1
|
Leitch HA. Iron Overload, Oxidative Stress, and Somatic Mutations in MDS: What Is the Association? Eur J Haematol 2025. [PMID: 39876029 DOI: 10.1111/ejh.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited. METHODS The literature was reviewed on how IOL and oxidative stress interact with specific SM in MDS to influence cellular physiology. PubMed searches included keywords of each specific mutation combined with iron, oxidative stress, and reactive oxygens species (ROS). Papers relevant to hematopoietic stem/progenitor cells, the bone marrow microenvironment, MDS, AML or other myeloid disorders were preferred. Included were the most frequent SM in MDS, SM of the International Prognostic Scoring System-Molecular (IPSS-M), of familial predisposing conditions and the CMML PSS-molecular. RESULTS About 31 SM plus four familial conditions were searched. Discussed are the frequency of each SM, whether function is gained or lost, early or late SM status, a function of the unmutated gene, and function considering iron and oxidative stress. DISCUSSION Given limited effective MDS therapies, considering how IOL and ROS interact with SM to influence cellular physiology in the hematopoietic system, increasing bone marrow failure progression or malignant transformation may be of benefit and support optimization of measures to reduce IOL or neutralize ROS.
Collapse
Affiliation(s)
- Heather A Leitch
- Hematology, St. Paul's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Ma Z, Ye W, Huang X, Li X, Li F, Lin X, Hu C, Wang J, Jin J, Zhu B, Huang J. The ferroptosis landscape in acute myeloid leukemia. Aging (Albany NY) 2023; 15:13486-13503. [PMID: 38032290 DOI: 10.18632/aging.205257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Ferroptosis induction through the suppression of glutathione peroxidase 4 (GPX4) and apoptosis-inducing factor mitochondria-associated 2 (AIFM2) has proven to be an effective approach in eliminating chemotherapy-resistant cells of various types. However, a comprehensive understanding of the roles of GPX4 and AIFM2 in acute myeloid leukemia (AML) has not yet been achieved. Using cBioPortal, DepMap, GEPIA, Metascape, and ONCOMINE, we compared the transcriptional expression, survival data, gene mutation, methylation, and network analyses of GPX4- and AIFM2-associated signaling pathways in AML. The results revealed that high expression levels of GPX4 and AIFM2 are associated with an adverse prognosis for AML patients. Overexpression of AIFM2 correlated with elevated mutation frequencies in NPM1 and DNMT3A. GPX4 upregulation modulated the following pathways: GO:0045333, cellular respiration; R-HSA-5389840, mitochondrial translation elongation; GO:0009060, aerobic respiration; R-HSA-9609507, protein localization; and R-HSA-8953854, metabolism of RNA. On the other hand, the overexpression of AIFM2 influenced the following processes: GO:0048704, embryonic skeletal system morphogenesis; GO:0021546, rhombomere development; GO:0009954, proximal/distal pattern formation; and GO:0048732, gland development. This study identifies the high expression of GPX4 and AIFM2 as novel biomarkers predicting a poor prognosis for AML patients. Furthermore, ferroptosis induction may improve the stratified treatment of AML.
Collapse
Affiliation(s)
- Zhixin Ma
- Clinical Prenatal Diagnosis Center, Key Laboratory of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fenglin Li
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangjie Lin
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Hu
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Zhu
- Clinical Prenatal Diagnosis Center, Key Laboratory of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiansong Huang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Zhuang K, Tang H, Guo H, Yuan S. Geraniol prevents Helicobacterium pylori-induced human gastric cancer signalling by enhancing peroxiredoxin-1 expression in GES-1 cells. Microb Pathog 2023; 174:105937. [PMID: 36496058 DOI: 10.1016/j.micpath.2022.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori (H. pylori), a gram-negative bacterial microbiological carcinogen, has been identified as the leading jeopardy feature for developing human gastric cancer (GC). As a result, inhibiting H. pylori growth has been identified as an effective and critical technique for preventing GC development. In this study, geraniol inhibits H. pylori-induced gastric carcinogen signalling in human gastric epithelial cells (GES-1). Geraniol prevents cytotoxicity, ROS and apoptosis in H. pylori-induced GES-1 cells. Furthermore, geraniol protects against H. -induced antioxidant depletion caused by malondialdehyde, damage of reactive DNA and nuclear fragmentation. Geraniol significantly reduced the expression of phosphorylated mitogen activated protein kinases (MAPKs) proteins such as p38 MAPK, extracellular signal-regulated kinase-1 (ERK1), c-Jun N-terminal kinase (c-JNK), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2) in GES-1 infected with H. pylori. Furthermore, geraniol increased the antioxidant protein peroxiredoxin-1 (Prdx-1) in H. pylori-infected cells. Geraniol thus protects H. pylori-concomitant infection, and its resistance may be a possible method in preventing gastric cancer caused by H. pylori.
