1
|
Zhang J, Lou Y, Chen H, Huang X. Causal effects of retinol and vitamin D on tongue cancer risk: a mendelian randomization study. BMC Oral Health 2025; 25:52. [PMID: 39799281 PMCID: PMC11725209 DOI: 10.1186/s12903-024-05407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Previous studies have indicated that retinol and vitamin D may be associated with the oncogenesis of tongue cancer. Therefore, we aimed to assess the causal relationships of retinol and vitamin D with the risk of tongue cancer using the two-sample Mendelian randomization (MR) method. METHODS Single nucleotide polymorphisms (SNPs) related to retinol, vitamin D and tongue cancer were obtained from the up-to-date genome-wide association study (GWAS) catalogue, which was screened for instrumental variables (IVs). We performed two-sample MR analyses and used inverse-variance weighted (IVW) as the primary method. Additionally, we used the MR-pleiotropy residual sum and outlier (MR-PRESSO) method, MR-Egger intercept analysis, Cochran's Q test and leave-one-out analysis to evaluate the sensitivity of MR. RESULTS The IVW method revealed that retinol was not significantly correlated with the risk of tongue cancer (OR = 0.8602; 95% CI = 0.4453-1.6617; P = 0.654). However, the causal relationship between vitamin D and the risk of tongue cancer was significant according to IVW (OR = 0.4003; 95% CI = 0.1868-0.8577; P = 0.019). The sensitivity analysis did not detect any significant horizontal pleiotropy or heterogeneity. CONCLUSIONS Given the limitations of this study, our MR study suggests that retinol is unlikely to influence the risk of tongue cancer, but vitamin D may decrease the risk of tongue cancer.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yake Lou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hong Chen
- Department of Orthodontics School & Hospital of Stomatology Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200071, China.
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
2
|
Brust LA, Linxweiler M, Schnatmann J, Kühn JP, Knebel M, Braun FL, Wemmert S, Menger MD, Schick B, Holick MF, Kuo F, Morris LGT, Körner S. Effects of Vitamin D on tumor cell proliferation and migration, tumor initiation and anti-tumor immune response in head and neck squamous cell carcinomas. Biomed Pharmacother 2024; 180:117497. [PMID: 39341078 DOI: 10.1016/j.biopha.2024.117497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinomas (HNSCCs) are among the six most common cancers, with a constantly poor prognosis. Vitamin D has been found to have antineoplastic and immunomodulatory properties in various cancers. This study investigated the impact of Vitamin D on the initiation and progression as well as antitumor immune response in HNSCCs, both in vitro and in vivo. METHODS An immunocompetent, orthotopic oral carcinogenesis mouse model was used to examine the influence of Vitamin D3 substitution on HNSCC initiation and progression in vivo. Tumor immune infiltration was analyzed by immunohistochemistry targeting CD3, CD8, NKR-P1C, FOXP3, and CD163. Two HPV- and two HPV+ HNSCC cell lines were treated with 1,25-dihydroxyvitamin D3 to analyze effects on tumor cell proliferation, migration and transcriptomic changes using RNA-sequencing, differential gene expression and gene set enrichment analysis. RESULTS Vitamin D3 treatment led to a significant suppression of HNSCC initiation and progression, while also stimulating tumor immune infiltration with CD3+, CD8+ and NKR-P1C+ cells and lowering levels of M2 macrophages and Treg cells in vivo. In vitro experiments showed an inhibition of HNSCC cell proliferation and migration in HPV+ and HPV- cell lines. RNA-sequencing showed significant regulations in IL6 JAK STAT3, hypoxia signaling and immunomodulatory pathways upon Vitamin D3 treatment. CONCLUSION The findings of our study highlight the promising potential of Vitamin D in the therapeutic repertoire for HNSCC patients given its immune modulating, anti-proliferative and anti-migratory properties. Clinical transferability of those in vitro and in vivo effects should be further validated in clinical trials.
