1
|
Nasiri-Dehsorkhi H, Vaziri S, Esmaillzadeh A, Adibi P. Negative expectations (nocebo phenomenon) in clinical interventions: A scoping review. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 13:106. [PMID: 38726093 PMCID: PMC11081451 DOI: 10.4103/jehp.jehp_269_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2024]
Abstract
Unpredictable, undesirable, and confusing reactions in the face of psychological or medical interventions make the clinical presentation more complicated and may represent clinically unexplained symptoms and also disturbed the doctor-patients relationship and decrease patients' benefits of treatment. It seems that negative expectations from the treatment (nocebo phenomenon) can explain such reactions. The aim of the current study is a scoping review and investigate different aspects of the nocebo phenomenon (negative expectations) in clinical interventions. This paper follows a scoping review of the existence, importance, and multidimensions of the nocebo phenomenon in medical and psychological interventions. Data sources include literature databases (ProQuest, PubMed, Google Scholar, and Scopus) reviewed from inception dates to 2023, and the terms negative expectations, nocebo effect, placebo effect, negative placebo, and clinical interventions were searched. The review of the available articles showed that negative expectations play an important role in the process and effectiveness of clinical interventions. Negative expectations (here named nocebo effect) can significantly interfere with rapport and treatment processes. Some underlying components of the nocebo effect include negative expectancies, conditioning, social learning, memory, cognitive distortions, meaning, motivation, somatic focus, negative reinforcements, personality, anxiety, and neurophysiological factors such as CCK, dopamine, and cortisol are proposed for development and presence of nocebo phenomenon in clinical practice. Negative expectations with its biopsychosocial aspects play an important and amazing role in disorganizing medical and psychological interventions. Using appropriate methods to reduce nocebo effects in therapeutic interventions may increase treatment compliance and adherence and increase the effectiveness of interventions.
Collapse
Affiliation(s)
- Hamid Nasiri-Dehsorkhi
- Department of Clinical Psychology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahram Vaziri
- Department of Clinical Psychology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Adibi
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Dang TN, Tien SN, Ochi R, Le Trung D, Nishio K, Kuwamura H, Kurose T, Fujita N, Nishijo H, Nakamura Y, Hisaoka-Nakashima K, Morioka N, Urakawa S. Enhanced anxiety-like behavior induced by chronic neuropathic pain and related parvalbumin-positive neurons in male rats. Behav Brain Res 2024; 459:114786. [PMID: 38036265 DOI: 10.1016/j.bbr.2023.114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Anxiety commonly co-occurs with and exacerbates pain, but the interaction between pain progression and anxiety, and its underlying mechanisms remain unclear. Inhibitory interneurons play a crucial role in maintaining normal central nervous system function and are suggested to be involved in pain-induced anxiety. This study aimed to elucidate the time-dependent effects of neuropathic pain on the developmental anxiety-like behaviors and related inhibitory interneurons; parvalbumin (PV)- and cholecystokinin (CCK)-positive neurons in corticolimbic regions. Using an 8-week-old male Wistar rat model with partial sciatic nerve ligation (pSNL), anxiety-like behaviors were biweekly assessed post-surgery through open field (OF) and elevated plus maze (EPM) tests. From 4 weeks post-surgery, pSNL rats exhibited reduced OF center time, rearing, and initial activity, along with diminished EPM open-arm activities (time spent, head dips, movement, and rearing), which correlated with the paw withdrawal threshold. These effects were absent at 2 weeks post-surgery. At 8 weeks post-surgery, specific behaviors (decreased total rearing and increased inactive time in EPM) were observed in the pSNL group. Immunohistochemistry revealed changes in PV- and CCK-positive neurons in specific corticolimbic subregions of pSNL rats at 8 weeks post-surgery. Notably, PV-positive neuron densities in the basolateral amygdaloid complex (BLC) and hippocampal cornu ammonis areas 1 and 2 correlated with anxiety-like behavioral parameters. PV-positive neurons in the BLC of pSNL rats were predominantly changed in large-cell subtypes and were less activated. These findings indicate that anxiety-like behaviors emerge in the late phase of neuropathic pain and relate to PV-positive neurons in corticolimbic regions of pSNL rats.
Collapse
Affiliation(s)
- Thu Nguyen Dang
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Son Nguyen Tien
- Department of Rheumatology and Endocrinology, Military Hospital 103, Vietnam Military Medical University, No. 261 Phung Hung Street, Ha Dong District, Hanoi 12108, Viet Nam
| | - Ryosuke Ochi
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Duc Le Trung
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Kyo Nishio
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hiroki Kuwamura
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Tomoyuki Kurose
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hisao Nishijo
- Faculty of Human Sciences, University of East Asia, 2-12-1 Ichinomiya Gakuen-cho, Shimonoseki City, Yamaguchi 751-8503, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan.
| |
Collapse
|
3
|
Xiang T, Li JH, Su HY, Bai KH, Wang S, Traub RJ, Cao DY. Spinal CCK1 Receptors Contribute to Somatic Pain Hypersensitivity Induced by Malocclusion via a Reciprocal Neuron-Glial Signaling Cascade. THE JOURNAL OF PAIN 2022; 23:1629-1645. [PMID: 35691467 PMCID: PMC9560966 DOI: 10.1016/j.jpain.2022.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that the incidence of chronic primary pain including temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS) often exhibit comorbidities. We recently reported that central sensitization and descending facilitation system contributed to the development of somatic pain hypersensitivity induced by orofacial inflammation combined with stress. The purpose of this study was to explore whether TMD caused by unilateral anterior crossbite (UAC) can induce somatic pain hypersensitivity, and whether the cholecystokinin (CCK) receptor-mediated descending facilitation system promotes hypersensitivity through neuron-glia cell signaling cascade. UAC evoked thermal and mechanical pain hypersensitivity of the hind paws from day 5 to 70 that peaked at week 4 post UAC. The expression levels of CCK1 receptors, interleukin-18 (IL-18) and IL-18 receptors (IL-18R) were significantly up-regulated in the L4 to L5 spinal dorsal horn at 4 weeks post UAC. Intrathecal injection of CCK1 and IL-18 receptor antagonists blocked somatic pain hypersensitivity. IL-18 mainly co-localized with microglia, while IL-18R mainly co-localized with astrocytes and to a lesser extent with neurons. These findings indicate that the signaling transduction between neurons and glia at the spinal cord level contributes to the descending pain facilitation through CCK1 receptors during the development of the comorbidity of TMD and FMS. PERSPECTIVE: CCK1 receptor-dependent descending facilitation may mediate central mechanisms underlying the development of widespread somatic pain via a reciprocal neuron-glial signaling cascade, providing novel therapeutic targets for the clinical treatment of TMD and FMS comorbidities.