Collapse
Affiliation(s)
- Kun Zhuang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710003, China.
| | - Hailing Tang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710003, China
| | - Hanqing Guo
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710003, China
| | - Shanshan Yuan
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710003, China
| |
Collapse
|
5
|
Chu X, Zhong L, Dan W, Wang X, Zhang Z, Liu Z, Lu Y, Shao X, Zhou Z, Chen S, Liu B. DNMT3A R882H mutation drives daunorubicin resistance in acute myeloid leukemia via regulating NRF2/NQO1 pathway. Cell Commun Signal 2022; 20:168. [PMID: 36303144 PMCID: PMC9615155 DOI: 10.1186/s12964-022-00978-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methyltransferase 3A (DNMT3A) often mutate on arginine 882 (DNMT3AR882) in acute myeloid leukemia (AML). AML patients with DNMT3A R882 mutation are usually resistant to daunorubicin treatment; however, the associated mechanism is still unclear. Therefore, it is urgent to investigate daunorubicin resistance in AML patients with DNMT3A R882 mutant. METHOD AML cell lines with DNMT3A-wild type (DNMT3A-WT), and DNMT3A-Arg882His (DNMT3A-R882H) mutation were constructed to investigate the role of DNMT3A R882H mutation on cell proliferation, apoptosis and cells' sensitivity to Danunorubin. Bioinformatics was used to analyze the role of nuclear factor-E2-related factor (NRF2) in AML patients with DNMT3A R882 mutation. The regulatory mechanism of DNMT3A R882H mutation on NRF2 was studied by Bisulfite Sequencing and CO-IP. NRF2 inhibitor Brusatol (Bru) was used to explore the role of NRF2 in AML cells carried DNMT3A R882H mutation. RESULTS AML cells with a DNMT3A R882H mutation showed high proliferative and anti-apoptotic activities. In addition, mutant cells were less sensitive to daunorubicin and had a higher NRF2 expression compared with those in WT cells. Furthermore, the NRF2/NQO1 pathway was activated in mutant cells in response to daunorubicin treatment. DNMT3A R882H mutation regulated the expression of NRF2 via influencing protein stability rather than decreasing methylation of NRF2 promoter. Also, NRF2/NQO1 pathway inhibition improved mutant cells' sensitivity to daunorubicin significantly. CONCLUSION Our findings identified NRF2 as an important player in the regulation of cell apoptosis through which helps mediate chemoresistance to daunorubicin in AML cells with DNMT3A R882H mutation. Targeting NRF2 might be a novel therapeutic approach to treat AML patients with a DNMT3A R882H mutation. Video abstract.
