hatfield G, Cummings BJ, Eberhart C, Ryugo DK, Maric D, Bar E, Koliatsos VE. Long-term, stable differentiation of human embryonic stem cell-derived neural precursors grafted into the adult mammalian neostriatum. Stem Cells 2010; 27:2414-26. [PMID: 19609935 DOI: 10.1002/stem.177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cell grafts have been advocated as experimental treatments for neurological diseases by virtue of their ability to offer trophic support for injured neurons and, theoretically, to replace dead neurons. Human embryonic stem cells (HESCs) are a rich source of neural precursors (NPs) for grafting, but have been questioned for their tendency to form tumors. Here we studied the ability of HESC-derived NP grafts optimized for cell number and differentiation stage prior to transplantation, to survive and stably differentiate and integrate in the basal forebrain (neostriatum) of young adult nude rats over long periods of time (6 months). NPs were derived from adherent monolayer cultures of HESCs exposed to noggin. After transplantation, NPs showed a drastic reduction in mitotic activity and an avid differentiation into neurons that projected via major white matter tracts to a variety of forebrain targets. A third of NP-derived neurons expressed the basal forebrain-neostriatal marker dopamine-regulated and cyclic AMP-regulated phosphoprotein. Graft-derived neurons formed mature synapses with host postsynaptic structures, including dendrite shafts and spines. NPs inoculated in white matter tracts showed a tendency toward glial (primarily astrocytic) differentiation, whereas NPs inoculated in the ventricular epithelium persisted as nestin(+) precursors. Our findings demonstrate the long-term ability of noggin-derived human NPs to structurally integrate tumor-free into the mature mammalian forebrain, while maintaining some cell fate plasticity that is strongly influenced by particular central nervous system (CNS) niches.
Collapse
Affiliation(s)
- Igor Nasonkin
- Department of Pathology, Division of Neuropathology, Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In recent years a substantial body of evidence derived from not only preclinical but also clinical studies has accumulated in support of Notch signaling playing important oncogenic roles in several types of cancer. The finding that activating Notch mutations are frequently found in patients suffering from acute lymphoblastic leukemia is one of the best examples for a critical role of Notch signaling in cancer, a fact that motivated many researchers and clinicians to study the role of Notch also in solid tumors. Hence Notch signaling has gained increasing attention as a potential therapeutic target. In this book chapter we would like to discuss our current knowledge of Notch signaling within different types of solid cancers as well as advantages and disadvantages of potential new therapies that try to target the oncogenic properties of Notch signaling.
Collapse
Affiliation(s)
- Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The outcome of medulloblastoma patients and the quality of life of survivors can be improved by both novel therapies and a better tumor classification. This review will focus on the pathology and molecular biology of medulloblastoma and its potential to influence risk assignment and future therapy. RECENT FINDINGS A risk stratification system of pediatric medulloblastoma based on a combination of histopathological evaluation and targeted molecular analysis can be outlined. Among the four variants recognized by the 2007 WHO classification, the desmoplastic medulloblastoma and the medulloblastoma with extensive nodularity have significantly better survival with respect to classic medulloblastoma, whereas the large-cell and anaplastic have a worse prognosis. Moreover, 17p loss, MYC amplification/expression, and 1q gain are associated with poor prognosis; in contrast, monosomy 6, mutation of CTNNB1, and trkC expression identify tumors with a favorable outcome. Emerging evidence indicates that the different precursor cell populations that form the cerebellum are susceptible to mutations in signal pathways that regulate their functions; these mutations alter normal development programmes and may result in the formation of distinct variants of medulloblastoma. SUMMARY Better understanding of the growth control mechanisms involved in the development and progression of medulloblastoma will allow improved therapeutic stratification of patients using existing adjuvant therapy as well as the development of new therapeutic approaches.