Collapse
Affiliation(s)
- Ting Xiang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China; Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Jia-Heng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Han-Yu Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Kun-Hong Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Shuang Wang
- Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Pardo-Cabello AJ, Manzano-Gamero V, Puche-Cañas E. Placebo: a brief updated review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1343-1356. [PMID: 35943515 PMCID: PMC9361274 DOI: 10.1007/s00210-022-02280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
Our aims were to provide updated information on placebo/nocebo effect and the potential use of placebo in clinical practice. This article can only provide a rough overview on the placebo and nocebo effect and is intended to serve as a starting point for the reader to go deeper into the corresponding literature. The placebo effect has been observed in multiple medical conditions, after oral administration, with manual therapies as well as with surgery and invasive procedures. The use of placebo in clinical trials is fundamental, although the ethics of its use is under discussion. The placebo may behave like a drug from the pharmacokinetic and pharmacodynamic point of view and can also be associated with adverse events (nocebo effect). Placebo can modify treatment by increasing or decreasing the effects of drugs. The factors associated with the occurrence of placebo effect are multiple, but in addition to those that depend on the placebo itself, the doctor-patient relationship would be the most important. As a result of findings that were published in the last two decades, the psycho-neurobiological basis of placebo is becoming better understood, although further studies are needed. In conclusion, the placebo effect in the clinic exhibits weak to moderate intensity. Placebo, in addition to its use in the clinical trial, should be considered another therapeutic remedy either as stand alone or in association with treatment, and could be useful in certain circumstances. The use of placebo should be regulated by the European health authorities through a guide in clinical practice that will improve patient care.
Collapse
Affiliation(s)
- Alfredo Jose Pardo-Cabello
- Department of Internal Medicine, Hospital Universitario San Cecilio, Avda. de La Innovación, s/n, 18016, Granada, Spain.
| | - Victoria Manzano-Gamero
- Department of Internal Medicine, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Emilio Puche-Cañas
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Abstract
Modulation of nociception allows animals to optimize chances of survival by adapting their behaviour in different contexts. In mammals, this is executed by neurons from the brain and is referred to as the descending control of nociception. Whether insects have such control, or the neural circuits allowing it, has rarely been explored. Based on behavioural, neuroscientific and molecular evidence, we argue that insects probably have descending controls for nociception. Behavioural work shows that insects can modulate nocifensive behaviour. Such modulation is at least in part controlled by the central nervous system since the information mediating such prioritization is processed by the brain. Central nervous system control of nociception is further supported by neuroanatomical and neurobiological evidence showing that the insect brain can facilitate or suppress nocifensive behaviour, and by molecular studies revealing pathways involved in the inhibition of nocifensive behaviour both peripherally and centrally. Insects lack the endogenous opioid peptides and their receptors that contribute to mammalian descending nociception controls, so we discuss likely alternative molecular mechanisms for the insect descending nociception controls. We discuss what the existence of descending control of nociception in insects may reveal about pain perception in insects and finally consider the ethical implications of these novel findings.
Collapse
Affiliation(s)
- Matilda Gibbons
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Sajedeh Sarlak
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Lars Chittka
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
6
|
Sakamoto R, Koyama A. Analysis of Various Factors Associated With Opioid Dose Escalation in Patients With Cancer Pain. Cureus 2022; 14:e25266. [PMID: 35755532 PMCID: PMC9224761 DOI: 10.7759/cureus.25266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Pain is one of the most important symptoms in terms of prevalence and a major cause of distress in patients with cancer. Therefore, this study aimed to analyze and identify the factors that influence the worsening of pain in patients with cancer necessitating opioid dose escalation. Methods The study was conducted in a single center. This study is a retrospective cohort study of 390 adult cancer patients. The primary endpoint was dose escalation for strong opioids. Adjusted odds ratios (aORs) and their 95% confidence intervals (CIs) were calculated using a logistic regression model to evaluate the relationships of factors with opioid dose escalation for cancer pain. Results Polypharmacy was associated with opioid dose escalation (aOR = 2.54, 95% CI = 1.486-4.370, p = 0.001). Conversely, alcohol consumption was associated with a reduced need for dose escalation (aOR = 0.60, 95% CI = 0.376-0.985, p = 0.043). Conclusion The results of this study indicate that moderate alcohol consumption does not reduce the efficacy of opioids in patients with cancer pain. Meanwhile, patients receiving polypharmacy may be able to more rapidly alleviate their pain via early opioid dose modification.
Collapse
|
7
|
Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Mar Drugs 2021; 20:md20010027. [PMID: 35049882 PMCID: PMC8781517 DOI: 10.3390/md20010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Animal venoms offer a valuable source of potent new drug leads, but their mechanisms of action are largely unknown. We therefore developed a novel network pharmacology approach based on multi-omics functional data integration to predict how stingray venom disrupts the physiological systems of target animals. We integrated 10 million transcripts from five stingray venom transcriptomes and 848,640 records from three high-content venom bioactivity datasets into a large functional data network. The network featured 216 signaling pathways, 29 of which were shared and targeted by 70 transcripts and 70 bioactivity hits. The network revealed clusters for single envenomation outcomes, such as pain, cardiotoxicity and hemorrhage. We carried out a detailed analysis of the pain cluster representing a primary envenomation symptom, revealing bibrotoxin and cholecystotoxin-like transcripts encoding pain-inducing candidate proteins in stingray venom. The cluster also suggested that such pain-inducing toxins primarily activate the inositol-3-phosphate receptor cascade, inducing intracellular calcium release. We also found strong evidence for synergistic activity among these candidates, with nerve growth factors cooperating with the most abundant translationally-controlled tumor proteins to activate pain signaling pathways. Our network pharmacology approach, here applied to stingray venom, can be used as a template for drug discovery in neglected venomous species.