Collapse
Affiliation(s)
- Xuan Chu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xiao Wang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhonghui Zhang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhenyan Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Yang Lu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xin Shao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Ziwei Zhou
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Shuyu Chen
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China. .,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Que Y, Li H, Lin L, Zhu X, Xiao M, Wang Y, Zhu L, Li D. Study on the Immune Escape Mechanism of Acute Myeloid Leukemia With DNMT3A Mutation. Front Immunol 2021; 12:653030. [PMID: 34093541 PMCID: PMC8173207 DOI: 10.3389/fimmu.2021.653030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022] Open
Abstract
DNA (cytosine-5)-methyltransferase 3A (DNMT3A)-mutated acute myeloid leukemia (AML) has a poor prognosis, but the exact mechanism is still unclear. Here, we aimed to explore the mechanism of immune escape in AML with DNMT3A mutation. We constructed a DNMT3A knockout clone and DNMT3A-R882H-mutated clones. RNA-seq results showed that transcription factors and macrophage inflammatory proteins were significantly downregulated in the DNMT3A mutant clones. KEGG enrichment and gene set enrichment analysis (GSEA) showed that a large number of genes were enriched in inflammatory immune-related pathways, such as the toll-like receptor signaling pathway. Therefore, we co-cultured AML cells with macrophages. The DNMT3A-mutated AML cells attenuated M1 macrophage polarization and resisted its killing effect in vitro and in vivo. In xenografts, the tumor volumes in the experimental group were significantly larger than those in the control group, and the proportion of M2 macrophages was significantly higher. After the co-culture, the increase in pro-inflammatory cytokine expression in the mutant cells was significantly lower than that in the control group, while that in immunosuppressive factors was not significantly different. In co-cultivated supernatants, the concentration of inflammatory factors in the experimental group was significantly lower than that in the control group, while that of immunosuppressive factors was significantly higher. Resistin significantly promoted the expression of inflammatory proteins in AML cells. It relieved the inhibitory effect of DNMT3A mutation, promoted the phenotypic recovery of the co-cultured macrophages, eliminated resistance, and regulated the immune microenvironment. Thus, resistin may serve as an ancillary drug for patients with DNMT3A-mutated AML.
Collapse
Affiliation(s)
- Yimei Que
- Department of Hematology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Li
- Department of Hematology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liman Lin
- Department of Hematology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Hematology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Mancarella D, Plass C. Epigenetic signatures in cancer: proper controls, current challenges and the potential for clinical translation. Genome Med 2021; 13:23. [PMID: 33568205 PMCID: PMC7874645 DOI: 10.1186/s13073-021-00837-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Epigenetic alterations are associated with normal biological processes such as aging or differentiation. Changes in global epigenetic signatures, together with genetic alterations, are driving events in several diseases including cancer. Comparative studies of cancer and healthy tissues found alterations in patterns of DNA methylation, histone posttranslational modifications, and changes in chromatin accessibility. Driven by sophisticated, next-generation sequencing-based technologies, recent studies discovered cancer epigenomes to be dominated by epigenetic patterns already present in the cell-of-origin, which transformed into a neoplastic cell. Tumor-specific epigenetic changes therefore need to be redefined and factors influencing epigenetic patterns need to be studied to unmask truly disease-specific alterations. The underlying mechanisms inducing cancer-associated epigenetic alterations are poorly understood. Studies of mutated epigenetic modifiers, enzymes that write, read, or edit epigenetic patterns, or mutated chromatin components, for example oncohistones, help to provide functional insights on how cancer epigenomes arise. In this review, we highlight the importance and define challenges of proper control tissues and cell populations to exploit cancer epigenomes. We summarize recent advances describing mechanisms leading to epigenetic changes in tumorigenesis and briefly discuss advances in investigating their translational potential.
Collapse
Affiliation(s)
- Daniela Mancarella
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, 69120, Heidelberg, Germany.
