1
|
Jassi C, Kuo WW, Chang YC, Wang TF, Ho TJ, Hsieh DJY, Kuo CH, Chen MC, Li CC, Huang CY. MicroRNA-376a-3p sensitizes CPT-11-resistant colorectal cancer by enhancing apoptosis and reversing the epithelial-to-mesenchymal transition (EMT) through the IGF1R/PI3K/AKT pathway. Transl Oncol 2024; 50:102125. [PMID: 39317064 PMCID: PMC11456798 DOI: 10.1016/j.tranon.2024.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/10/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent type of cancer worldwide contributing to an estimated 10 % of all cancer cases. CPT-11 is one of the first-line drugs for CRC treatment. Unfortunately, the development of drug resistance significantly exacerbates the adverse impact of CRC. Consequent tumor recurrences and metastasis, years after treatment are the frequently reported incidences. MicroRNAs (miRNA) are short non-coding RNA with the functionality of gene suppression. The insulin-like growth factor type 1 receptor (IGF1R) is a tyrosine kinase receptor frequently upregulated in cancers and is associated with cell survival and drug resistance. MiRNAs are frequently reported to be dysregulated in cancers including CRC. Evidence suggests that dysregulated miRNAs have direct consequences on the biological processes of their target genes. We previously demonstrated that miRNA-376a-3p is upregulated in CPT-11responsive, CRC cells upon treatment with CPT-11. We therefore aimed to investigate the involvement of miRNA-376a-3p in CPT-11 resistance and its probable association with IGF1R-mediated cancer cell survival. Our experimental approach used knockdown and overexpression experiments supplemented with western blot, RT-qPCR, flow cytometry, MTT, and migration assays to achieve our aim. Our data reveals the mechanism through which IGF1R and miRNA-376a-3p perpetrate and attenuate CPT-11 resistance respectively. MiRNA-376a-3p overexpression negatively regulated the IGF1R-induced cell survival, PI3K/AKT pathway, and reversed the epithelial-mesenchymal transition, hence sensitizing resistant cells to CPT-11. Our findings suggests that the miRNA-376a-3p/IGF1R axis holds promise as a potential target to sensitize CRC to CPT-11 in cases of drug resistance.
Collapse
Affiliation(s)
- Chikondi Jassi
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC; School of pharmacy, China Medical University, Taichung, Taiwan, ROC
| | - Yu-Chun Chang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan; Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Cheng Li
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan; Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria related Diseases Research Center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan; Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
2
|
Tang Y, Fan Y. Combined KRAS and TP53 mutation in patients with colorectal cancer enhance chemoresistance to promote postoperative recurrence and metastasis. BMC Cancer 2024; 24:1155. [PMID: 39289671 PMCID: PMC11409552 DOI: 10.1186/s12885-024-12776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
The response of patients with colorectal cancer to chemotherapy is tightly correlated with their genomic variation. Among these, APC, TP53, KRAS, PIK3CA are the most frequently mutated genes in advanced colorectal cancer patients. However, the precise correlation between these mutations and the therapeutic effects of chemotherapy remains elusive. Here, we conducted genome sequencing to identify commonly mutated genes in colorectal cancer patients and comprehensively assessed their sensitivity to chemotherapy drugs by monitoring computer tomography (CT) scans and carcinoembryonic antigen (CEA) levels. Surprisingly, we discovered that the objective response rate to the standard first-line chemotherapy among patients harboring combined KRAS and TP53 mutations is dismal, and these patients are predisposed to recurrence and metastasis. Furthermore, advanced-stage patients with concurrent KRAS and TP53 mutations are susceptible to developing cancer-associated cachexia due to chemotherapy resistance or forced cessation of treatment. Our findings underscore the urgent need for the development of innovative and novel chemotherapeutic strategies to effectively manage colorectal cancer patients harboring combined KRAS and TP53 mutations.
Collapse
Affiliation(s)
- YiMeng Tang
- Department of General Surgery, The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, 621000, China
| | - Yao Fan
- Department of General Surgery, The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, 621000, China.
| |
Collapse
|
3
|
Kobayashi T, Noma K, Nishimura S, Kato T, Nishiwaki N, Ohara T, Kunitomo T, Kawasaki K, Akai M, Komoto S, Kashima H, Kikuchi S, Tazawa H, Shirakawa Y, Choyke PL, Kobayashi H, Fujiwara T. Near-infrared Photoimmunotherapy Targeting Cancer-Associated Fibroblasts in Patient-Derived Xenografts Using a Humanized Anti-Fibroblast Activation Protein Antibody. Mol Cancer Ther 2024; 23:1031-1042. [PMID: 38638034 DOI: 10.1158/1535-7163.mct-23-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/10/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Esophageal cancer remains a highly aggressive malignancy with a poor prognosis, despite ongoing advancements in treatments such as immunotherapy. The tumor microenvironment, particularly cancer-associated fibroblasts (CAF), plays a crucial role in driving the aggressiveness of esophageal cancer. In a previous study utilizing human-derived xenograft models, we successfully developed a novel cancer treatment that targeted CAFs with near-infrared photoimmunotherapy (NIR-PIT), as an adjuvant therapy. In this study, we sought to translate our findings toward clinical practice by employing patient-derived xenograft (PDX) models and utilizing humanized mAbs, specifically sibrotuzumab, which is an antihuman fibroblast activation protein (FAP) Ab and already being investigated in clinical trials as monotherapy. PDX models derived from patients with esophageal cancer were effectively established, preserving the expression of key biomarkers such as EGFR and FAP, as observed in primary tumors. The application of FAP-targeted NIR-PIT using sibrotuzumab, conjugated with the photosensitizer IR700DX, exhibited precise binding and selective elimination of FAP-expressing fibroblasts in vitro. Notably, in our in vivo investigations using both cell line-derived xenograft and PDX models, FAP-targeted NIR-PIT led to significant inhibition of tumor progression compared with control groups, all without inducing adverse events such as weight loss. Immunohistologic assessments revealed a substantial reduction in CAFs exclusively within the tumor microenvironment of both models, further supporting the efficacy of our approach. Thus, our study demonstrates the potential of CAF-targeted NIR-PIT employing sibrotuzumab as a promising therapeutic avenue for the clinical treatment of patients with esophageal cancer.
Collapse
Affiliation(s)
- Teruki Kobayashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Seitaro Nishimura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Tomoyoshi Kunitomo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Kento Kawasaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Masaaki Akai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Satoshi Komoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
- Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|
4
|
Sousa ACDS, Fernandes BLNC, da Silva JPA, Stevanato Filho PR, Coimbra LBDCT, de Oliveira Beserra A, Alvarenga AL, Maida G, Guimaraes CT, Nakamuta IM, Marchi FA, Alves C, Lichtenfels M, de Farias CB, Kupper BEC, Costa FD, de Mello CAL, Carraro DM, Torrezan GT, Lopes A, dos Santos TG. A Case Study of a Rare Undifferentiated Spindle Cell Sarcoma of the Penis: Establishment and Characterization of Patient-Derived Models. Genes (Basel) 2024; 15:424. [PMID: 38674359 PMCID: PMC11049969 DOI: 10.3390/genes15040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Rare sarcomas present significant treatment challenges compared to more prevalent soft tissue sarcomas due to limited treatment options and a poor understanding of their biology. This study investigates a unique case of penile sarcoma, providing a comprehensive morphological and molecular analysis. Through the creation of experimental patient-derived models-including patient-derived xenograft (PDX), 3D, and monolayer primary cultures-we successfully replicated crucial molecular traits observed in the patient's tumor, such as smooth muscle actin and CD99 expression, along with specific mutations in genes like TSC2 and FGFR4. These models are helpful in assessing the potential for an in-depth exploration of this tumor's biology. This comprehensive approach holds promise in identifying potential therapeutic avenues for managing this exceedingly rare soft tissue sarcoma.