Collapse
|
17
|
MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One 2009; 4:e4998. [PMID: 19308264 PMCID: PMC2656623 DOI: 10.1371/journal.pone.0004998] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 02/23/2009] [Indexed: 01/04/2023] Open
Abstract
Background Through negative regulation of gene expression, microRNAs (miRNAs) can function in cancers as oncosuppressors, and they can show altered expression in various tumor types. Here we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many cell-fate-determining stages. MBs occur bimodally, with the peak incidence seen between 3–4 years and 8–9 years of age, although it can also occur in adults. Notch regulates a subset of the MB cells that have stem-cell-like properties and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway can regulated these phenomena, and can be used in anti-cancer therapies. Methodology/Principal Findings In a screening of MB cell lines, the miRNA miR-199b-5p was seen to be a regulator of the Notch pathway through its targeting of the transcription factor HES1. Down-regulation of HES1 expression by miR-199b-5p negatively regulates the proliferation rate and anchorage-independent growth of MB cells. MiR-199b-5p over-expression blocks expression of several cancer stem-cell genes, impairs the engrafting potential of MB cells in the cerebellum of athymic/nude mice, and of particular interest, decreases the MB stem-cell-like (CD133+) subpopulation of cells. In our analysis of 61 patients with MB, the expression of miR-199b-5p in the non-metastatic cases was significantly higher than in the metastatic cases (P = 0.001). Correlation with survival for these patients with high levels of miR-199b expression showed a positive trend to better overall survival than for the low-expressing patients. These data showing the down-regulation of miR-199b-5p in metastatic MBs suggest a potential silencing mechanism through epigenetic or genetic alterations. Upon induction of de-methylation using 5-aza-deoxycytidine, lower miR-199b-5p expression was seen in a panel of MB cell lines, supported an epigenetic mechanism of regulation. Furthermore, two cell lines (Med8a and UW228) showed significant up-regulation of miR-199b-5p upon treatment. Infection with MB cells in an induced xenograft model in the mouse cerebellum and the use of an adenovirus carrying miR-199b-5p indicate a clinical benefit through this negative influence of miR-199b-5p on tumor growth and on the subset of MB stem-cell-like cells, providing further proof of concept. Conclusions/Significance Despite advances in our understanding of the pathogenesis of MB, one-third of these patients remain incurable and current treatments can significantly damage long-term survivors. Here we show that miR-199b-5p expression correlates with metastasis spread, identifying a new molecular marker for a poor-risk class in patients with MB. We further show that in a xenograft model, MB tumor burden can be reduced, indicating the use of miR199b-5p as an adjuvant therapy after surgery, in combination with radiation and chemotherapy, for the improvement of anti-cancer MB therapies and patient quality of life. To date, this is the first report that expression of a miRNA can deplete the tumor stem cells, indicating an interesting therapeutic approach for the targeting of these cells in brain tumors.
Collapse
|
18
|
Vaillant C, Monard D. SHH pathway and cerebellar development. THE CEREBELLUM 2009; 8:291-301. [PMID: 19224309 DOI: 10.1007/s12311-009-0094-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/14/2009] [Indexed: 12/22/2022]
Abstract
The morphogenetic factor Sonic hedgehog (SHH) has been discovered as one of the masterplayers in cerebellar patterning and was subjected to intensive investigation during the last decade. During early postnatal development, this continuously secreted cholesterol-modified protein drives the expansion of the largest neuronal population of the brain, the granular cells. Moreover, it acts on Bergmann glia differentiation and would potentially affect Purkinje cells homeostasis at adult age. The cerebellar cortex constituted an ideal developmental model to dissect out the upstream mechanisms and downstream targets of this complex pathway. Its deep understanding discloses some of the mechanistic disorders underlying pediatric tumorigenesis, congenital ataxia, and mental retardation. Therapeutical use of its regulators has been consolidated on murine transgenic models and is now considered as a realistic human clinical application. Here, we will review the most recent advances made in the comprehensive understanding of SHH involvement in cerebellar development and pathology.
Collapse
Affiliation(s)
- Catherine Vaillant
- Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland
| | | |
Collapse
|
19
|
Embryonal tumors with abundant neuropil and true rosettes: a distinctive CNS primitive neuroectodermal tumor. Am J Surg Pathol 2009; 33:211-7. [PMID: 18987548 DOI: 10.1097/pas.0b013e318186235b] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Embryonal neoplasms of the central nervous system (CNS) generally arise in the early years of life and behave in a clinically aggressive manner, but vary somewhat in their microscopic appearance. Several groups have reported examples of an embryonal tumor with combined histologic features of ependymoblastoma and neuroblastoma, a lesion referred to as "embryonal tumor with abundant neuropil and true rosettes" (ETANTR). Herein, we present 22 new cases, and additional clinical follow-up on our 7 initially reported cases, to better define the histologic features and clinical behavior of this distinctive neoplasm. It affects infants and arises most often in cerebral cortex, the cerebellum and brainstem being less frequent sites. Unlike other embryonal tumors of the CNS, girls are more commonly affected than boys. On neuroimaging, the tumors appear as large, demarcated, solid masses featuring patchy or no contrast enhancement. Five of our cases (18%) were at least partly cystic. Distinctive microscopic features include a prominent background of mature neuropil punctuated by true rosettes formed of pseudo-stratified embryonal cells circumferentially disposed about a central lumen (true rosettes). Of the 25 cases with available follow-up, 19 patients have died, their median survival being 9 months. Performed on 2 cases, cytogenetic analysis revealed extra copies of chromosome 2 in both. We believe that the ETANTR represents a histologically distinctive form of CNS embryonal tumor.