Collapse
|
8
|
Duan LL, Qiu XY, Wei SQ, Su HY, Bai FR, Traub RJ, Zhou Q, Cao DY. Spinal CCK contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress in adult female rats. Eur J Pharmacol 2021; 913:174619. [PMID: 34748768 DOI: 10.1016/j.ejphar.2021.174619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
In some chronic primary pain conditions such as temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS), mild or chronic stress enhances pain. TMD and FMS often occur together, but the underlying mechanisms are unclear. The purpose of this study was to investigate the role of cholecystokinin (CCK) in the spinal cord in somatic hyperalgesia induced by orofacial inflammation combined with stress. Somatic hyperalgesia was detected by the thermal withdrawal latency and mechanical withdrawal threshold. The expression of CCK1 receptors, CCK2 receptors, ERK1/2 and p-ERK1/2 in the spinal cord was examined by Western blot. After the stimulation of orofacial inflammation combined with 3 day forced swim, the expression of CCK2 receptors and p-ERK1/2 protein in the L4-L5 spinal dorsal horn increased significantly, while the expression of CCK1 receptors and ERK1/2 protein remained unchanged. Intrathecal injection of the CCK2 receptor antagonist YM-022 or mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD98059 blocked somatic hyperalgesia induced by orofacial inflammation combined with stress. Intrathecal administration of the MEK inhibitor blocked somatic sensitization caused by the CCK receptor agonist CCK8. The CCK2 receptor antagonist YM-022 significantly reduced the expression of p-ERK1/2. These data indicate that upregulation of CCK2 receptors through the MAPK pathway contributes to somatic hyperalgesia in this comorbid pain model. Thus, CCK2 receptors and MAPK pathway may be potential targets for the treatment of TMD comorbid with FMS.
Collapse
Affiliation(s)
- Lu-Lu Duan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China; Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Xin-Yi Qiu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Si-Qi Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Han-Yu Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Fu-Rong Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, UM Center to Advance Chronic Pain Research, University of Maryland School of Dentistry, Baltimore MD, 21201, USA
| | - Qin Zhou
- Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China.
| | - Dong-Yuan Cao
- Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
9
|
Atlas LY. A social affective neuroscience lens on placebo analgesia. Trends Cogn Sci 2021; 25:992-1005. [PMID: 34538720 PMCID: PMC8516707 DOI: 10.1016/j.tics.2021.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
Pain is a fundamental experience that promotes survival. In humans, pain stands at the intersection of multiple health crises: chronic pain, the opioid epidemic, and health disparities. The study of placebo analgesia highlights how social, cognitive, and affective processes can directly shape pain, and identifies potential paths for mitigating these crises. This review examines recent progress in the study of placebo analgesia through affective science. It focuses on how placebo effects are shaped by expectations, affect, and the social context surrounding treatment, and discusses neurobiological mechanisms of placebo, highlighting unanswered questions and implications for health. Collaborations between clinicians and social and affective scientists can address outstanding questions and leverage placebo to reduce pain and improve human health.
Collapse
Affiliation(s)
- Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Mrozovski JM. Comprendre l’effet nocebo. ACTUALITES PHARMACEUTIQUES 2021. [DOI: 10.1016/j.actpha.2021.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Agin-Liebes G, Huhn AS, Strain EC, Bigelow GE, Smith MT, Edwards RR, Gruber VA, Tompkins DA. Methadone maintenance patients lack analgesic response to a cumulative intravenous dose of 32 mg of hydromorphone. Drug Alcohol Depend 2021; 226:108869. [PMID: 34216862 PMCID: PMC9559787 DOI: 10.1016/j.drugalcdep.2021.108869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Acute pain management in patients with opioid use disorder who are maintained on methadone presents unique challenges due to high levels of opioid tolerance in this population. This randomized controlled study assessed the analgesic and abuse liability effects of escalating doses of acute intravenous (IV) hydromorphone versus placebo utilizing a validated experimental pain paradigm, quantitative sensory testing (QST). METHODS Individuals (N = 8) without chronic pain were maintained on 80-100 mg/day of oral methadone. Participants received four IV, escalating/incremental doses of hydromorphone over 270 min (32 mg total) or four placebo doses within a session test day. Test sessions were scheduled at least one week apart. QST and abuse liability measures were administered at baseline and after each injection. RESULTS No significant differences between the hydromorphone and placebo control conditions on analgesic indices for any QST outcomes were detected. Similarly, no differences on safety or abuse liability indices were detected despite the high doses of hydromorphone utilized. Few adverse events were detected, and those reported were mild in severity. CONCLUSIONS The findings demonstrate that methadone-maintained individuals are highly insensitive to the analgesic effects of high-dose IV hydromorphone and may require very high doses of opioids, more efficacious opioids, or combined non-opioid analgesic strategies to achieve adequate analgesia.
Collapse
Affiliation(s)
- Gabrielle Agin-Liebes
- University of California, San Francisco, Department of Psychiatry and Behavioral Sciences, 401 Parnassus Ave, San Francisco, CA, 94143, USA; Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Ward 95, San Francisco, CA, 94110, USA.
| | - Andrew S Huhn
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, 4940 Eastern Avenue, Baltimore, MD, 21224, USA
| | - Eric C Strain
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, 4940 Eastern Avenue, Baltimore, MD, 21224, USA
| | - George E Bigelow
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, 4940 Eastern Avenue, Baltimore, MD, 21224, USA
| | - Michael T Smith
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, 4940 Eastern Avenue, Baltimore, MD, 21224, USA
| | - Robert R Edwards
- Harvard Medical School, Brigham and Women's Hospital, Department of Anesthesiology, Perioperative, and Pain Medicine, 75 Francis St, Boston, MA, 02115, USA
| | - Valerie A Gruber
- University of California, San Francisco, Department of Psychiatry and Behavioral Sciences, 401 Parnassus Ave, San Francisco, CA, 94143, USA; Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Ward 95, San Francisco, CA, 94110, USA
| | - D Andrew Tompkins
- University of California, San Francisco, Department of Psychiatry and Behavioral Sciences, 401 Parnassus Ave, San Francisco, CA, 94143, USA; Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Ward 95, San Francisco, CA, 94110, USA.