Collapse
Affiliation(s)
- Ariane Cavalcante dos Santos Sousa
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
- Graduate Program of A.C.Camargo Cancer Center, Sao Paulo 01508-020, Brazil;
| | | | | | - Paulo Roberto Stevanato Filho
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Luiza Bitencourt de Carvalho Terci Coimbra
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Adriano de Oliveira Beserra
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
- Graduate Program of A.C.Camargo Cancer Center, Sao Paulo 01508-020, Brazil;
| | - Ana Luiza Alvarenga
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Giovanna Maida
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Camila Tokumoto Guimaraes
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Ingrid Martinez Nakamuta
- Graduate Program of A.C.Camargo Cancer Center, Sao Paulo 01508-020, Brazil;
- Heart Institute of School of Medicine, University of Sao Paulo, Sao Paulo 05403-900, Brazil
| | - Fabio Albuquerque Marchi
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of the University of Sao Paulo Medical School (HCFMUSP), Sao Paulo 01246-000, Brazil;
| | - Camila Alves
- Ziel Biosciences, Department of Translational Research, Porto Alegre 90050-170, Brazil; (C.A.); (M.L.); (C.B.d.F.)
| | - Martina Lichtenfels
- Ziel Biosciences, Department of Translational Research, Porto Alegre 90050-170, Brazil; (C.A.); (M.L.); (C.B.d.F.)
| | - Caroline Brunetto de Farias
- Ziel Biosciences, Department of Translational Research, Porto Alegre 90050-170, Brazil; (C.A.); (M.L.); (C.B.d.F.)
| | - Bruna Elisa Catin Kupper
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Felipe D’Almeida Costa
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
- Anatomic Pathology Department, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil
| | - Celso Abdon Lopes de Mello
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Dirce Maria Carraro
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Giovana Tardin Torrezan
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Ademar Lopes
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Tiago Goss dos Santos
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| |
Collapse
|
5
|
Ko J, Song J, Choi N, Kim HN. Patient-Derived Microphysiological Systems for Precision Medicine. Adv Healthc Mater 2024; 13:e2303161. [PMID: 38010253 PMCID: PMC11469251 DOI: 10.1002/adhm.202303161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Patient-derived microphysiological systems (P-MPS) have emerged as powerful tools in precision medicine that provide valuable insight into individual patient characteristics. This review discusses the development of P-MPS as an integration of patient-derived samples, including patient-derived cells, organoids, and induced pluripotent stem cells, into well-defined MPSs. Emphasizing the necessity of P-MPS development, its significance as a nonclinical assessment approach that bridges the gap between traditional in vitro models and clinical outcomes is highlighted. Additionally, guidance is provided for engineering approaches to develop microfluidic devices and high-content analysis for P-MPSs, enabling high biological relevance and high-throughput experimentation. The practical implications of the P-MPS are further examined by exploring the clinically relevant outcomes obtained from various types of patient-derived samples. The construction and analysis of these diverse samples within the P-MPS have resulted in physiologically relevant data, paving the way for the development of personalized treatment strategies. This study describes the significance of the P-MPS in precision medicine, as well as its unique capacity to offer valuable insights into individual patient characteristics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Jiyoung Song
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
6
|
Zhu X, Chen J, Li W, Xu Y, Shan J, Hong J, Zhao Y, Xu H, Ma J, Shen J, Qian C. Hypoxia-Responsive CAR-T Cells Exhibit Reduced Exhaustion and Enhanced Efficacy in Solid Tumors. Cancer Res 2024; 84:84-100. [PMID: 37874330 DOI: 10.1158/0008-5472.can-23-1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/26/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Expanding the utility of chimeric antigen receptor (CAR)-T cells in solid tumors requires improving their efficacy and safety. Hypoxia is a feature of most solid tumors that could be used to help CAR-T cells discriminate tumors from normal tissues. In this study, we developed hypoxia-responsive CAR-T cells by engineering the CAR to be under regulation of hypoxia-responsive elements and selected the optimal structure (5H1P-CEA CAR), which can be activated in the tumor hypoxic microenvironment to induce CAR-T cells with high polyfunctionality. Hypoxia-responsive CAR T cells were in a "resting" state with low CAR expression under normoxic conditions. Compared with conventional CAR-T cells, hypoxia-responsive CAR-T cells maintained lower differentiation and displayed enhanced oxidative metabolism and proliferation during cultivation, and they sowed a capacity to alleviate the negative effects of hypoxia on T-cell proliferation and metabolism. Furthermore, 5H1P-CEA CAR-T cells exhibited decreased T-cell exhaustion and improved T-cell phenotype in vivo. In patient-derived xenograft models, hypoxia-responsive CAR-T cells induced more durable antitumor activity than their conventional counterparts. Overall, this study provides an approach to limit CAR expression to the hypoxic tumor microenvironment that could help to enhance CAR T-cell efficacy and safety in solid tumors. SIGNIFICANCE Engineering CAR-T cells to upregulate CAR expression under hypoxic conditions induces metabolic reprogramming, reduces differentiation, and increases proliferation to enhance their antitumor activity, providing a strategy to improve efficacy and safety.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jun Chen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Wuling Li
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Yanmin Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Juanjuan Shan
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Juan Hong
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Yongchun Zhao
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Huailong Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Jiabin Ma
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Junjie Shen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Cheng Qian
- College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
7
|
Sun H, Sun L, Ke X, Liu L, Li C, Jin B, Wang P, Jiang Z, Zhao H, Yang Z, Sun Y, Liu J, Wang Y, Sun M, Pang M, Wang Y, Wu B, Zhao H, Sang X, Xing B, Yang H, Huang P, Mao Y. Prediction of Clinical Precision Chemotherapy by Patient-Derived 3D Bioprinting Models of Colorectal Cancer and Its Liver Metastases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304460. [PMID: 37973557 PMCID: PMC10787059 DOI: 10.1002/advs.202304460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Indexed: 11/19/2023]
Abstract
Methods accurately predicting the responses of colorectal cancer (CRC) and colorectal cancer liver metastasis (CRLM) to personalized chemotherapy remain limited due to tumor heterogeneity. This study introduces an innovative patient-derived CRC and CRLM tumor model for preclinical investigation, utilizing 3d-bioprinting (3DP) technology. Efficient construction of homogeneous in vitro 3D models of CRC/CRLM is achieved through the application of patient-derived primary tumor cells and 3D bioprinting with bioink. Genomic and histological analyses affirm that the CRC/CRLM 3DP tumor models effectively retain parental tumor biomarkers and mutation profiles. In vitro tests evaluating chemotherapeutic drug sensitivities reveal substantial tumor heterogeneity in chemotherapy responses within the 3DP CRC/CRLM models. Furthermore, a robust correlation is evident between the drug response in the CRLM 3DP model and the clinical outcomes of neoadjuvant chemotherapy. These findings imply a significant potential for the application of patient-derived 3DP cancer models in precision chemotherapy prediction and preclinical research for CRC/CRLM.