Collapse
Affiliation(s)
- Lukas A Brust
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Jana Schnatmann
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Jan-Philipp Kühn
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Moritz Knebel
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Felix L Braun
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Silke Wemmert
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Michael D Menger
- Institute of Clinical and Experimental Surgery; Saarland University, Homburg, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Michael F Holick
- Department of Physiology and Biophysics; Boston University School of Medicine, Boston, MA, USA
| | - Fengshen Kuo
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G T Morris
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sandrina Körner
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany; Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Pavithra S, Saravanan A, Vickram A. Utilizing genomic profiling in decoding oral cancer-prognosis and precision treatment. ORAL ONCOLOGY REPORTS 2024; 10:100416. [DOI: 10.1016/j.oor.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
van Driel M, Muñoz A, van Leeuwen JP. Overview of vitamin D actions in cancer. FELDMAN AND PIKE'S VITAMIN D 2024:679-718. [DOI: 10.1016/b978-0-323-91338-6.00034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Khamis A, Salzer L, Schiegnitz E, Stauber RH, Gül D. The Magic Triangle in Oral Potentially Malignant Disorders: Vitamin D, Vitamin D Receptor, and Malignancy. Int J Mol Sci 2023; 24:15058. [PMID: 37894739 PMCID: PMC10606220 DOI: 10.3390/ijms242015058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
OPMDs (oral potentially malignant disorders) are a group of disorders affecting the oral mucosa that are characterized by aberrant cell proliferation and a higher risk of malignant transformation. Vitamin D (VitD) and its receptor (VDR) have been extensively studied for their potential contributions to the prevention and therapeutic management of various diseases and neoplastic conditions, including oral cancer. Observational studies suggest correlations between VitD deficiency and higher cancer risk, worse prognosis, and increased mortality rates. Interestingly, emerging data also suggest a link between VitD insufficiency and the onset or progression of OPMDs. Understanding the role of the VitD-VDR axis not only in established oral tumors but also in OPMDs might thus enable early detection and prevention of malignant transformation. With this article, we want to provide an overview of current knowledge about OPMDs and VitD and investigate their potential association and ramifications for clinical management of OPMDs.
Collapse
Affiliation(s)
- Aya Khamis
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (L.S.); (R.H.S.)
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg—University Mainz, 55131 Mainz, Germany;
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Alexandria 5372066, Egypt
| | - Lara Salzer
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (L.S.); (R.H.S.)
| | - Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg—University Mainz, 55131 Mainz, Germany;
| | - Roland H. Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (L.S.); (R.H.S.)
| | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (L.S.); (R.H.S.)
| |
Collapse
|
6
|
Liew YX, Karen-Ng LP, Vincent-Chong VK. A Comprehensive Review of Natural Products as Therapeutic or Chemopreventive Agents against Head and Neck Squamous Cell Carcinoma Cells Using Preclinical Models. Biomedicines 2023; 11:2359. [PMID: 37760799 PMCID: PMC10525836 DOI: 10.3390/biomedicines11092359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a type of cancer that arises from the epithelium lining of the oral cavity, hypopharynx, oropharynx, and larynx. Despite the advancement of current treatments, including surgery, chemotherapy, and radiotherapy, the overall survival rate of patients afflicted with HNSCC remains poor. The reasons for these poor outcomes are due to late diagnoses and patient-acquired resistance to treatment. Natural products have been extensively explored as a safer and more acceptable alternative therapy to the current treatments, with numerous studies displaying their potential against HNSCC. This review highlights preclinical studies in the past 5 years involving natural products against HNSCC and explores the signaling pathways altered by these products. This review also addresses challenges and future directions of natural products as chemotherapeutic and chemoprevention agents against HNSCC.
Collapse
Affiliation(s)
- Yoon Xuan Liew
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Lee Peng Karen-Ng
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Vui King Vincent-Chong
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
7
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
8
|
Chiu WC, Ou DL, Tan CT. Mouse Models for Immune Checkpoint Blockade Therapeutic Research in Oral Cancer. Int J Mol Sci 2022; 23:ijms23169195. [PMID: 36012461 PMCID: PMC9409124 DOI: 10.3390/ijms23169195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The most prevalent oral cancer globally is oral squamous cell carcinoma (OSCC). The invasion of adjacent bones and the metastasis to regional lymph nodes often lead to poor prognoses and shortened survival times in patients with OSCC. Encouraging immunotherapeutic responses have been seen with immune checkpoint inhibitors (ICIs); however, these positive responses to monotherapy have been limited to a small subset of patients. Therefore, it is urgent that further investigations into optimizing immunotherapies are conducted. Areas of research include identifying novel immune checkpoints and targets and tailoring treatment programs to meet the needs of individual patients. Furthermore, the advancement of combination therapies against OSCC is also critical. Thus, additional studies are needed to ensure clinical trials are successful. Mice models are advantageous in immunotherapy research with several advantages, such as relatively low costs and high tumor growth success rate. This review paper divided methods for establishing OSCC mouse models into four categories: syngeneic tumor models, chemical carcinogen induction, genetically engineered mouse, and humanized mouse. Each method has advantages and disadvantages that influence its application in OSCC research. This review comprehensively surveys the literature and summarizes the current mouse models used in immunotherapy, their advantages and disadvantages, and details relating to the cell lines for oral cancer growth. This review aims to present evidence and considerations for choosing a suitable model establishment method to investigate the early diagnosis, clinical treatment, and related pathogenesis of OSCC.