Collapse
|
20
|
Read TA, Fogarty MP, Markant SL, McLendon RE, Wei Z, Ellison DW, Febbo PG, Wechsler-Reya RJ. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 2009; 15:135-47. [PMID: 19185848 PMCID: PMC2664097 DOI: 10.1016/j.ccr.2008.12.016] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 10/27/2008] [Accepted: 12/18/2008] [Indexed: 12/21/2022]
Abstract
The growth of many cancers depends on self-renewing cells called cancer stem cells or tumor-propagating cells (TPCs). In human brain tumors, cells expressing the stem cell marker CD133 have been implicated as TPCs. Here we show that tumors from a model of medulloblastoma, the Patched mutant mouse, are propagated not by CD133(+) cells but by cells expressing the progenitor markers Math1 and CD15/SSEA-1. These cells have a distinct expression profile that suggests increased proliferative capacity and decreased tendency to undergo apoptosis and differentiation. CD15 is also found in a subset of human medulloblastomas, and tumors expressing genes similar to those found in murine CD15(+) cells have a poorer prognosis. Thus, CD15 may represent an important marker for TPCs in medulloblastoma.
Collapse
Affiliation(s)
- Tracy-Ann Read
- Department of Pharmacology & Cancer Biology, Duke University, Medical Center, Durham, NC 27710
- Department of Biomedicine, University of Bergen, Bergen, Norway N-5009
| | - Marie P. Fogarty
- Department of Pharmacology & Cancer Biology, Duke University, Medical Center, Durham, NC 27710
| | - Shirley L. Markant
- Department of Pharmacology & Cancer Biology, Duke University, Medical Center, Durham, NC 27710
| | - Roger E. McLendon
- Department of Pathology, Duke University, Medical Center, Durham, NC 27710
- Preston Robert Tisch Brain Tumor Center, Duke University, Medical Center, Durham, NC 27710
| | - Zhengzheng Wei
- Institute for Genome Sciences and Policy, Duke University, Medical Center, Durham, NC 27710
| | - David W. Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Phillip G. Febbo
- Institute for Genome Sciences and Policy, Duke University, Medical Center, Durham, NC 27710
| | - Robert J. Wechsler-Reya
- Department of Pharmacology & Cancer Biology, Duke University, Medical Center, Durham, NC 27710
- Preston Robert Tisch Brain Tumor Center, Duke University, Medical Center, Durham, NC 27710
- To whom correspondence should be addressed: Department of Pharmacology & Cancer Biology, Duke University Medical Center Box 3813, Durham, NC 27710,
| |
Collapse
|
21
|
Barnes M, Eberhart CG, Collins R, Tihan T. Expression of p75NTR in fetal brain and medulloblastomas: evidence of a precursor cell marker and its persistence in neoplasia. J Neurooncol 2008; 92:193-201. [PMID: 19066726 DOI: 10.1007/s11060-008-9755-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 11/17/2008] [Indexed: 11/30/2022]
Abstract
p75 neurotrophin receptor (p75NTR) is a member of the tumor necrosis factor superfamily, and plays a significant role in nervous system development. p75NTR has a dual (proliferative/apoptotic) role in neurogenesis and binds pro-neurotrophins with high affinity. Recent work suggests p75NTR is overexpressed in the developing cerebellum and in nodular/desmoplastic medulloblastomas. We analyzed p75NTR expression in various parts of the fetal and adult human central nervous system, and in 75 patients with medulloblastomas. The expression of p75NTR in the fetal brain was seen solely within the external granular layer with weaker expression in the Purkinje layer, which most likely represents Purkinje cell staining. The staining was present in gestational weeks 20-40, while no staining was identified elsewhere in the fetal brain or within the adult cerebellum. p75NTR positive cells were also positive with the proliferation marker ki-67, but were negative for ret, reelin, CD133, CD34, and cleaved caspase 3. Nine of 75 medulloblastomas (12%) were also showed positive immunostaining for p75NTR. The staining was seen in four classic, two desmoplastic, and three anaplastic medulloblastomas. The persistence of p75NTR in a small group of medulloblastomas raises the possibility that in such tumors, the receptor could be a potential therapeutic target.