Collapse
Affiliation(s)
- Hang Sun
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Lejia Sun
- Department of General SurgeryThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029China
- The First School of Clinical MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Xindi Ke
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Lijuan Liu
- Department of Hepatopancreatobiliary Surgery IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijing100142China
| | - Changcan Li
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Bao Jin
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Peipei Wang
- Department of General SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Zhuoran Jiang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Hong Zhao
- Department of Hepatobiliary SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Zhiying Yang
- First Department of Hepatopancreatobiliary SurgeryChina‐Japan Friendship HospitalBeijing100029China
| | - Yongliang Sun
- First Department of Hepatopancreatobiliary SurgeryChina‐Japan Friendship HospitalBeijing100029China
| | - Jianmei Liu
- Department of Hepatobiliary SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Yan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Minghao Sun
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Mingchang Pang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Yinhan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Bin Wu
- Department of General SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Haitao Zhao
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Xinting Sang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Baocai Xing
- Department of Hepatopancreatobiliary Surgery IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijing100142China
| | - Huayu Yang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and DevicesEngineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education)Institute of Biomedical EngineeringChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300192China
- Tianjin Institutes of Health ScienceTianjin301600China
| | - Yilei Mao
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| |
Collapse
|
8
|
Weng T, Jenkins BJ, Saad MI. Patient-Derived Xenografts: A Valuable Preclinical Model for Drug Development and Biomarker Discovery. Methods Mol Biol 2024; 2806:19-30. [PMID: 38676793 DOI: 10.1007/978-1-0716-3858-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Patient-derived xenografts (PDXs), established by implanting patient tumor cells into immunodeficient mice, offer a platform for faithfully replicating human tumors. They closely mimic the histopathology, genomics, and drug sensitivity of patient tumors. This chapter highlights the versatile applications of PDXs, including studying tumor biology, metastasis, and chemoresistance, as well as their use in biomarker identification, drug screening, and personalized medicine. It also addresses challenges in using PDXs in cancer research, including variations in metastatic potential, lengthy establishment timelines, stromal changes, and limitations in immunocompromised models. Despite these challenges, PDXs remain invaluable tools guiding patient treatment and advancing preclinical drug development.
Collapse
Affiliation(s)
- Teresa Weng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, SA, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
9
|
Jassi C, Kuo WW, Chang YC, Wang TF, Li CC, Ho TJ, Hsieh DJY, Kuo CH, Chen MC, Huang CY. Aloin and CPT-11 combination activates miRNA-133b and downregulates IGF1R- PI3K/AKT/mTOR and MEK/ERK pathways to inhibit colorectal cancer progression. Biomed Pharmacother 2023; 169:115911. [PMID: 38000359 DOI: 10.1016/j.biopha.2023.115911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
CPT-11 is one of the drugs employed in colorectal cancer treatment and has faced challenges in the form of resistance. The insulin-like growth factor 1 receptor is a tyrosine kinase receptor that mediates cancer cell survival and drug resistance. It is frequently overexpressed in colorectal cancer and has previously been identified as a microRNA target. MicroRNAs are non-coding RNA molecules that regulate gene function by suppressing messenger RNA translation. Studies have demonstrated that natural compounds can regulate microRNA function and their target genes. Therefore, combining natural compounds with existing cancer drugs can enhance the therapeutic efficacy. We investigated a natural compound, Aloin, for the potential sensitization of colorectal cancer to CPT-11. We used western blot, MTT cell viability assay, flow cytometry, and microRNA/gene knockdown and overexpression experiments, as well as an in vivo mouse model. Our investigation revealed that combining Aloin with CPT-11 exerts an enhanced anti-tumor effect in colorectal cancer. This combination reduced cell viability and induced apoptosis, both in vivo and in vitro. Furthermore, this combination upregulated miRNA-133b, while downregulating the IGF1R and its downstream MEK/ERK, and PI3K/AKT/mTOR pathways. Our findings suggests that CPT-11 and Aloin are potential combination treatment partners against colorectal cancer. MicroRNA-133b may serve as a co-therapeutic target with IGF1R against colorectal cancer, which might overcome the existing treatment limitations.
Collapse
Affiliation(s)
- Chikondi Jassi
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yu-Chun Chang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Chi-Cheng Li
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan; Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan; Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria related diseases research center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan; Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
10
|
Behrens D, Pfohl U, Conrad T, Becker M, Brzezicha B, Büttner B, Wagner S, Hallas C, Lawlor R, Khazak V, Linnebacher M, Wartmann T, Fichtner I, Hoffmann J, Dahlmann M, Walther W. Establishment and Thorough Characterization of Xenograft (PDX) Models Derived from Patients with Pancreatic Cancer for Molecular Analyses and Chemosensitivity Testing. Cancers (Basel) 2023; 15:5753. [PMID: 38136299 PMCID: PMC10741928 DOI: 10.3390/cancers15245753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Patient-derived xenograft (PDX) tumor models are essential for identifying new biomarkers, signaling pathways and novel targets, to better define key factors of therapy response and resistance mechanisms. Therefore, this study aimed at establishing pancreas carcinoma (PC) PDX models with thorough molecular characterization, and the identification of signatures defining responsiveness toward drug treatment. In total, 45 PC-PDXs were generated from 120 patient tumor specimens and the identity of PDX and corresponding patient tumors was validated. The majority of engrafted PDX models represent ductal adenocarcinomas (PDAC). The PDX growth characteristics were assessed, with great variations in doubling times (4 to 32 days). The mutational analyses revealed an individual mutational profile of the PDXs, predominantly showing alterations in the genes encoding KRAS, TP53, FAT1, KMT2D, MUC4, RNF213, ATR, MUC16, GNAS, RANBP2 and CDKN2A. Sensitivity of PDX toward standard of care (SoC) drugs gemcitabine, 5-fluorouracil, oxaliplatin and abraxane, and combinations thereof, revealed PDX models with sensitivity and resistance toward these treatments. We performed correlation analyses of drug sensitivity of these PDX models and their molecular profile to identify signatures for response and resistance. This study strongly supports the importance and value of PDX models for improvement in therapies of PC.
Collapse
Affiliation(s)
- Diana Behrens
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Ulrike Pfohl
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Theresia Conrad
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Michael Becker
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Bernadette Brzezicha
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Britta Büttner
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cora Hallas
- Institut für Hämatopathologie, Fangdieckstr. 75, 22547 Hamburg, Germany
| | - Rita Lawlor
- ARC-Net Research Center, University and Hospital Trust of Verona, Piazzale A. Scuro 10, 37134 Verona, Italy
| | | | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, 18057 Rostock, Germany
| | - Thomas Wartmann
- University Clinic for General, Visceral, Vascular and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Iduna Fichtner
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Mathias Dahlmann
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Wolfgang Walther
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
11
|
Martinez-Ruiz L, López-Rodríguez A, Florido J, Rodríguez-Santana C, Rodríguez Ferrer JM, Acuña-Castroviejo D, Escames G. Patient-derived tumor models in cancer research: Evaluation of the oncostatic effects of melatonin. Biomed Pharmacother 2023; 167:115581. [PMID: 37748411 DOI: 10.1016/j.biopha.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The development of new anticancer therapies tends to be very slow. Although their impact on potential candidates is confirmed in preclinical studies, ∼95 % of these new therapies are not approved when tested in clinical trials. One of the main reasons for this is the lack of accurate preclinical models. In this context, there are different patient-derived models, which have emerged as a powerful oncological tool: patient-derived xenografts (PDXs), patient-derived organoids (PDOs), and patient-derived cells (PDCs). Although all these models are widely applied, PDXs, which are created by engraftment of patient tumor tissues into mice, is considered more reliable. In fundamental research, the PDX model is used to evaluate drug-sensitive markers and, in clinical practice, to select a personalized therapeutic strategy. Melatonin is of particular importance in the development of innovative cancer treatments due to its oncostatic impact and lack of adverse effects. However, the literature regarding the oncostatic effect of melatonin in patient-derived tumor models is scant. This review aims to describe the important role of patient-derived models in the development of anticancer treatments, focusing, in particular, on PDX models, as well as their use in cancer research. This review also summarizes the existing literature on the anti-tumoral effect of melatonin in patient-derived models in order to propose future anti-neoplastic clinical applications.