| |
Collapse
|
12
|
Ballaz SJ, Bourin M. Cholecystokinin-Mediated Neuromodulation of Anxiety and Schizophrenia: A "Dimmer-Switch" Hypothesis. Curr Neuropharmacol 2021; 19:925-938. [PMID: 33185164 PMCID: PMC8686311 DOI: 10.2174/1570159x18666201113145143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin (CCK), the most abundant brain neuropeptide, is involved in relevant behavioral functions like memory, cognition, and reward through its interactions with the opioid and dopaminergic systems in the limbic system. CCK excites neurons by binding two receptors, CCK1 and CCK2, expressed at low and high levels in the brain, respectively. Historically, CCK2 receptors have been related to the induction of panic attacks in humans. Disturbances in brain CCK expression also underlie the physiopathology of schizophrenia, which is attributed to the modulation by CCK1 receptors of the dopamine flux in the basal striatum. Despite this evidence, neither CCK2 receptor antagonists ameliorate human anxiety nor CCK agonists have consistently shown neuroleptic effects in clinical trials. A neglected aspect of the function of brain CCK is its neuromodulatory role in mental disorders. Interestingly, CCK is expressed in pivotal inhibitory interneurons that sculpt cortical dynamics and the flux of nerve impulses across corticolimbic areas and the excitatory projections to mesolimbic pathways. At the basal striatum, CCK modulates the excitability of glutamate, the release of inhibitory GABA, and the discharge of dopamine. Here we focus on how CCK may reduce rather than trigger anxiety by regulating its cognitive component. Adequate levels of CCK release in the basal striatum may control the interplay between cognition and reward circuitry, which is critical in schizophrenia. Hence, it is proposed that disturbances in the excitatory/ inhibitory interplay modulated by CCK may contribute to the imbalanced interaction between corticolimbic and mesolimbic neural activity found in anxiety and schizophrenia.
Collapse
Affiliation(s)
- Santiago J. Ballaz
- Address correspondence to this author at the School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador; Tel: 593 (06) 299 9100, ext. 2626; E-mail:
| | | |
Collapse
|
13
|
Ahmadi-Soleimani SM, Mianbandi V, Azizi H, Azhdari-Zarmehri H, Ghaemi-Jandabi M, Abbasi-Mazar A, Mohajer Y, Darana SP. Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review. Behav Brain Res 2020; 391:112650. [DOI: 10.1016/j.bbr.2020.112650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
|
14
|
Le TM, Zhornitsky S, Zhang S, Li CSR. Pain and reward circuits antagonistically modulate alcohol expectancy to regulate drinking. Transl Psychiatry 2020; 10:220. [PMID: 32636394 PMCID: PMC7341762 DOI: 10.1038/s41398-020-00909-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 02/02/2023] Open
Abstract
Expectancy of physical and social pleasure (PSP) promotes excessive drinking despite the potential aversive effects of misuse, suggesting an imbalance in the response to reward and pain in alcohol seeking. Here, we investigated the competing roles of the reward and pain circuits in PSP expectancy and problem drinking in humans. Using fMRI data during resting (n = 180) and during alcohol cue exposure (n = 71), we examined the antagonistic effects of the reward-related medial orbitofrontal cortex (mOFC) and pain-related periaqueductal gray (PAG) connectivities on PSP expectancy and drinking severity. The two regions' connectivity maps and strengths were characterized to assess their shared substrates and net relationship with PSP expectancy. We evaluated mediation and path models to further delineate how mOFC and PAG connectivities interacted through the shared substrates to differentially impact expectancy and alcohol use. During resting, whole-brain regressions showed mOFC connectivity in positive and PAG connectivity in negative association with PSP scores, with convergence in the precentral gyrus (PrCG). Notably, greater PAG-PrCG relative to mOFC-PrCG connectivity strength predicted lower PSP expectancy. During the alcohol cue exposure task, the net strength of the PAG vs. mOFC cue-elicited connectivity with the occipital cortex again negatively predicted PSP expectancy. Finally, mediation and path models revealed that the PAG and mOFC connectivities indirectly and antagonistically modulated problem drinking via their opposing influences on expectancy and craving. Thus, the pain and reward circuits exhibit functional antagonism such that the mOFC connectivity increases expectancy of drinking pleasure whereas the PAG serves to counter that effect.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
15
|
Jiang M, Bo J, Lei Y, Hu F, Xia Z, Liu Y, Lu C, Sun Y, Hou B, Ni K, Ma Z, Gu X. Anxiety-induced hyperalgesia in female rats is mediated by cholecystokinin 2 receptor in rostral ventromedial medulla and spinal 5-hydroxytryptamine 2B receptor. J Pain Res 2019; 12:2009-2026. [PMID: 31308730 PMCID: PMC6613357 DOI: 10.2147/jpr.s187715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Preoperative anxiety is associated with postoperative hyperalgesia; however, few studies have investigated the mechanism underlying this association in female surgical patients. Research has suggested that ON cells in the rostral ventromedial medulla (RVM) receive nerve impulses via cholecystokinin 2 (CCK2) receptors, facilitating hyperalgesia. Additionally, the downstream serotonergic projection system from the RVM to the spinal cord has a dual regulating effect on pain responses, and the 5-hydoxytryptophan 2B (5-HT2B) receptor in spinal dorsal horn neurons is critically involved in mechanical allodynia. Methods Ovariectomized rats were treated with estrogen replacement, single prolonged stress (SPS), and plantar incision. Various receptor agonists and antagonists were then administered into the RVM and spinal cord to study the mechanism underlying postoperative hyperalgesia caused by preoperative anxiety in female rats. Results Behavioral testing revealed that preoperative SPS induced postoperative hyperalgesia, as well as the expression of the CCK2 receptor in the RVM and the expression of the 5-HT2B receptor, protein kinase Cγ (PKCγ), and phosphorylation of the N-methyl-d-aspartate receptor1 (p-NR1) in the spinal cord increased confirmed by Western blot. RVM microinjection of the CCK2 receptor agonist CCK-8 and intrathecal injection of the 5-HT2B receptor agonist BW723C86 both produced hyperalgesia in female rats after plantar incision, whereas the CCK2 receptor antagonist YM022, the 5-HT2B receptor antagonist RS127445, and the PKCγ inhibitor C37H65N9O13 decreased the rats’ sensitivity to the same stimulus. Additionally, electrophysiological analysis suggested that activation of the 5-HT2B receptor increased the whole-cell current (IBa) in superficial dorsal horn neurons through the PKCγ pathway. Conclusion Our study demonstrated that preoperative anxiety-induced postoperative hyperalgesia in female rats is associated with descending pain pathways. The CCK2 receptor in the RVM and spinal 5-HT2B receptor may play a role in this hyperalgesic effect.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Jinhua Bo