Collapse
Affiliation(s)
- Michael Barnes
- Department of Pathology, UCSF Medical Center, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Over the past decades considerable advances have been made in neurosurgery, radiotherapy and chemotherapy resulting in improved survival and cure rates for children with brain tumors. Here we review four of the most common subtypes of pediatric brain tumors, low-grade and high-grade astrocytomas, medulloblastomas and ependymomas, highlighting their molecular features regarding their tumor biology, and promising potential therapeutic targets that may hold promise for finding new "molecular targeted" drugs. Importantly, appropriate clinical trial design will play a critical role in the evaluation of new and novel treatment approaches for pediatric brain tumors.
Collapse
|
23
|
Sanchez-Diaz PC, Burton TL, Burns SC, Hung JY, Penalva LOF. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy. BMC Cancer 2008; 8:280. [PMID: 18826648 PMCID: PMC2572071 DOI: 10.1186/1471-2407-8-280] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/30/2008] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Musashi1 (Msi1) is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. METHODS We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. RESULTS We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. CONCLUSION Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy.
Collapse
Affiliation(s)
- Patricia C Sanchez-Diaz
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX, USA.
| | | | | | | | | |
Collapse
|
24
|
Larsson J, Forsberg M, Brännvall K, Zhang XQ, Enarsson M, Hedborg F, Forsberg-Nilsson K. Nuclear receptor binding protein 2 is induced during neural progenitor differentiation and affects cell survival. Mol Cell Neurosci 2008; 39:32-9. [DOI: 10.1016/j.mcn.2008.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Revised: 04/22/2008] [Accepted: 05/17/2008] [Indexed: 12/22/2022] Open
|
25
|
Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, Schüller U, Machold R, Fishell G, Rowitch DH, Wainwright BJ, Wechsler-Reya RJ. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 2008; 14:135-45. [PMID: 18691548 PMCID: PMC2538687 DOI: 10.1016/j.ccr.2008.07.003] [Citation(s) in RCA: 506] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 06/04/2008] [Accepted: 07/07/2008] [Indexed: 12/11/2022]
Abstract
Medulloblastoma is the most common malignant brain tumor in children, but the cells from which it arises remain unclear. Here we examine the origin of medulloblastoma resulting from mutations in the Sonic hedgehog (Shh) pathway. We show that activation of Shh signaling in neuronal progenitors causes medulloblastoma by 3 months of age. Shh pathway activation in stem cells promotes stem cell proliferation but only causes tumors after commitment to-and expansion of-the neuronal lineage. Notably, tumors initiated in stem cells develop more rapidly than those initiated in progenitors, with all animals succumbing by 3-4 weeks. These studies suggest that medulloblastoma can be initiated in progenitors or stem cells but that Shh-induced tumorigenesis is associated with neuronal lineage commitment.
Collapse
Affiliation(s)
- Zeng-Jie Yang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Tammy Ellis
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Shirley L. Markant
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Tracy-Ann Read
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jessica D. Kessler
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Melissa Bourboulas
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 23, 81377 Munich, Germany
| | - Robert Machold
- Smilow Neuroscience Program and Department of Cell Biology, NYU School of Medicine, New York, NY
| | - Gord Fishell
- Smilow Neuroscience Program and Department of Cell Biology, NYU School of Medicine, New York, NY
| | - David H. Rowitch
- Institute for Regeneration Medicine and Division of Neonatology, UCSF School of Medicine, San Francisco, CA
| | - Brandon J. Wainwright
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- *Correspondence: or
| | - Robert J. Wechsler-Reya
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
- *Correspondence: or
| |
Collapse
|
26
|
Abstract
In this issue of Cancer Cell, Yang et al. (2008) and Schüller et al. (2008) show that Hedgehog activation in either multipotent neural stem cells or developmentally restricted progenitors causes only medulloblastomas to form. These data suggest that some stem cell-derived tumors must commit to a specific lineage in order to grow.