Collapse
Affiliation(s)
- Laura Martinez-Ruiz
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Alba López-Rodríguez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Javier Florido
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Cesar Rodríguez-Santana
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - José M Rodríguez Ferrer
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Darío Acuña-Castroviejo
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Germaine Escames
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain.
| |
Collapse
|
12
|
Jiang H, Zhou S, Li G. Novel biomarkers used for early diagnosis and tyrosine kinase inhibitors as targeted therapies in colorectal cancer. Front Pharmacol 2023; 14:1189799. [PMID: 37719843 PMCID: PMC10502318 DOI: 10.3389/fphar.2023.1189799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common and second most lethal type of cancer worldwide, presenting major health risks as well as economic costs to both people and society. CRC survival chances are significantly higher if the cancer is diagnosed and treated early. With the development of molecular biology, numerous initiatives have been undertaken to identify novel biomarkers for the early diagnosis of CRC. Pathological disorders can be diagnosed at a lower cost with the help of biomarkers, which can be detected in stool, blood, and tissue samples. Several lines of evidence suggest that the gut microbiota could be used as a biomarker for CRC screening and treatment. CRC treatment choices include surgical resection, chemotherapy, immunotherapy, gene therapy, and combination therapies. Targeted therapies are a relatively new and promising modality of treatment that has been shown to increase patients' overall survival (OS) rates and can inhibit cancer cell development. Several small-molecule tyrosine kinase inhibitors (TKIs) are being investigated as potential treatments due to our increasing awareness of CRC's molecular causes and oncogenic signaling. These compounds may inhibit critical enzymes in controlling signaling pathways, which are crucial for CRC cells' development, differentiation, proliferation, and survival. On the other hand, only one of the approximately 42 TKIs that demonstrated anti-tumor effects in pre-clinical studies has been licensed for clinical usage in CRC. A significant knowledge gap exists when bringing these tailored medicines into the clinic. As a result, the emphasis of this review is placed on recently discovered biomarkers for early diagnosis as well as tyrosine kinase inhibitors as possible therapy options for CRC.
Collapse
|
13
|
Jin J, Yoshimura K, Sewastjanow-Silva M, Song S, Ajani JA. Challenges and Prospects of Patient-Derived Xenografts for Cancer Research. Cancers (Basel) 2023; 15:4352. [PMID: 37686627 PMCID: PMC10486659 DOI: 10.3390/cancers15174352] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
We discuss the importance of the in vivo models in elucidating cancer biology, focusing on the patient-derived xenograft (PDX) models, which are classic and standard functional in vivo platforms for preclinical evaluation. We provide an overview of the most representative models, including cell-derived xenografts (CDX), tumor and metastatic cell-derived xenografts, and PDX models utilizing humanized mice (HM). The orthotopic models, which could reproduce the cancer environment and its progression, similar to human tumors, are particularly common. The standard procedures and rationales of gastric adenocarcinoma (GAC) orthotopic models are addressed. Despite the significant advantages of the PDX models, such as recapitulating key features of human tumors and enabling drug testing in the in vivo context, some challenges must be acknowledged, including loss of heterogeneity, selection bias, clonal evolution, stroma replacement, tumor micro-environment (TME) changes, host cell carryover and contaminations, human-to-host cell oncogenic transformation, human and host viral infections, as well as limitations for immunologic research. To compensate for these limitations, other mouse models, such as syngeneic and humanized mouse models, are currently utilized. Overall, the PDX models represent a powerful tool in cancer research, providing critical insights into tumor biology and potential therapeutic targets, but their limitations and challenges must be carefully considered for their effective use. Lastly, we present an intronic quantitative PCR (qPCR) method to authenticate, detect, and quantify human/murine cells in cell lines and PDX samples.
Collapse
Affiliation(s)
| | | | | | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (K.Y.); (M.S.-S.)
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (K.Y.); (M.S.-S.)
| |
Collapse
|
14
|
Beekhof R, Bertotti A, Böttger F, Vurchio V, Cottino F, Zanella ER, Migliardi G, Viviani M, Grassi E, Lupo B, Henneman AA, Knol JC, Pham TV, de Goeij-de Haas R, Piersma SR, Labots M, Verheul HMW, Trusolino L, Jimenez CR. Phosphoproteomics of patient-derived xenografts identifies targets and markers associated with sensitivity and resistance to EGFR blockade in colorectal cancer. Sci Transl Med 2023; 15:eabm3687. [PMID: 37585503 DOI: 10.1126/scitranslmed.abm3687] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a well-exploited therapeutic target in metastatic colorectal cancer (mCRC). Unfortunately, not all patients benefit from current EGFR inhibitors. Mass spectrometry-based proteomics and phosphoproteomics were performed on 30 genomically and pharmacologically characterized mCRC patient-derived xenografts (PDXs) to investigate the molecular basis of response to EGFR blockade and identify alternative drug targets to overcome resistance. Both the tyrosine and global phosphoproteome as well as the proteome harbored distinctive response signatures. We found that increased pathway activity related to mitogen-activated protein kinase (MAPK) inhibition and abundant tyrosine phosphorylation of cell junction proteins, such as CXADR and CLDN1/3, in sensitive tumors, whereas epithelial-mesenchymal transition and increased MAPK and AKT signaling were more prevalent in resistant tumors. Furthermore, the ranking of kinase activities in single samples confirmed the driver activity of ERBB2, EGFR, and MET in cetuximab-resistant tumors. This analysis also revealed high kinase activity of several members of the Src and ephrin kinase family in 2 CRC PDX models with genomically unexplained resistance. Inhibition of these hyperactive kinases, alone or in combination with cetuximab, resulted in growth inhibition of ex vivo PDX-derived organoids and in vivo PDXs. Together, these findings highlight the potential value of phosphoproteomics to improve our understanding of anti-EGFR treatment and response prediction in mCRC and bring to the forefront alternative drug targets in cetuximab-resistant tumors.
Collapse
Affiliation(s)
- Robin Beekhof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Franziska Böttger
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Oncode Institute, 1066 CX Amsterdam, Netherlands
| | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Francesca Cottino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Eugenia R Zanella
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Giorgia Migliardi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Alex A Henneman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Thang V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Richard de Goeij-de Haas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Mariette Labots
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Henk M W Verheul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, Netherlands
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Connie R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
15
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
16
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
17
|
Martini G, Belli V, Napolitano S, Ciaramella V, Ciardiello D, Belli A, Izzo F, Avallone A, Selvaggi F, Menegon Tasselli F, Santaniello W, Franco R, Puig I, Ramirez L, Chicote I, Mancuso F, Caratu G, Serres X, Fasani R, Jimenez J, Ros J, Baraibar I, Mulet N, Della Corte CM, Troiani T, Vivancos A, Dienstmann R, Elez E, Palmer HG, Tabernero J, Martinelli E, Ciardiello F, Argilés G. Establishment of patient-derived tumor organoids to functionally inform treatment decisions in metastatic colorectal cancer. ESMO Open 2023; 8:101198. [PMID: 37119788 DOI: 10.1016/j.esmoop.2023.101198] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) patients tend to have modest benefits from molecularly driven therapeutics. Patient-derived tumor organoids (PDTOs) represent an unmatched model to elucidate tumor resistance to therapy, due to their high capacity to resemble tumor characteristics. MATERIALS AND METHODS We used viable tumor tissue from two cohorts of patients with mCRC, naïve or refractory to treatment, respectively, for generating PDTOs. The derived models were subjected to a 6-day drug screening assay (DSA) with a comprehensive pipeline of chemotherapy and targeted drugs against almost all the actionable mCRC molecular drivers. For the second cohort DSA data were matched with those from PDTO genotyping. RESULTS A total of 40 PDTOs included in the two cohorts were derived from mCRC primary tumors or metastases. The first cohort included 31 PDTOs derived from patients treated in front line. For this cohort, DSA results were matched with patient responses. Moreover, RAS/BRAF mutational status was matched with DSA cetuximab response. Ten out of 12 (83.3%) RAS wild-type PDTOs responded to cetuximab, while all the mutant PDTOs, 8 out of 8 (100%), were resistant. For the second cohort (chemorefractory patients), we used part of tumor tissue for genotyping. Four out of nine DSA/genotyping data resulted applicable in the clinic. Two RAS-mutant mCRC patients have been treated with FOLFOX-bevacizumab and mitomycin-capecitabine in third line, respectively, based on DSA results, obtaining disease control. One patient was treated with nivolumab-second mitochondrial-derived activator of caspases mimetic (phase I trial) due to high tumor mutational burden at genotyping, experiencing stable disease. In one case, the presence of BRCA2 mutation correlated with DSA sensitivity to olaparib; however, the patient could not receive the therapy. CONCLUSIONS Using CRC as a model, we have designed and validated a clinically applicable methodology to potentially inform clinical decisions with functional data. Undoubtedly, further larger analyses are needed to improve methodology success rates and propose suitable treatment strategies for mCRC patients.