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Fan Hu
- Department of Basic Medicine, Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhengrong Xia
- Department of Basic Medicine, Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Cui'e Lu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yu'e Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Kun Ni
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| |
Collapse
|
16
|
Acquisition of analgesic properties by the cholecystokinin (CCK)/CCK2 receptor system within the amygdala in a persistent inflammatory pain condition. Pain 2019; 160:345-357. [PMID: 30281531 DOI: 10.1097/j.pain.0000000000001408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pain is associated with negative emotions such as anxiety, but the underlying neurocircuitry and modulators of the association of pain and anxiety remain unclear. The neuropeptide cholecystokinin (CCK) has both pronociceptive and anxiogenic properties, so we explored the role of CCK in anxiety and nociception in the central amygdala (CeA), a key area in control of emotions and descending pain pathways. Local infusion of CCK into the CeA of control rats increased anxiety, as measured in the light-dark box test, but had no effect on mechanical sensitivity. By contrast, intra-CeA CCK infusion 4 days after Complete Freund's Adjuvant (CFA) injection into the hindpaw resulted in analgesia, but also in loss of its anxiogenic capacity. Inflammatory conditions induced changes in the CeA CCK signaling system with an increase of CCK immunoreactivity and a decrease in CCK1, but not CCK2, receptor mRNA. In CFA rats, patch-clamp experiments revealed that CCK infusion increased CeA neuron excitability. It also partially blocked the discharge of wide dynamic range neurons in the dorsal spinal cord. These effects of CCK on CeA and spinal neurons in CFA rats were mimicked by the specific CCK2 receptor agonist, gastrin. This analgesic effect was likely mediated by identified CeA neurons projecting to the periaqueductal gray matter that express CCK receptors. Together, our data demonstrate that intra-CeA CCK infusion activated a descending CCK2 receptor-dependent pathway that inhibited spinal neuron discharge. Thus, persistent pain induces a functional switch to a newly identified analgesic capacity of CCK in the amygdala, indicating central emotion-related circuit controls pain transmission in spinal cord.
Collapse
|
17
|
How to prevent, minimize, or extinguish nocebo effects in pain: a narrative review on mechanisms, predictors, and interventions. Pain Rep 2019; 4:e699. [PMID: 31583340 PMCID: PMC6749907 DOI: 10.1097/pr9.0000000000000699] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Possible factors that contribute to nocebo effects on pain are explored. Strategies that can prevent, minimize, or extinguish nocebo effects in clinical settings are suggested. Nocebo effects, such as side effects due to negative expectations regarding the pain treatment, are a concern for health care providers and come with significant costs. This narrative review focuses on underlying mechanisms and possible factors that contribute to the susceptibility to the nocebo effect on pain and related outcomes and suggests strategies that can prevent, minimize, or extinguish nocebo effects in clinical settings. Nocebo effects are the result of psychological (eg, conditioning, verbal suggestions, and observational learning) and neurobiological (eg, cholecystokinin and dopamine regulation) mechanisms. Evidence from clinical and experimental studies lead to various recommendations and strategies to alter the nocebo effect in order to optimize pain treatments, such as providing patients with enhanced information, optimizing patient–physician communication and relationships, and offering psychoeducation on coping skills in order to manage patient expectations. The current literature from both clinical and experimental studies provides a better understanding of the nocebo effect and possible factors that modulate its strength on treatment outcomes. This allows for the development of evidence-based strategies aimed at the prevention, minimization, and treatment of the nocebo effect in pain conditions and possible other somatic disorders.
Collapse
|
18
|
Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol 2019; 177:33-72. [DOI: 10.1016/j.pneurobio.2019.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
|
19
|
Abstract
The term nocebo effect refers to the harmful outcomes that result from people’s negative beliefs, anticipations, or experiences related to the treatment rather than the pharmacological properties of the treatment. These outcomes may include a worsening of symptoms, a lack of expected improvement, or adverse events, and they may occur after the active treatment and the placebo that is supposed to imitate it. The nocebo effect is always unwanted and may distort estimates of treatment effectiveness and safety; moreover, it may cause discontinuation of therapy or withdrawal from a trial. The nocebo effect may be unintentionally evoked by the explanations given by healthcare professionals during a clinical consultation or consent procedures, or by information from other patients, the media, or the Internet. Moreover, it may be a consequence of previous bad experiences with the treatment, through learning and conditioning, and the conditioning may happen without patients’ conscious awareness. In trial settings, a study design, for example lack of blinding, may introduce bias from the nocebo effect. Unlike the placebo effect, which is usually taken into consideration while interpreting treatment outcomes and controlled for in clinical trials, the nocebo effect is under-recognised by clinical researchers and clinicians. This is worrying, because the nocebo phenomenon is common and may have potentially negative consequences for the results of clinical treatment and trials. It is therefore important that doctors and medical researchers consider any potential nocebo effect while assessing the treatment effect and try to minimise it through careful choice and phrasing of treatment-related information given to patients.