Collapse
Affiliation(s)
- Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Abstract
Medulloblastoma and other embronal brain tumors are similar in appearance and differentiation potential to neural stem and progenitor cells. Expression studies performed using human tumor samples, as well as the analysis of murine transgenic models, suggest that both multipotent cerebellar stem cells and lineage-restricted progenitors of the external germinal layer can be transformed into medulloblastoma by genetic alterations. These molecular changes frequently involve constitutive activation of signaling pathways such as Wnt, Hedgehog, and Notch, which play a key role in non-neoplastic neural stem cells. Pharmacologic blockade of the Hedgehog and Notch pathways suppresses the growth of medulloblastoma in culture and in vivo and may prove effective in targeting the small cancer stem-cell subpopulation required for tumor initiation and long-term propagation.
Collapse
Affiliation(s)
- Xing Fan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
28
|
Greenfield JP, Ayuso-Sacido A, Schwartz TH, Pannullo S, Souweidane M, Stieg PE, Boockvar JA. Use of human neural tissue for the generation of progenitors. Neurosurgery 2008; 62:21-37; discussion 27-30. [PMID: 18300889 DOI: 10.1227/01.neu.0000311059.87873.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence suggests that a better understanding of normal human brain stem cells and tumor stem cells (TSCs) will have profound implications for treating central nervous system disease during the next decade. Neurosurgeons routinely resect excess surgical tissue containing either normal brain stem cells or TSCs. These cells are immediately available for expansion and use in basic biological assays, animal implantation, and comparative analysis studies. Although normal stem cells have much slower kinetics of expansion than TSCs, they are easily expandable and can be frozen for future use in stem cell banks. This nearly limitless resource holds promise for understanding the basic biology of normal brain stem cells and TSCs, which will likely direct the next major shift in therapeutics for brain tumors, brain and spinal cord injury, and neurodegenerative disease. This report reviews the progress that has been made in harvesting and expanding both normal and tumor-derived stem cells and emphasizes the integral role neurosurgeons will play in moving the neural stem cell field forward.
Collapse
Affiliation(s)
- Jeffrey P Greenfield
- Laboratory for Translational Stem Cell Research, Weill Cornell Brain Tumor Center, Department of Neurological Surgery, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Medulloblastoma is the most common embryonal tumour in children. Patients with medulloblastoma are currently staged as average-risk or poor-risk on the basis of clinical findings. With current multimodality therapy, nearly 90% of children with average-risk, non-disseminated medulloblastoma have 5-year event-free survival, and those with high-risk disease have a 60-65% survival rate; however, the outcome for younger children, particularly infants, is worse. Children who survive medulloblastoma are at risk of long-term sequelae related to the neurological effects of the tumour, surgery, or radiotherapy, and the additive effects of chemotherapy. Molecular biology has changed our understanding of medulloblastoma and has implications for diagnostic stratification and treatment. As newer biological agents are translated from the lab to the bedside, clinicians need to understand the fundamental signalling pathways that are targeted during therapy. Greater understanding of the molecular biology of medulloblastoma is needed so that more children can be cured or have an improved quality of life.
Collapse
|
30
|
Mimeault M, Hauke R, Mehta PP, Batra SK. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med 2008; 11:981-1011. [PMID: 17979879 PMCID: PMC4401269 DOI: 10.1111/j.1582-4934.2007.00088.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overcoming intrinsic and acquired resistance of cancer stem/progenitor cells to current clinical treatments represents a major challenge in treating and curing the most aggressive and metastatic cancers. This review summarizes recent advances in our understanding of the cellular origin and molecular mechanisms at the basis of cancer initiation and progression as well as the heterogeneity of cancers arising from the malignant transformation of adult stem/progenitor cells. We describe the critical functions provided by several growth factor cascades, including epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor (SCF) receptor (KIT), hedgehog and Wnt/beta-catenin signalling pathways that are frequently activated in cancer progenitor cells and are involved in their sustained growth, survival, invasion and drug resistance. Of therapeutic interest, we also discuss recent progress in the development of new drug combinations to treat the highly aggressive and metastatic cancers including refractory/relapsed leukaemias, melanoma and head and neck, brain, lung, breast, ovary, prostate, pancreas and gastrointestinal cancers which remain incurable in the clinics. The emphasis is on new therapeutic strategies consisting of molecular targeting of distinct oncogenic signalling elements activated in the cancer progenitor cells and their local microenvironment during cancer progression. These new targeted therapies should improve the efficacy of current therapeutic treatments against aggressive cancers, and thereby preventing disease relapse and enhancing patient survival.
Collapse
Affiliation(s)
- M Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|