Collapse
Affiliation(s)
- G Martini
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - V Belli
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - S Napolitano
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - V Ciaramella
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - D Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - A Belli
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli
| | - F Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli
| | - A Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli
| | - F Selvaggi
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - F Menegon Tasselli
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - W Santaniello
- Hepatobiliary Surgical Oncology Unit, AORN Cardarelli, Naples
| | - R Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - I Puig
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - L Ramirez
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - I Chicote
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - F Mancuso
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona
| | - G Caratu
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona
| | - X Serres
- Department of Interventional Radiology, Hospital Universitari Vall d'Hebron, Barcelona
| | - R Fasani
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona
| | - J Jimenez
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona
| | - J Ros
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - I Baraibar
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - N Mulet
- B-ARGO Badalona Applied Research Group in Oncology, Catalan Institute of Oncology, Badalona
| | - C M Della Corte
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - T Troiani
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - A Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona
| | - R Dienstmann
- Oncology Data Science, Vall d'Hebron Institute of Oncology, Barcelona
| | - E Elez
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - H G Palmer
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - J Tabernero
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - E Martinelli
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - F Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - G Argilés
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona; Universitat Autònoma de Barcelona, Barcelona, Spain; Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
18
|
Zhang B, Li Y, Zhu X, Chen Z, Huang X, Gong T, Zheng W, Bi Z, Zhu C, Qian J, Li X, Jin C. OncoVee™-MiniPDX-guided anticancer treatment for HER2-negative intermediate-advanced gastric cancer patients: a single-arm, open-label phase I clinical study. Discov Oncol 2023; 14:46. [PMID: 37093368 PMCID: PMC10126180 DOI: 10.1007/s12672-023-00661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Chemotherapy is the main treatment strategy for patients with advanced HER2-negative gastric cancer (GC); yet, many patients do not respond well to treatment. This study evaluated the sensitivity of a mini patient-derived xenograft (MiniPDX) animal model in patients with HER2-negative intermediate-advanced GC. METHODS In this single-arm, open-label clinical study, we consecutively recruited patients with HER2-negative advanced or recurrent GC from September 2018 to July 2021. Tumor tissues were subjected to MiniPDX drug sensitivity tests for screening individualized anti-tumor drugs; appropriate drug types or combinations were selected based on drug screening results. The primary endpoints were progression-free survival (PFS) and safety, and the secondary endpoints were overall survival (OS) and objective response rate (ORR). RESULTS A total of 17 patients were screened, and 14 eligible patients were included.The median follow-up time was 9 (2-34) months. The median PFS time was 14.1 (2-34) months, the median OS time was 16.9 (2-34) months, ORR was 42.9% (6/14), and DCR was 92.9% (13/14). The most common treatment-related adverse events (TRAE) were fatigue (14 (100%)), anorexia (13 (93%)) and insomnia (12 (86%)), and the most common grade 3 or worse TRAE was fatigue (6 (43%)), and anorexia (6 (43%)). The occurrence rate of myelosuppression, nausea and vomiting, abnormal liver enzymes, and other grade 3-4 chemotherapy adverse reactions were relatively low, and no grade 5 treatment-related adverse events occurred. CONCLUSION Screening HER2-negative medium-advanced GC/GJC chemotherapy regimens and targeted drugs based on MiniPDX animal models showed good tumor activity and safety.
Collapse
Affiliation(s)
- Baonan Zhang
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Yuzhen Li
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Xiaodan Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Zhe Chen
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Xiaona Huang
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Tingjie Gong
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Weiwang Zheng
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Zhenle Bi
- Department of Medical, Co. Ltd. Shanghai, Shanghai LIDE Biotech, China
| | - Chenyang Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Jingyi Qian
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Xiaoqiang Li
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Chunhui Jin
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China.
| |
Collapse
|
19
|
La Rocca A, De Gregorio V, Lagreca E, Vecchione R, Netti PA, Imparato G. Colorectal Cancer Bioengineered Microtissues as a Model to Replicate Tumor-ECM Crosstalk and Assess Drug Delivery Systems In Vitro. Int J Mol Sci 2023; 24:5678. [PMID: 36982752 PMCID: PMC10059762 DOI: 10.3390/ijms24065678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Current 3D cancer models (in vitro) fail to reproduce complex cancer cell extracellular matrices (ECMs) and the interrelationships occurring (in vivo) in the tumor microenvironment (TME). Herein, we propose 3D in vitro colorectal cancer microtissues (3D CRC μTs), which reproduce the TME more faithfully in vitro. Normal human fibroblasts were seeded onto porous biodegradable gelatin microbeads (GPMs) and were continuously induced to synthesize and assemble their own ECMs (3D Stroma μTs) in a spinner flask bioreactor. Then, human colon cancer cells were dynamically seeded onto the 3D Stroma μTs to achieve the 3D CRC μTs. Morphological characterization of the 3D CRC μTs was performed to assess the presence of different complex macromolecular components that feature in vivo in the ECM. The results showed the 3D CRC μTs recapitulated the TME in terms of ECM remodeling, cell growth, and the activation of normal fibroblasts toward an activated phenotype. Then, the microtissues were assessed as a drug screening platform by evaluating the effect of 5-Fluorouracil (5-FU), curcumin-loaded nanoemulsions (CT-NE-Curc), and the combination of the two. When taken together, the results showed that our microtissues are promising in that they can help clarify complex cancer-ECM interactions and evaluate the efficacy of therapies. Moreover, they may be combined with tissue-on-chip technologies aimed at addressing further studies in cancer progression and drug discovery.