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Azelaic Acid Exerts Antileukemia Effects against Acute Myeloid Leukemia by Regulating the Prdxs/ROS Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1295984. [PMID: 33425206 PMCID: PMC7775164 DOI: 10.1155/2020/1295984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with a poor prognosis attributed to elevated reactive oxygen species (ROS) levels. Thus, agents that inhibit ROS generation in AML should be exploited. Azelaic acid (AZA), a small molecular compound, can scavenge ROS and other free radicals, exerting antitumor effects on various tumor cells. Herein, this study evaluated the antileukemic activity of AZA against AML via regulation of the ROS signaling pathway. We found that AZA reduced intracellular ROS levels and increased total antioxidant capacity in AML cell lines and AML patient cells. AZA suppressed the proliferation of AML cell lines and AML patient cells, expending minimal cytotoxicity on healthy cells. Laser confocal microscopy showed that AZA-treated AML cells surged and ruptured gradually on microfluidic chips. Additionally, AZA promoted AML cell apoptosis and arrested the cell cycle at the G1 phase. Further analysis demonstrated that peroxiredoxin (Prdx) 2 and Prdx3 were upregulated in AZA-treated AML cells. In vivo, AZA prolonged survival and attenuated AML by decreasing CD33+ immunophenotyping in the bone marrow of a patient-derived xenograft AML model. Furthermore, mice in the AZA-treated group had an increased antioxidant capacity and Prdx2/Prdx3 upregulation. The findings indicate that AZA may be a potential agent against AML by regulating the Prdxs/ROS signaling pathway.
Collapse
|
9
|
The Influence of Methylating Mutations on Acute Myeloid Leukemia: Preliminary Analysis on 56 Patients. Diagnostics (Basel) 2020; 10:diagnostics10050263. [PMID: 32365516 PMCID: PMC7277399 DOI: 10.3390/diagnostics10050263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by abnormal proliferation and a lack of differentiation of myeloid blasts. Considering the dismal prognosis this disease presents, several efforts have been made to better classify it and offer a tailored treatment to each subtype. This has been formally done by the World Health Organization (WHO) with the AML classification schemes from 2008 and 2016. Nonetheless, there are still mutations that are not currently included in the WHO AML classification, as in the case of some mutations that influence methylation. In this regard, the present study aimed to determine if some of the mutations that influence DNA methylation can be clustered together regarding methylation, expression, and clinical profile. Data from the TCGA LAML cohort were downloaded via cBioPortal. The analysis was performed using R 3.5.2, and the necessary packages for classical statistics, dimensionality reduction, and machine learning. We included only patients that presented mutations in DNMT3A, TET2, IDH1/2, ASXL1, WT1, and KMT2A. Afterwards, mutations that were present in too few patients were removed from the analysis, thus including a total of 57 AML patients. We observed that regarding expression, methylation, and clinical profile, patients with mutated TET2, IDH1/2, and WT1 presented a high degree of similarity, indicating the equivalence that these mutations present between themselves. Nonetheless, we did not observe this similarity between DNMT3A- and KMT2A-mutated AML. Moreover, when comparing the hypermethylating group with the hypomethylating one, we also observed important differences regarding expression, methylation, and clinical profile. In the current manuscript we offer additional arguments for the similarity of the studied hypermethylating mutations and suggest that those should be clustered together in further classifications. The hypermethylating and hypomethylating groups formed above were shown to be different from each other considering overall survival, methylation profile, expression profile, and clinical characteristics. In this manuscript, we present additional arguments for the similarity of the effect generated by TET2, IDH1/2, and WT1 mutations in AML patients. Thus, we hypothesize that hypermethylating mutations skew the AML cells to a similar phenotype with a possible sensitivity to hypermethylating agents.