Collapse
Affiliation(s)
- Wei-Chiao Chiu
- Department of Medical Research, Fu-Jen Catholic University Hospital, Fu-Jen Catholic University, New Taipei City 24352, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei City 100225, Taiwan
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City 10051, Taiwan
- YongLin Institute of Health, National Taiwan University, Taipei City 10672, Taiwan
| | - Ching-Ting Tan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei City 100225, Taiwan
- Stem Cell Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei City 10051, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei City 100233, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302058, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88649)
| |
Collapse
|
9
|
Chen W, Feng Z, Sun Q. A novel ursodeoxycholic acid–chitosan-folate conjugates for the delivery of calcitriol for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Pritzker KPH, Darling MR, Hwang JTK, Mock D. Oral Potentially Malignant Disorders (OPMD): What is the clinical utility of dysplasia grade? Expert Rev Mol Diagn 2021; 21:289-298. [PMID: 33682567 DOI: 10.1080/14737159.2021.1898949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Oral epithelial dysplasia is considered a potential histologic precursor of subsequent squamous cell cancer. As standard clinical practice, pathologists grade dysplasia to assess risk for progression to malignancy. Except for the most advanced grade, severe dysplasia, dysplasia grading has failed to correlate well with the risk to develop invasive cancer. The questions of what process dysplasia grading best represents and what clinical utility dysplasia grading may have are explored. AREAS COVERED This narrative review is based on PubMed search with emphasis on papers since 2010. Epithelial dysplasia as a precursor lesion of cancer and dysplasia grading as a risk assessment tool for progression to cancer are discussed. The close clinical association of dysplasia with known carcinogens, alcohol, and tobacco products is presented. EXPERT OPINION Oral epithelial dysplasia is often, associated with prolonged exposure to tobacco and alcohol products. With reduction of carcinogen exposure, dysplasia is known to regress in some cases. It is proposed that histologic dysplasia grade together with macroscopic images of dysplastic clinical lesions be used as an educational tool to incentivize patients to reduce their known carcinogen exposure. This strategy has the potential to reduce lesion progression thereby reducing the disease burden of oral cancer.
Collapse
Affiliation(s)
- Kenneth P H Pritzker
- Professor Emeritus, Laboratory Medicine and Pathobiology; Surgery University of Toronto, Toronto, Ontario, Canada.,Proteocyte Diagnostics Inc., Toronto, Canada.,Department of Pathology and Laboratory Medicine, Pathology & Laboratory Medicine Mount Sinai Hospital, Toronto, Canada
| | - Mark R Darling
- Professor, Department of Pathology and Laboratory Medicine, Schulich Faculty of Medicine and Dentistry, Western University London Ontario, Canada
| | | | - David Mock
- Department of Pathology and Laboratory Medicine, Pathology & Laboratory Medicine Mount Sinai Hospital, Toronto, Canada.,Professor, Pathology/Oral Medicine & Dean Emeritus, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Department of Dentistry, Dentistry Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
11
|
The 4-NQO mouse model: An update on a well-established in vivo model of oral carcinogenesis. Methods Cell Biol 2020; 163:197-229. [PMID: 33785166 DOI: 10.1016/bs.mcb.2020.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The early detection and management of oral premalignant lesions (OPMDs) improve their outcomes. Animal models that mimic histological and biological processes of human oral carcinogenesis may help to improve the identification of OPMD at-risk of progression into oral squamous cell carcinoma and to develop preventive strategies for the entire field of cancerization. No animal model is perfectly applicable for investigating human oral carcinogenesis. However, the 4-nitroquinoline 1-oxide (4-NQO) mouse model is well established and mimics several morphological, histological, genomic and molecular features of human oral carcinogenesis. Some of the reasons for the success of this model include its reproducible experimental conditions with limited variation, the possibility of realizing longitudinal studies with invasive intervention or gene manipulation, and sample availability for all stages of oral carcinogenesis, especially premalignant lesions. Moreover, the role of histological and molecular alterations in the field of cancerization (i.e., macroscopically healthy mucosa exposed to a carcinogen) during oral carcinogenesis can be easily explored using this model. In this review, we discuss the advantages and drawbacks of this model for studying human oral carcinogenesis. In summary, the 4-NQO-induced murine oral cancer model is relevant for investigating human oral carcinogenesis, including the immune microenvironment, and for evaluating therapeutic and chemoprevention agents.