Collapse
Affiliation(s)
- Alessia La Rocca
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vincenza De Gregorio
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy;
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, 80126 Naples, Italy
| | - Elena Lagreca
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy;
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
| |
Collapse
|
20
|
Huang Y, Liu C, You L, Li X, Chen G, Fan J. Synergistic effect of PARP inhibitor and BRD4 inhibitor in multiple models of ovarian cancer. J Cell Mol Med 2023; 27:634-649. [PMID: 36753396 PMCID: PMC9983312 DOI: 10.1111/jcmm.17683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Ovarian cancer has the highest facility rate among gynaecological tumours. Current therapies including PARP inhibitors have a defect that ovarian tumour is easy to recurrent and become resistant to therapy. To solve this problem, we found that BRD4 inhibitor AZD5153 and PARP inhibitor olaparib had a widespread synergistic effect in multiple models with different gene backgrounds. AZD5153 sensitizes cells to olaparib and reverses the acquired resistance by down-regulating PTEN expression levels to destabilize hereditary materials. In this study, we used the following multiple ovarian cancer models PDX, PDO and 3D/2D cell lines to elucidate the co-effect of AZD5153 and olaparib in vivo and in vitro. The similar results of these models further proved that the mechanism identified was consistent with the biological process occurring in ovarian cancer patients after drug treatment. This consistency between the results of different models suggests the possibility of translating these laboratory research findings into clinical studies towards developing treatments.
Collapse
Affiliation(s)
- Yuhan Huang
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,Department of Obstetrics and GynecologyShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chen Liu
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,Department of Obstetrics and GynecologyShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lixin You
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xi Li
- Department of Obstetrics and GynecologyShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gang Chen
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Junpeng Fan
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
21
|
Jin J, Huo L, Fan Y, Wang R, Scott AW, Pizzi MP, Yao X, Shao S, Ma L, Da Silva MS, Yamashita K, Yoshimura K, Zhang B, Wu J, Wang L, Song S, Ajani JA. A new intronic quantitative PCR method led to the discovery of transformation from human ascites to murine malignancy in a mouse model. Front Oncol 2023; 13:1062424. [PMID: 36865791 PMCID: PMC9972586 DOI: 10.3389/fonc.2023.1062424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Purpose To establish a fast and accurate detection method for interspecies contaminations in the patient-derived xenograft (PDX) models and cell lines, and to elucidate possible mechanisms if interspecies oncogenic transformation is detected. Methods A fast and highly sensitive intronic qPCR method detecting Gapdh intronic genomic copies was developed to quantify if cells were human or murine or a mixture. By this method, we documented that murine stromal cells were abundant in the PDXs; we also authenticated our cell lines to be human or murine. Results In one mouse model, GA0825-PDX transformed murine stromal cells into a malignant tumorigenic murine P0825 cell line. We traced the timeline of this transformation and discovered three subpopulations descended from the same GA0825-PDX model: epithelium-like human H0825, fibroblast-like murine M0825, and main passaged murine P0825 displayed differences in tumorigenic capability in vivo. P0825 was the most aggressive and H0825 was weakly tumorigenic. Immunofluorescence (IF) staining revealed that P0825 cells highly expressed several oncogenic and cancer stem cell markers. Whole exosome sequencing (WES) analysis revealed that TP53 mutation in the human ascites IP116-generated GA0825-PDX may have played a role in the human-to-murine oncogenic transformation. Conclusion This intronic qPCR is able to quantify human/mouse genomic copies with high sensitivity and within a time frame of a few hours. We are the first to use intronic genomic qPCR for authentication and quantification of biosamples. Human ascites transformed murine stroma into malignancy in a PDX model.
Collapse
Affiliation(s)
- Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ailing W. Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaodan Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shan Shao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lang Ma
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matheus S. Da Silva
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kohei Yamashita
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katsuhiro Yoshimura
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Boyu Zhang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jingjing Wu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
22
|
Zhang Y, Yang Y, Zan L, Wang J, Yan L, Zhao L, Chen L, Xi Y, Bai W, Yang X. Preparation and application of patient-derived xenograft mice model of colorectal cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:248-254. [PMID: 36742145 PMCID: PMC9869887 DOI: 10.22038/ijbms.2022.67445.14780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 02/07/2023]
Abstract
Objectives Patient-derived xenograft (PDX) model becomes a more and more important tool for tumor research. This study aimed to establish a colorectal cancer PDX model and verify its applicability. Materials and Methods Fresh human colorectal cancer tissue was surgically removed and subcutaneously inoculated into immunodeficient mice to establish the PDX model. Hematoxylin and eosin (HE) staining and immunohistochemical staining were used to evaluate the model. The successful PDX model was selected to study the efficacy of capecitabine in treating colorectal cancer. Results HE staining showed that the PDX mice model of colorectal cancer could preserve the histological characteristics of the primary tumor. Immunohistochemistry staining showed α-fetoprotein (AFP), carcinoembryonic antigen (CEA), and E-cadherin were strongly positively expressed in primary human and PDX tumor tissues, with a high degree of similarity. Capecitabine significantly inhibited PDX tumor growth and reduced the expression of AFP and CEA proteins in the tumor tissues (all P s<0.05). Conclusion We successfully established a colorectal cancer PDX model, and the PDX model could retain the histological and biological characteristics of the primary tumor. Using this PDX model, we revealed that capecitabine at a dose of 300-400 mg/kg can effectively treat colorectal cancer, and no significant difference in toxicity was found among different dose groups. The current work provides a feasible framework for establishing and validating the PDX tumor model to better facilitate the evaluation of drug efficacy and safety.
Collapse
Affiliation(s)
- Yutao Zhang
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China,These authors contributed eqully to this work
| | - Yongming Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China,These authors contributed eqully to this work
| | - Likun Zan
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China
| | - Jing Wang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China
| | - Lei Yan
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China
| | - Lili Zhao
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China
| | - Lixia Chen
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China,Corresponding authors: Yanfeng Xi. Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China. ; Wenqi Bai. Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China. ; Xihua Yang. Laboratory Animal Cente, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China. Tel: 86+13403419805;
| | - Wenqi Bai
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China,Corresponding authors: Yanfeng Xi. Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China. ; Wenqi Bai. Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China. ; Xihua Yang. Laboratory Animal Cente, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China. Tel: 86+13403419805;
| | - Xihua Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China,Corresponding authors: Yanfeng Xi. Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China. ; Wenqi Bai. Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China. ; Xihua Yang. Laboratory Animal Cente, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, Shanxi, China. Tel: 86+13403419805;
| |
Collapse
|
23
|
Liu X, Xin Z, Wang K. Patient-derived xenograft model in colorectal cancer basic and translational research. Animal Model Exp Med 2023; 6:26-40. [PMID: 36543756 PMCID: PMC9986239 DOI: 10.1002/ame2.12299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most popular malignancies globally, with 930 000 deaths in 2020. The evaluation of CRC-related pathogenesis and the discovery of potential therapeutic targets will be meaningful and helpful for improving CRC treatment. With huge efforts made in past decades, the systematic treatment regimens have been applied to improve the prognosis of CRC patients. However, the sensitivity of CRC to chemotherapy and targeted therapy is different from person to person, which is an important cause of treatment failure. The emergence of patient-derived xenograft (PDX) models shows great potential to alleviate the straits. PDX models possess similar genetic and pathological characteristics as the features of primary tumors. Moreover, PDX has the ability to mimic the tumor microenvironment of the original tumor. Thus, the PDX model is an important tool to screen precise drugs for individualized treatment, seek predictive biomarkers for prognosis supervision, and evaluate the unknown mechanism in basic research. This paper reviews the recent advances in constructed methods and applications of the CRC PDX model, aiming to provide new knowledge for CRC basic research and therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zechang Xin
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Kun Wang
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
24
|
von den Driesch J, Flöttmann J, Prall F, Mullins CS, Linnebacher M, Bürtin F. HROP68: A rare case of medullary pancreatic cancer-characterization and chemosensitivity of the first patient-derived cell line. Front Oncol 2023; 12:1082927. [PMID: 36761421 PMCID: PMC9904236 DOI: 10.3389/fonc.2022.1082927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction Medullary pancreatic carcinoma (MPC) is a rare subtype of pancreatic ductal adenocarcinoma. MPCs represent less than 1% of all pancreatic cancers, and, with only 26 cases in the literature, knowledge regarding drug response and treatment outcome is very limited. Material and methods We present the case of a 64-year-old male patient with MPC who was treated by left pancreatic resection and adjuvant chemotherapy. Due to local recurrence, the patient underwent intended curative reoperation. From both surgical specimens, patient-derived xenografts (PDXs) and, from the recurrence, a patient-derived cell line (PDCL) were established. We subsequently performed an in-depth characterization of this cell line including phenotypic characterization, surface protein expression, growth, and migratory performance as well as mutational analysis using whole-exome sequencing (WES). Additionally, in vitro drug sensitivity toward the standard-of-care chemotherapeutic regimen and selected targeted therapies was evaluated. Results The pathological and molecular properties of this rare MPC case observed in the patient's tumors are preserved in the corresponding PDX and the PDCL of HROP68Tu2. Despite displaying an "immunogenic phenotype" with marked T-cell infiltration and a high-level expression of HLA II and Programmed death-ligand 1 (PD-L1), molecular analysis revealed microsatellite stability but a multitude of mutations affecting KRAS, TP53, KAT6B, FOXG1, RUNX1, and GRIK2 among others. Furthermore, HROP68Tu2 cells were susceptible toward 5-FU, irinotecan, oxaliplatin, gemcitabine, paclitaxel, and erlotinib as single agents, but only a moderate synergistic response was seen to the drugs of the FOLFIRINOX regimen. Even worse, the drugs of the two combinations gemcitabine plus paclitaxel and gemcitabine plus erlotinib showed antagonistic effects. Moreover, lapatinib, PRIMA-Met1, and olaparib selected as targeted therapeutics according to the mutational profiles and protein expression inhibited HROP68Tu2 cells' growth. Conclusion This study illustrates the establishment of the first preclinical MPC models as well as the first in-depth characterization of an MPC PDCL. Since the scientific and clinical knowledge of this rare pancreatic cancer type is very limited, the presented models contribute to a better understanding of MPC and might be a valuable tool for the development of future treatment options.