Collapse
Affiliation(s)
- Karolina Wartolowska
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
20
|
Vázquez-León P, Campos-Rodríguez C, Gonzalez-Pliego C, Miranda-Páez A. Differential effects of cholecystokinin (CCK-8) microinjection into the ventrolateral and dorsolateral periaqueductal gray on anxiety models in Wistar rats. Horm Behav 2018; 106:105-111. [PMID: 30342011 DOI: 10.1016/j.yhbeh.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 01/27/2023]
Abstract
Cholecystokinin (CCK) is one of the main neurohormone peptide systems in the brain, and a major anxiogenic mediator. The periaqueductal gray (PAG) is a key midbrain structure for defensive behaviors, which could include anxiety, fear, or even panic. The CCK system has wide distribution in the PAG, where the dorsolateral region (DL) participates in active defensive behavior and the ventrolateral region (VL) in passive defensive behavior. The aim of this study was to assess the effect of CCK-8 microinjection into DL-PAG or VL-PAG on anxiety-like behavior through two tests: elevated plus maze (EPM) and defensive burying behavior (DBB). CCK-8 (0.5 and 1.0 μg/0.5 μL) presently microinjected into the DL-PAG produced an anxiogenic-like effect on the EPM evidenced by decreasing the time spent/number of entries in open arms compared to vehicle group. Additionally, the latency to burying decreased and burying time increased on the DBB test. Contrarily, CCK-8 microinjected into the VL-PAG resulted in greater open-arm time and more open-arm entries compared to the vehicle-microinjected group. The results on the DBB test confirmed an anxiolytic-like response of CCK-8 into the VL-PAG. In conclusion, CCK-8 microinjected into DL-PAG produced anxiety-like behavior on EPM, and for first time reported on DBB. Contrarily, CCK-8 microinjected into the VL-PAG reduced anxiety-like behavior also for first time reported using both behavioral models EPM and DBB.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Carolina Campos-Rodríguez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Carlos Gonzalez-Pliego
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico.
| |
Collapse
|
21
|
Flak JN, Arble D, Pan W, Patterson C, Lanigan T, Goforth PB, Sacksner J, Joosten M, Morgan DA, Allison MB, Hayes J, Feldman E, Seeley RJ, Olson DP, Rahmouni K, Myers MG. A leptin-regulated circuit controls glucose mobilization during noxious stimuli. J Clin Invest 2017; 127:3103-3113. [PMID: 28714862 DOI: 10.1172/jci90147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor-expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores.
Collapse
Affiliation(s)
| | | | - Warren Pan
- Department of Internal Medicine.,Graduate Program in Cellular and Molecular Biology, and
| | | | | | - Paulette B Goforth
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | - Margaret B Allison
- Department of Internal Medicine.,Department of Molecular and Integrative Physiology
| | | | | | | | - David P Olson
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | - Martin G Myers
- Department of Internal Medicine.,Department of Surgery.,Department of Molecular and Integrative Physiology
| |
Collapse
|
22
|
GEVA NIRIT, PRUESSNER JENS, DEFRIN RUTH. Triathletes Lose Their Advantageous Pain Modulation under Acute Psychosocial Stress. Med Sci Sports Exerc 2017; 49:333-341. [DOI: 10.1249/mss.0000000000001110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Wortinger LA, Endestad T, Melinder AMD, Øie MG, Sevenius A, Bruun Wyller V. Aberrant Resting-State Functional Connectivity in the Salience Network of Adolescent Chronic Fatigue Syndrome. PLoS One 2016; 11:e0159351. [PMID: 27414048 PMCID: PMC4944916 DOI: 10.1371/journal.pone.0159351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/29/2016] [Indexed: 01/31/2023] Open
Abstract
Neural network investigations are currently absent in adolescent chronic fatigue syndrome (CFS). In this study, we examine whether the core intrinsic connectivity networks (ICNs) are altered in adolescent CFS patients. Eighteen adolescent patients with CFS and 18 aged matched healthy adolescent control subjects underwent resting-state functional magnetic resonance imaging (rfMRI). Data was analyzed using dual-regression independent components analysis, which is a data-driven approach for the identification of independent brain networks. Intrinsic connectivity was evaluated in the default mode network (DMN), salience network (SN), and central executive network (CEN). Associations between network characteristics and symptoms of CFS were also explored. Adolescent CFS patients displayed a significant decrease in SN functional connectivity to the right posterior insula compared to healthy comparison participants, which was related to fatigue symptoms. Additionally, there was an association between pain intensity and SN functional connectivity to the left middle insula and caudate that differed between adolescent patients and healthy comparison participants. Our findings of insula dysfunction and its association with fatigue severity and pain intensity in adolescent CFS demonstrate an aberration of the salience network which might play a role in CFS pathophysiology.
Collapse
Affiliation(s)
- Laura Anne Wortinger
- Department of Pediatrics, Akershus University Hospital, Nordbyhagen, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- * E-mail:
| | - Tor Endestad
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Annika Maria D. Melinder
- Cognitive Developmental Research Unit, Department of Psychology, University of Oslo, Oslo, Norway
| | - Merete Glenne Øie
- Department of Psychology, University of Oslo, Oslo, Norway
- Research Department, Innlandet Hospital Trust, Lillehammer, Norway
| | - Andre Sevenius
- Department of Psychology, University of Oslo, Oslo, Norway
| | | |
Collapse
|
24
|
Egle UT, Egloff N, von Känel R. Stressinduzierte Hyperalgesie (SIH) als Folge von emotionaler Deprivation und psychischer Traumatisierung in der Kindheit. Schmerz 2016; 30:526-536. [DOI: 10.1007/s00482-016-0107-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Abstract
Pain is more than merely nociception and response, but rather it encompasses emotional, behavioral and cognitive components that make up the pain experience. With the recent advances in imaging techniques, we now understand that nociceptive inputs can result in the activation of complex interactions among central sites, including cortical regions that are active in cognitive, emotional and reward functions. These sites can have a bimodal influence on the serotonergic and noradrenergic descending pain modulatory systems via communications among the periaqueductal gray, rostral ventromedial medulla and pontine noradrenergic nuclei, ultimately either facilitating or inhibiting further nociceptive inputs. Understanding these systems can help explain the emotional and cognitive influences on pain perception and placebo/nocebo effects, and can help guide development of better pain therapeutics.