Collapse
|
12
|
Verma A, Vincent-Chong VK, DeJong H, Hershberger PA, Seshadri M. Impact of dietary vitamin D on initiation and progression of oral cancer. J Steroid Biochem Mol Biol 2020; 199:105603. [PMID: 31981799 PMCID: PMC7166186 DOI: 10.1016/j.jsbmb.2020.105603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Calcitriol, the active metabolite of vitamin D, has been widely studied for its preventive and therapeutic activity against several cancers including oral squamous cell carcinoma (OSCC). However, the impact of dietary vitamin D supplementation on initiation and progression of OSCC is unclear. To address this gap in knowledge, we conducted preclinical trials using the 4-nitroquinoline-1-oxide 4NQO carcinogen model of oral carcinogenesis. Female C57BL/6 mice were maintained on one of three vitamin D diets [25 IU, 100 IU, 10,000 IU] and exposed to 4NQO in drinking water for 16 weeks followed by regular water for 10 weeks. Body weight measurements obtained through the study duration did not reveal any differences between the three diets. Animals on 100 IU diet showed lower incidence of high-grade dysplasia/OSCC and higher CD3 + T cells compared to animals on 25 IU and 10,000 IU diets. Serum 25OHD3 levels were highest in animals on 10,000 IU diet at week 0 prior to carcinogen exposure but showed ∼50 % reduction at week 26. Histologic evaluation revealed highest incidence of OSCC in animals maintained on 10,000 IU diet. Animals on 100 IU and 10,000 IU diets showed higher vitamin D receptor VDR and CYP24A1 immunostaining in high-grade dysplastic lesions and OSCC compared to normal tongue. Validation studies performed in a 4NQO-derived OSCC model showed that short-term treatment of animals on a 25 IU diet with calcitriol significantly inhibited tumor growth compared to controls but did not affect tumor growth in animals on reference diet 1000 IU. Collectively, our results highlight the complex dynamics between vitamin D status and oral carcinogenesis. Our observations also suggest that therapeutic benefits of short-term calcitriol treatment may be more pronounced in vitamin D deficient hosts.
Collapse
Affiliation(s)
| | | | | | | | - Mukund Seshadri
- Center for Oral Oncology, United States; Department of Dentistry and Maxillofacial Prosthetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States.
| |
Collapse
|
13
|
Development and Radiation Response Assessment in A Novel Syngeneic Mouse Model of Tongue Cancer: 2D Culture, 3D Organoids and Orthotopic Allografts. Cancers (Basel) 2020; 12:cancers12030579. [PMID: 32131500 PMCID: PMC7139805 DOI: 10.3390/cancers12030579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) are aggressive cancers that contribute to significant morbidity and mortality in humans. Although numerous human xenograft models of OSCC have been developed, only a few syngeneic models of OSCC exist. Here, we report on a novel murine model of OSCC, RP-MOC1, derived from a tongue tumor in a C57Bl/6 mouse exposed to the carcinogen 4-nitroquinoline-1-oxide. Phenotypic characterization and credentialing (STR profiling, exome sequencing) of RP-MOC1 cells was performed in vitro. Radiosensitivity was evaluated in 2D culture, 3D organoids, and in vivo using orthotopic allografts. RP-MOC1 cells exhibited a stable epithelial phenotype with proliferative, migratory and invasive properties. Exome sequencing identified several mutations commonly found in OSCC patients. The LD50 for RP-MOC1 cells in 2D culture and 3D organoids was found to be 2.4 Gy and 12.6 Gy, respectively. Orthotopic RP-MOC1 tumors were pan-cytokeratin+ and Ki-67+. Magnetic resonance imaging of orthotopic RP-MOC1 tumors established in immunocompetent mice revealed marked growth inhibition following 10 Gy and 15 Gy fractionated radiation regimens. This radiation response was completely abolished in tumors established in immunodeficient mice. This novel syngeneic model of OSCC can serve as a valuable platform for the evaluation of combination strategies to enhance radiation response against this deadly disease.
Collapse
|
14
|
Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:212. [PMID: 32158692 PMCID: PMC7052016 DOI: 10.3389/fonc.2020.00212] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Preclinical animal models of oral squamous cell carcinoma (OSCC) have been extensively studied in recent years. Investigating the pathogenesis and potential therapeutic strategies of OSCC is required to further progress in this field, and a suitable research animal model that reflects the intricacies of cancer biology is crucial. Of the animal models established for the study of cancers, mouse tumor-bearing models are among the most popular and widely deployed for their high fertility, low cost, and molecular and physiological similarity to humans, as well as the ease of rearing experimental mice. Currently, the different methods of establishing OSCC mouse models can be divided into three categories: chemical carcinogen-induced, transplanted and genetically engineered mouse models. Each of these methods has unique advantages and limitations, and the appropriate application of these techniques in OSCC research deserves our attention. Therefore, this review comprehensively investigates and summarizes the tumorigenesis mechanisms, characteristics, establishment methods, and current applications of OSCC mouse models in published papers. The objective of this review is to provide foundations and considerations for choosing suitable model establishment methods to study the relevant pathogenesis, early diagnosis, and clinical treatment of OSCC.
Collapse
Affiliation(s)
- Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yongbin Mou
| | - Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Yanhong Ni
| |
Collapse
|