Collapse
Affiliation(s)
- Jens von den Driesch
- Clinic of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Jana Flöttmann
- Clinic of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Christina S. Mullins
- Clinic of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Michael Linnebacher
- Clinic of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock, Germany,*Correspondence: Michael Linnebacher,
| | - Florian Bürtin
- Clinic of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
25
|
Kim JK, Wu C, Del Latto M, Gao Y, Choi SH, Kierstead M, Gabriel Sauvé CE, Firat C, Perez AC, Sillanpaa J, Chen CT, Lawrence KE, Paty PB, Barriga FM, Wilkinson JE, Shia J, Sawyers CL, Lowe SW, García-Aguilar J, Romesser PB, Smith JJ. An immunocompetent rectal cancer model to study radiation therapy. CELL REPORTS METHODS 2022; 2:100353. [PMID: 36590695 PMCID: PMC9795330 DOI: 10.1016/j.crmeth.2022.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
We describe a mouse model of rectal cancer (RC) involving rapid tumor organoid engraftment via orthotopic transplantation in an immunocompetent setting. This approach uses simple mechanical disruption to allow engraftment, avoiding the use of dextran sulfate sodium. The resulting RC tumors invaded from the mucosal surface and metastasized to distant organs. Histologically, the tumors closely resemble human RC and mirror remodeling of the tumor microenvironment in response to radiation. This murine RC model thus recapitulates key aspects of human RC pathogenesis and presents an accessible approach for more physiologically accurate, preclinical efficacy studies.
Collapse
Affiliation(s)
- Jin K. Kim
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chao Wu
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Del Latto
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yajing Gao
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Seo-Hyun Choi
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Kierstead
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Canan Firat
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Almudena Chaves Perez
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jussi Sillanpaa
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chin-Tung Chen
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E. Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip B. Paty
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Francisco M. Barriga
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julio García-Aguilar
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul B. Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J. Joshua Smith
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
26
|
Iyer KK, van Erp NP, Tauriello DV, Verheul HM, Poel D. Lost in translation: Revisiting the use of tyrosine kinase inhibitors in colorectal cancer. Cancer Treat Rev 2022; 110:102466. [DOI: 10.1016/j.ctrv.2022.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
|
27
|
Gasparini P, Casanova M, Centonze G, Borzi C, Bergamaschi L, Collini P, Testi A, Chiaravalli S, Massimino M, Sozzi G, Ferrari A, Moro M. Establishment of 6 pediatric rhabdomyosarcoma patient’s derived xenograft models closely recapitulating patients’ tumor characteristics. TUMORI JOURNAL 2022:3008916221110266. [PMID: 36114629 DOI: 10.1177/03008916221110266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: The prognosis for patients with metastatic and recurrent pediatric rhabdomyosarcoma (RMS) remains poor. The availability of preclinical models is essential to identify promising treatments We established a series of pediatric RMS patient derived xenografts (PDXs), all faithfully mirroring primary tumor characteristics and representing a unique tool for clarifying the biological processes underlying RMS progression and relapse. Methods: Fresh tumor samples from 12 RMS patients were implanted subcutaneously in both flanks of immunocompromised mice. PDXs were considered as grafted after accomplishing three passages in mice. Characterization of tumor tissues and models was performed by comparing both morphology and immunoistochemical and fluorescence in situ hybridization (FISH) characteristics. Results: Six PDXs were established, with a successful take rate of 50%. All models closely mirrored parental tumor characteristics. An increased grafting rate for tumors derived from patients with worse outcome (p = 0.006) was detected. For 50% PDXs grafting occurred when the corresponding patient was still alive. Conclusion: Our findings increase the number of available RMS PDX models and strengthen the role of PDXs as useful preclinical tools for patients with unmet medical needs and to develop personalized therapies.