Collapse
Affiliation(s)
- Milena De Felice
- The University of Sheffield, Academic Unit of Oral & Maxillofacial Medicine & Surgery, Sheffield, South Yorkshire, UK
| | - Michael H Ossipov
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724-5050, USA
| |
Collapse
|
26
|
Planès S, Villier C, Mallaret M. The nocebo effect of drugs. Pharmacol Res Perspect 2016; 4:e00208. [PMID: 27069627 PMCID: PMC4804316 DOI: 10.1002/prp2.208] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/09/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022] Open
Abstract
While the placebo effect has been studied for a long time, much less is known about its negative counterpart, named the nocebo effect. However, it may be of particular importance because of its impact on the treatment outcomes and public health. We conducted a review on the nocebo effect using PubMed and other databases up to July 2014. The nocebo effect refers by definition to the induction or the worsening of symptoms induced by sham or active therapies. Examples are numerous and concerns both clinical trials and daily practice. The underlying mechanisms are, on one hand, psychological (conditioning and negative expectations) and, on the other hand, neurobiological (role of cholecystokinin, endogenous opioids and dopamine). Nocebo effects can modulate the outcome of a given therapy in a negative way, as do placebo effects in a positive way. The verbal and nonverbal communications of physicians contain numerous unintentional negative suggestions that may trigger a nocebo response. This raises the important issue of how physicians can at the same time obtain informed consent and minimize nocebo-related risks. Every physician has to deal with this apparent contradiction between primum non nocere and to deliver truthful information about risks. Meticulous identification of patients at risk, information techniques such as positive framing, contextualized informed consent, and even noninformation, is valuable.
Collapse
Affiliation(s)
- Sara Planès
- Centre Régional de Pharmacovigilance Grenoble University Hospital Grenoble France
| | - Céline Villier
- Centre Régional de Pharmacovigilance Grenoble University Hospital Grenoble France
| | - Michel Mallaret
- Centre Régional de Pharmacovigilance Grenoble University Hospital Grenoble France
| |
Collapse
|
27
|
Schedlowski M, Enck P, Rief W, Bingel U. Neuro-Bio-Behavioral Mechanisms of Placebo and Nocebo Responses: Implications for Clinical Trials and Clinical Practice. Pharmacol Rev 2016; 67:697-730. [PMID: 26126649 DOI: 10.1124/pr.114.009423] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The placebo effect has often been considered a nuisance in basic and particularly clinical research. This view has gradually changed in recent years due to deeper insight into the neuro-bio-behavioral mechanisms steering both the placebo and nocebo responses, the evil twin of placebo. For the neuroscientist, placebo and nocebo responses have evolved as indispensable tools to understand brain mechanisms that link cognitive and emotional factors with symptom perception as well as peripheral physiologic systems and end organ functioning. For the clinical investigator, better understanding of the mechanisms driving placebo and nocebo responses allow the control of these responses and thereby help to more precisely define the efficacy of a specific pharmacological intervention. Finally, in the clinical context, the systematic exploitation of these mechanisms will help to maximize placebo responses and minimize nocebo responses for the patient's benefit. In this review, we summarize and critically examine the neuro-bio-behavioral mechanisms underlying placebo and nocebo responses that are currently known in terms of different diseases and physiologic systems. We subsequently elaborate on the consequences of this knowledge for pharmacological treatments of patients and the implications for pharmacological research, the training of healthcare professionals, and for the health care system and future research strategies on placebo and nocebo responses.
Collapse
Affiliation(s)
- Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology (M.S.) and Department of Neurology (U.B.), University Clinic Essen, Essen, Germany; Department of Internal Medicine VI, Psychosomatic Medicine, University Hospital Tübingen, Tübingen, Germany (P.E.); and Department of Psychology, University of Marburg, Marburg, Germany (W.R.)
| | - Paul Enck
- Institute of Medical Psychology and Behavioral Immunobiology (M.S.) and Department of Neurology (U.B.), University Clinic Essen, Essen, Germany; Department of Internal Medicine VI, Psychosomatic Medicine, University Hospital Tübingen, Tübingen, Germany (P.E.); and Department of Psychology, University of Marburg, Marburg, Germany (W.R.)
| | - Winfried Rief
- Institute of Medical Psychology and Behavioral Immunobiology (M.S.) and Department of Neurology (U.B.), University Clinic Essen, Essen, Germany; Department of Internal Medicine VI, Psychosomatic Medicine, University Hospital Tübingen, Tübingen, Germany (P.E.); and Department of Psychology, University of Marburg, Marburg, Germany (W.R.)
| | - Ulrike Bingel
- Institute of Medical Psychology and Behavioral Immunobiology (M.S.) and Department of Neurology (U.B.), University Clinic Essen, Essen, Germany; Department of Internal Medicine VI, Psychosomatic Medicine, University Hospital Tübingen, Tübingen, Germany (P.E.); and Department of Psychology, University of Marburg, Marburg, Germany (W.R.)
| |
Collapse
|
28
|
Hentall ID, Luca CC, Widerstrom-Noga E, Vitores A, Fisher LD, Martinez-Arizala A, Jagid JR. The midbrain central gray best suppresses chronic pain with electrical stimulation at very low pulse rates in two human cases. Brain Res 2015; 1632:119-26. [PMID: 26711853 DOI: 10.1016/j.brainres.2015.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023]
Abstract
Deep brain stimulation in the midbrain׳s central gray can relieve neuropathic pain in man, but for unclear reasons sometimes fails intraoperatively or in early weeks. Here we describe continuous bilateral stimulation in the central gray of two subjects with longstanding, severe neuropathic pain from spinal cord injury. Stimulation parameters were recursively adjusted over many weeks to optimize analgesia while minimizing adverse effects. In early weeks, adjustments were made in periodic office visits; subjects later selected ad libitum at home among several blinded choices while rating pain twice daily. Both subjects received significantly better pain relief when stimulus pulse rates were low. The best relief occurred with 2 Hz cycled on for 1s and off for 2s. After inferior parameters were set, pain typically climbed slowly over 1-2 days; superior parameters led to both slow and fast improvements. Over many weeks of stimulation at low pulse rates, both subjects experienced significantly less interference from pain with sleep. One subject, with major pain relief, also showed less interference with social/recreational ability and mood; the other subject, despite minor pain relief, experienced a significantly positive global impression of change. Oscillopsia, the only observed complication of stimulation, disappeared at low mean pulse rates (≤ 3/s). These subjects׳ responses are not likely to be unique even if they are uncommon. Thus daily or more frequent pain assessment, combined with slower periodic adjustment of stimulation parameters that incorporate mean pulse rates about one per second, will likely improve success with this treatment.