Collapse
|
10
|
DNMT3A mutants provide proliferating advantage with augmentation of self-renewal activity in the pathogenesis of AML in KMT2A-PTD-positive leukemic cells. Oncogenesis 2020; 9:7. [PMID: 32015320 PMCID: PMC6997180 DOI: 10.1038/s41389-020-0191-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) with partial tandem duplication of histone-lysine N-methyltransferase 2A (KMT2A-PTD) is a subtype of AML and is associated with adverse survival, yet the molecular pathogenesis of KMT2A-PTD is not fully understood. DNA methyltransferase 3A (DNMT3A) is mutated in various myeloid neoplasms including AML, especially at the Arg882. Recently, it has been found that DNMT3A mutations frequently coexisted with KMT2A-PTD and are associated with inferior outcomes. We aimed to understand the biological role of DNMT3A mutation in KMT2A-PTD-positive cells. Herein, we found that overexpression of DNMT3A mutants (MT) in KMT2A-PTD-positive EOL-1 cells augmented cell proliferation and clonogenicity. Serial colony replating assays indicated that DNMT3A-MT increased the self-renewal ability of Kmt2a-PTD-expressing mouse bone marrow cells with immature morphology. At 10 months post bone marrow transplantation, mice with the combined Kmt2a-PTD and DNMT3A-MT showed hepatosplenomegaly and leukocytosis with a shorter latency compared to control and DNMT3A-wild-type. Gene expression microarray analyses of bone marrow samples from human AML with KMT2A-PTD/DNMT3A-MT showed a stem cell signature and myeloid hematopoietic lineage with dysregulation of HOXB gene expression. In addition, human bone marrow AML cells carrying KMT2A-PTD/DNMT3A-MT showed abnormal growth and augmented self-renewal activity in primary cell culture. The present study provides information underlying the pathogenic role of DNMT3A-MT with KMT2A-PTD in proliferating advantage with augmentation of self-renewal activity in human leukemia, which may help to better understand the disease and to design better therapy for AML patients with these mutations.
Collapse
|
11
|
Chuerduangphui J, Ekalaksananan T, Heawchaiyaphum C, Vatanasapt P, Pientong C. Peroxiredoxin 2 is highly expressed in human oral squamous cell carcinoma cells and is upregulated by human papillomavirus oncoproteins and arecoline, promoting proliferation. PLoS One 2020; 15:e0242465. [PMID: 33332365 PMCID: PMC7746188 DOI: 10.1371/journal.pone.0242465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/02/2020] [Indexed: 01/19/2023] Open
Abstract
Peroxiredoxin 2 (PRDX2) is upregulated in various cancers including oral squamous cell carcinoma (OSCC). It is a known tumor promoter in some cancers, but its role in OSCC is unclear. This study aimed to investigate the effect of arecoline, an alkaloid of the betel nut, and human papillomavirus type 16 (HPV16) E6/E7 oncoproteins on induction of PRDX2 expression, and also the effects of PRDX2 overexpression in oral cell lines. Levels of PRDX2 protein were determined using western blot analysis of samples of exfoliated normal oral cells (n = 75) and oral lesion cells from OSCC cases (n = 75). Some OSCC cases were positive for HPV infection and some patients had a history of betel quid chewing. To explore the level of PRDX2 by western blot, the proteins were extracted from oral cell lines that were treated with arecoline or retroviruses containing HPV16 E6 gene and HPV16 E6/E7 expressing vector. For analysis of PRDX2 functions, cell proliferation, cell-cycle progression, apoptosis and migration was compared between oral cells overexpressing PRDX2 and cells with PRDX2-knockdown. PRDX2 expression levels tended to be higher in OSCC samples that were positive for HPV infection and had history of betel quid chewing. Arecoline treatment in vitro at low concentrations and overexpression of HPV16 E6 or E6/E7 in oral cells induced PRDX2 overexpression. Interestingly, in oral cells, PRDX2 promoted cell proliferation, cell-cycle progression (G2/M phase), cell migration and inhibited apoptosis. Upregulation of PRDX2 in oral cells was induced by arecoline and HPV16 oncoproteins and promoted growth of OSCC cells.