Collapse
Affiliation(s)
- Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Casanova
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giovanni Centonze
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Cristina Borzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Bergamaschi
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Collini
- Soft Tissue and Bone Pathology, Histopathology and Pediatric Pathology Unit, Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adele Testi
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Chiaravalli
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Maura Massimino
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Ferrari
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Massimo Moro
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
28
|
Liu X, Wang X, Chai B, Wu Z, Gu Z, Zou H, Zhang H, Li Y, Sun Q, Fang W, Ma Z. miR-199a-3p/5p regulate tumorgenesis via targeting Rheb in non-small cell lung cancer. Int J Biol Sci 2022; 18:4187-4202. [PMID: 35844793 PMCID: PMC9274486 DOI: 10.7150/ijbs.70312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the deadliest cancers, in which non-small cell lung cancer (NSCLC) accounting for 85% and has a low survival rate of 5 years. Dysregulation of microRNAs (miRNAs) can participate in tumor regulation and many major diseases. In this study, we found that miR-199a-3p/5p were down-expressed in NSCLC tissue samples, cell lines, and the patient sample database. MiR-199a-3p/5p overexpression could significantly suppress cell proliferation, migration ability and promote apoptosis. Through software prediction, ras homolog enriched in brain (Rheb) was identified as a common target of miR-199a-3p and miR-199a-5p, which participated in regulating mTOR signaling pathway. The same effect of inhibiting NSCLC appeared after down-regulating the expression of Rheb. Furthermore, our findings revealed that miR-199a can significantly inhibit tumor growth and metastasis in vivo, which fully demonstrates that miR-199a plays a tumor suppressive role in NSCLC. In addition, miR-199a-3p/5p has been shown to enhance the sensitivity of gefitinib to EGFR-T790M in NSCLC. Collectively, these results prove that miR-199a-3p/5p can act as cancer suppressor genes to inhibit the mTOR signaling pathway by targeting Rheb, which in turn inhibits the regulatory process of NSCLC. Thus, to investigate the anti-cancer effect of pre-miR-199a/Rheb/mTOR axis in NSCLC, miR-199a-3p and miR-199a-5p have the potential to become an early diagnostic marker or therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaomin Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xianyi Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Binshu Chai
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhitao Gu
- Department of Thoracic Surgery, Thoracic Cancer Institute, Shanghai Chest Hospital, Jiaotong University Medical School,Shanghai 200030, China
| | - Heng Zou
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qiangling Sun
- Department of Thoracic Surgery, Thoracic Cancer Institute, Shanghai Chest Hospital, Jiaotong University Medical School,Shanghai 200030, China
| | - Wentao Fang
- Department of Thoracic Surgery, Thoracic Cancer Institute, Shanghai Chest Hospital, Jiaotong University Medical School,Shanghai 200030, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
29
|
Guiren Fritah H, Rovelli R, Lai-Lai Chiang C, Kandalaft LE. The current clinical landscape of personalized cancer vaccines. Cancer Treat Rev 2022; 106:102383. [DOI: 10.1016/j.ctrv.2022.102383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022]
|
30
|
Wang B, Wang K, Yu J, Hao XM, Liu YL, Xing AY. miR-638 Serves as a Biomarker of 5-Fluorouracil Sensitivity to Neoadjuvant Chemotherapy in Breast Cancer. J Breast Cancer 2022; 25:193-206. [PMID: 35775701 PMCID: PMC9250877 DOI: 10.4048/jbc.2022.25.e24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Neoadjuvant chemotherapy (NAC) is widely used to treat breast cancer (BC). The prediction and evaluation of chemotherapy responses remains a significant challenge. Methods MicroRNAs (miRNAs) play a crucial role in cancer drug resistance. We used a miRNA microarray and identified that miR-638 is downregulated in chemoresistant cases. However, the exact role of miR-638 and the underlying mechanisms of chemoresistance remain unclear. Using real-time quantitative reverse transcription polymerase chain reaction, we found significant downregulation of miR-638 in chemoresistant patients compared with chemosensitive patients. To explore the function of miR-638, we overexpressed and inhibited miR-638 expression in MDA-MB-231 and MCF-7 cells by transfecting them with miR-638 mimics and miR-638 inhibitor, respectively. Cell proliferation and apoptosis were measured using MTS and flow cytometry, respectively. A minimal patient-derived xenograft (MiniPDX™) model was established to evaluate the chemosensitivity to different drugs. Results The results showed that cell proliferation decreased and cell apoptosis increased in cells transfected with the miR-638 mimic, and cell proliferation and apoptosis were reversed with transfection of miR-638 inhibitor compared with the control group. Among patients who received 5-fluorouracil (5-FU), miR-638 expression levels were lower in the chemoresistant group than in the chemosensitive group. The MiniPDX™ model showed that MDA-MB-231 cells overexpressing miR-638 were more susceptible to 5-FU treatment in vivo. Conclusion We provided evidence of acquired resistance to 5-FU caused by miR-638 deficiency. Alterations in miR-638 may be used with 5-FU chemotherapy during NAC for BC.
Collapse
Affiliation(s)
- Bin Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, Jinan, P.R. China
| | - Kun Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, Jinan, P.R. China
| | - Jian Yu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, Jinan, P.R. China
| | - Xiao-meng Hao
- Department of Pathology, Shandong University Qilu Hospital, Jinan, P.R. China
| | - Yu-lu Liu
- Department of Pathology, Shandong University Qilu Hospital, Jinan, P.R. China
| | - Ai-Yan Xing
- Department of Pathology, Shandong University Qilu Hospital, Jinan, P.R. China
| |
Collapse
|
31
|
Yin Z, Maswikiti EP, Liu Q, Bai Y, Li X, Qi W, Liu L, Ma Y, Chen H. Current research developments of patient-derived tumour xenograft models (Review). Exp Ther Med 2021; 22:1206. [PMID: 34584551 DOI: 10.3892/etm.2021.10640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 05/04/2021] [Indexed: 11/06/2022] Open
Abstract
Patient-derived tumor xenograft (PDTX) models are established by transferring patient tumors into immunodeficient mice. In these murine models, the characteristics of the primary tumor are retained, including the microenvironment of tumor cell growth and histopathology. Due to this, it has become the most reliable in vivo human cancer model. However, the success rates differ by type of tumor, site of transplantation and tumor aggressiveness. Subcutaneous transplantation is a standard method for PDTX, and subrenal capsule transplantation improves the engraftment rate. Recently, PDTX models are frequently used in the fields of precision medicine, predictive biomarkers, evaluation of drug efficacy and preclinical research on tumor immunotherapeutic drugs. The aim of the present article was to review the establishment, clinical applications and limitations of the PDTX model in tumor research.
Collapse
Affiliation(s)
- Zhenyu Yin
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Ewetse Paul Maswikiti
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Qian Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yuping Bai
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xiaomei Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Wenbo Qi
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Le Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yanling Ma
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- Department of Oncology, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
32
|
Wang Z, Hopson LM, Singleton SS, Yang X, Jogunoori W, Mazumder R, Obias V, Lin P, Nguyen BN, Yao M, Miller L, White J, Rao S, Mishra L. Mice with dysfunctional TGF-β signaling develop altered intestinal microbiome and colorectal cancer resistant to 5FU. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166179. [PMID: 34082069 DOI: 10.1016/j.bbadis.2021.166179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Emerging data show a rise in colorectal cancer (CRC) incidence in young men and women that is often chemoresistant. One potential risk factor is an alteration in the microbiome. Here, we investigated the role of TGF-β signaling on the intestinal microbiome and the efficacy of chemotherapy for CRC induced by azoxymethane and dextran sodium sulfate in mice. We used two genotypes of TGF-β-signaling-deficient mice (Smad4+/- and Smad4+/-Sptbn1+/-), which developed CRC with similar phenotypes and had similar alterations in the intestinal microbiome. Using these mice, we evaluated the intestinal microbiome and determined the effect of dysfunctional TGF-β signaling on the response to the chemotherapeutic agent 5-Fluoro-uracil (5FU) after induction of CRC. Using shotgun metagenomic sequencing, we determined gut microbiota composition in mice with CRC and found reduced amounts of beneficial species of Bacteroides and Parabacteroides in the mutants compared to the wild-type (WT) mice. Furthermore, the mutant mice with CRC were resistant to 5FU. Whereas the abundances of E. boltae, B.dorei, Lachnoclostridium sp., and Mordavella sp. were significantly reduced in mice with CRC, these species only recovered to basal amounts after 5FU treatment in WT mice, suggesting that the alterations in the intestinal microbiome resulting from compromised TGF-β signaling impaired the response to 5FU. These findings could have implications for inhibiting the TGF-β pathway in the treatment of CRC or other cancers.
Collapse
Affiliation(s)
- Zhuanhuai Wang
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lindsay M Hopson
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Stephanie S Singleton
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Xiaochun Yang
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA; The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, USA
| | - Wilma Jogunoori
- Research and Development, Veterans Affairs Medical Center, Washington, DC, USA
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Vincent Obias
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Paul Lin
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA
| | - Michael Yao
- Department of Gastroenterology, Veterans Affairs Medical Center, Washington, DC, USA
| | - Larry Miller
- Department of Medicine, Division of Gastroenterology, Zucker School of Medicine at Hofstra/Northwell Health System, New Hyde Park, NY, USA
| | - Jon White
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Shuyun Rao
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA; The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, USA.
| | - Lopa Mishra
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA; The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, USA.
| |
Collapse
|