Collapse
Affiliation(s)
- Jureeporn Chuerduangphui
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Tipaya Ekalaksananan
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chukkris Heawchaiyaphum
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patravoot Vatanasapt
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
12
|
Bera R, Chiu MC, Huang YJ, Lin TH, Kuo MC, Shih LY. RUNX1 mutations promote leukemogenesis of myeloid malignancies in ASXL1-mutated leukemia. J Hematol Oncol 2019; 12:104. [PMID: 31640815 PMCID: PMC6805634 DOI: 10.1186/s13045-019-0789-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Background Additional sex combs-like 1 (ASXL1) mutations have been described in all forms of myeloid neoplasms including chronic myelomonocytic leukemia (CMML) and associated with inferior outcomes, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) remains poorly understood. Transformation of CMML to secondary AML (sAML) is one of the leading causes of death in CMML patients. Previously, we observed that transcription factor RUNX1 mutations (RUNX1-MT) coexisted with ASXL1-MT in CMML and at myeloid blast phase of chronic myeloid leukemia. The contribution of RUNX1 mutations in the pathogenesis of myeloid transformation in ASXL1-mutated leukemia, however, remains unclear. Methods To evaluate the leukemogenic role of RUNX1-MT in ASXL1-mutated cells, we co-expressed RUNX1-MT (R135T) and ASXL1-MT (R693X) in different cell lines and performed immunoblot, co-immunoprecipitation, gene expression microarray, quantitative RT-PCR, cell proliferation, differentiation, and clonogenic assays for in vitro functional analyses. The in vivo effect was investigated using the C57BL/6 mouse bone marrow transplantation (BMT) model. Results Co-expression of two mutant genes increased myeloid stem cells in animal model, suggesting that cooperation of RUNX1 and ASXL1 mutations played a critical role in leukemia transformation. The expression of RUNX1 mutant in ASXL1-mutated myeloid cells augmented proliferation, blocked differentiation, and increased self-renewal activity. At 9 months post-BMT, mice harboring combined RUNX1 and ASXL1 mutations developed disease characterized by marked splenomegaly, hepatomegaly, and leukocytosis with a shorter latency. Mice transduced with both ASXL1 and RUNX1 mutations enhanced inhibitor of DNA binding 1 (ID1) expression in the spleen, liver, and bone marrow cells. Bone marrow samples from CMML showed that ID1 overexpressed in coexisted mutations of RUNX1 and ASXL1 compared to normal control and either RUNX1-MT or ASXL1-MT samples. Moreover, the RUNX1 mutant protein was more stable than WT and increased HIF1-α and its target ID1 gene expression in ASXL1 mutant cells. Conclusion The present study demonstrated the biological and functional evidence for the critical role of RUNX1-MT in ASXL1-mutated leukemia in the pathogenesis of myeloid malignancies.
Collapse
Affiliation(s)
- Rabindranath Bera
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Chun Chiu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tung-Huei Lin
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Hematology-Oncology, Chang Gung Memorial Hospital, 199, Tung-Hwa North Road, Taipei, Taiwan, 10590.
| |
Collapse
|
13
|
Wang S, Chen Z, Zhu S, Lu H, Peng D, Soutto M, Naz H, Peek R, Xu H, Zaika A, Xu Z, El-Rifai W. PRDX2 protects against oxidative stress induced by H. pylori and promotes resistance to cisplatin in gastric cancer. Redox Biol 2019; 28:101319. [PMID: 31536951 PMCID: PMC6811995 DOI: 10.1016/j.redox.2019.101319] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is the main risk factor for gastric cancer. The role of antioxidant enzyme peroxiredoxin 2 (PRDX2) in gastric tumorigenesis remains unknown. In vitro (AGS and SNU-1 cell lines) and in vivo mouse models were utilized to investigate the role of PRDX2 in response to H. pylori infection (7.13, J166 or PMSS1 strain). We detected high levels of PRDX2 expression in gastric cancer tissues. Gastric cancer patients with high expression levels of PRDX2 had significantly worse overall and progression-free survival than those with low levels. H. pylori infection induced activation of NF-κB with increased expression of PRDX2, in in vitro and in vivo models. The knockdown of PRDX2 led to an increase in the levels of reactive oxygen species (ROS), oxidative DNA damage, and double-strand DNA breaks, in response to H. pylori infection, as measured by H2DCFDA, 8-oxoguanine, and p-H2AXγ assays. Luciferase reporter and ChIP assays confirmed the presence of a putative binding site of NF-κB-p65 on PRDX2 promoter region. The inhibition of PRDX2 significantly sensitized AGS and SNU-1 cells to cisplatin treatment. Our data suggest that the future development of therapeutic approaches targeting PRDX2 may be useful in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Mohammed Soutto
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Huma Naz
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Richard Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Alexander Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA.
| |
Collapse
|
14
|
Ahn JS, Kim T, Kim YK, Cho YC, Cho S, Jung SH, Ahn SY, Jung SY, Yang DH, Lee JJ, Choi S, Lee JY, Shin MG, Yoshida K, Ogawa S, Kim IC, Zhang Z, Kim HJ, Kim DDH. Remission clone in acute myeloid leukemia shows growth advantage after chemotherapy but is distinct from leukemic clone. Exp Hematol 2019; 75:26-30. [PMID: 31199945 DOI: 10.1016/j.exphem.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
In a previously published case study of acute myeloid leukemia, we tracked the dynamics of somatic mutations over 9 years. Interestingly, we observed a group of mutations that expanded during remission, which we named the "remission clone." To determine the nature of the remission clones, we performed flow cytometry-based cell sorting followed by ultradeep sequencing. The remission clone repeatedly expanded after chemotherapeutic cycles and was suppressed during relapse in the myeloid lineage (multipotent hematopoietic stem, progenitor, and myeloid cells). On the other hand, the remission clone was consistently observed in lymphoid lineages (B and T cells) regardless of the disease state. When transfected into the HEK-293 cell line, the NR2C2(A93V) mutant exhibited a growth advantage (all p values < 0.05). The results indicate that the remission clone seems to be another form of clonal hematopoiesis, but without a clear association with leukemia. As the remission clone is present in both myeloid and lymphoid lineages, it likely originates from ancestral hematopoietic cell lineages. More importantly, the remission clone is distinct from the leukemic clone; therefore, mutations expanded during remission require special interpretation when performing next-generation sequencing-based measurable residual disease assessment.
Collapse
Affiliation(s)
- Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea; Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - TaeHyung Kim
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - SaYeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sung-Hoon Jung
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Yeon Jung
- St. Carollo General Hospital, Jeollanam-do, Republic of Korea
| | - Deok-Hwan Yang
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Je-Jung Lee
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - SeungHyun Choi
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Ja-Yeon Lee
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology, Kyoto University Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Kyoto University Kyoto, Japan
| | - Il-Chul Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hyeoung-Joon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea; Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea.
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Sweeney KJ, Mottolese C, Belot A, Szathmari A, Frappaz D, Lesca G, Putoux A, Di Rocco F. The first case report of medulloblastoma associated with Tatton-Brown-Rahman syndrome. Am J Med Genet A 2019; 179:1357-1361. [PMID: 31066180 DOI: 10.1002/ajmg.a.61180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/13/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
DNMT3A codes for a DNA methyl transferase enzyme that plays a central role embryogenesis. Somatic mutations in this gene have been associated with tumorigenesis and are associated with a number of cancers. The recently described Tatton-Brown-Rahman syndrome (TBRS) is due to heterozygous germline mutations in the DNMT3A gene. So far, only one case of hematological malignancy associated with TBRS have been reported. Here, we describe the first case presenting with TBRS and medulloblastoma. We also discuss the associations between mutations in DNMT3A found in TBRS, AML, and medulloblastoma.
Collapse
Affiliation(s)
- Kieron J Sweeney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Le service de neurochirurgie pédiatrique, Hopital Mere Femme, Hospices Civils de Lyon, Lyon, France
| | - Carmine Mottolese
- Le service de neurochirurgie pédiatrique, Hopital Mere Femme, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- Service de néphrologie-rhumatologie-dermatologie pédiatriques, Hopital Mere Femme, Hospices Civils de Lyon, Lyon, France
| | - Alexandru Szathmari
- Le service de neurochirurgie pédiatrique, Hopital Mere Femme, Hospices Civils de Lyon, Lyon, France
| | | | - Gaetan Lesca
- Service de cytogenetique constitutionnelle, Hospices Civils de Lyon, Lyon, France
| | - Audrey Putoux
- Service de génétique, CHU de Lyon, Lyon, France.,Centre de Recherche en Neurosciences de Lyon, équipe GENDEV, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Federico Di Rocco
- Le service de neurochirurgie pédiatrique, Hopital Mere Femme, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|