Collapse
Affiliation(s)
- Ian D Hentall
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, Miller School of Medicine, University of Miami, R-48, Miami, FL 33136, USA.
| | - Corneliu C Luca
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, Miller School of Medicine, University of Miami, R-48, Miami, FL 33136, USA
| | - Eva Widerstrom-Noga
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, Miller School of Medicine, University of Miami, R-48, Miami, FL 33136, USA
| | - Alberto Vitores
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, Miller School of Medicine, University of Miami, R-48, Miami, FL 33136, USA
| | - Letitia D Fisher
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, Miller School of Medicine, University of Miami, R-48, Miami, FL 33136, USA
| | - Alberto Martinez-Arizala
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, Miller School of Medicine, University of Miami, R-48, Miami, FL 33136, USA; Department of Veterans Affairs Medical Center, Miami, FL 33101, USA
| | - Jonathan R Jagid
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, Miller School of Medicine, University of Miami, R-48, Miami, FL 33136, USA
| |
Collapse
|
29
|
Selective melatonin MT2 receptor ligands relieve neuropathic pain through modulation of brainstem descending antinociceptive pathways. Pain 2015; 156:305-317. [PMID: 25599452 DOI: 10.1097/01.j.pain.0000460311.71572.5f] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuropathic pain is an important public health problem for which only a few treatments are available. Preclinical studies show that melatonin (MLT), a neurohormone acting on MT1 and MT2 receptors, has analgesic properties, likely through MT2 receptors. Here, we determined the effects of the novel selective MLT MT2 receptor partial agonist N-{2-([3-bromophenyl]-4-fluorophenylamino)ethyl}acetamide (UCM924) in 2 neuropathic pain models in rats and examined its supraspinal mechanism of action. In rat L5-L6 spinal nerve ligation and spared nerve injury models, UCM924 (20-40 mg/kg, subcutaneously) produced a prolonged antinociceptive effect that is : (1) dose-dependent and blocked by the selective MT2 receptor antagonist 4-phenyl-2-propionamidotetralin, (2) superior to a high dose of MLT (150 mg/kg) and comparable with gabapentin (100 mg/kg), but (3) without noticeable motor coordination impairments in the rotarod test. Using double staining immunohistochemistry, we found that MT2 receptors are expressed by glutamatergic neurons in the rostral ventrolateral periaqueductal gray. Using in vivo electrophysiology combined with tail flick, we observed that microinjection of UCM924 into the ventrolateral periaqueductal gray decreased tail flick responses, depressed the firing activity of ON cells, and activated the firing of OFF cells; all effects were MT2 receptor-dependent. Altogether, these data demonstrate that selective MT2 receptor partial agonists have analgesic properties through modulation of brainstem descending antinociceptive pathways, and MT2 receptors may represent a novel target in the treatment of neuropathic pain.
Collapse
|
30
|
Baeta-Corral R, Defrin R, Pick CG, Giménez-Llort L. Tail-flick test response in 3×Tg-AD mice at early and advanced stages of disease. Neurosci Lett 2015; 600:158-63. [DOI: 10.1016/j.neulet.2015.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
|
31
|
Fenton BW, Shih E, Zolton J. The neurobiology of pain perception in normal and persistent pain. Pain Manag 2015; 5:297-317. [DOI: 10.2217/pmt.15.27] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMMARY Pain is a significant national burden in terms of patient suffering, expenditure and lost productivity. Understanding pain is fundamental to improving evaluation, treatment and innovation in the management of acute and persistent pain syndromes. Pain perception begins in the periphery, and then ascends in several tracts, relaying at different levels. Pain signals arrive in the thalamus and midbrain structures which form the pain neuromatrix, a constantly shifting set of networks and connections that determine conscious perception. Several cortical regions become active simultaneously during pain perception; activity in the cortical pain matrix evolves over time to produce a complex pain perception network. Dysfunction at any level has the potential to produce unregulated, persistent pain.
Collapse
Affiliation(s)
- Bradford W Fenton
- Summa Health System, Department of Obstetrics & Gynecology, 75 Arch St Ste 102, Akron, OH 44304, USA
| | - Elim Shih
- Women's Health Fellow, Cleveland Clinic Foundation, 9500 Euclid Avenue, Desk A10, Cleveland, OH 44195, USA
| | - Jessica Zolton
- Summa Health System, Department of Obstetrics & Gynecology, 75 Arch St Ste 102, Akron, OH 44304, USA
| |
Collapse
|
32
|
Stress-induced hyperalgesia. Prog Neurobiol 2014; 121:1-18. [DOI: 10.1016/j.pneurobio.2014.06.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/17/2014] [Accepted: 06/29/2014] [Indexed: 12/25/2022]
|
33
|
Geva N, Pruessner J, Defrin R. Acute psychosocial stress reduces pain modulation capabilities in healthy men. Pain 2014; 155:2418-25. [PMID: 25250721 DOI: 10.1016/j.pain.2014.09.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system.
Collapse
Affiliation(s)
- Nirit Geva
- Department of Physical Therapy and Sagol School of Neuroscience, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Jens Pruessner
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Ruth Defrin
- Department of Physical Therapy and Sagol School of Neuroscience, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
34
|
Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci 2014; 34:3969-75. [PMID: 24623774 DOI: 10.1523/jneurosci.5055-13.2014] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rumination is a form of thought characterized by repetitive focus on discomforting emotions or stimuli. In chronic pain disorders, rumination can impede treatment efficacy. The brain mechanisms underlying rumination about chronic pain are not understood. Interestingly, a link between rumination and functional connectivity (FC) of the brain's default mode network (DMN) has been identified within the context of mood disorders. We, and others, have also found DMN dysfunction in chronic pain populations. The medial prefrontal cortex (mPFC) is a key node of the DMN that is anatomically connected with the descending pain modulatory system. Therefore, we tested the hypothesis that in patients with chronic pain, the mPFC exhibits abnormal FC related to the patient's degree of rumination about their pain. Seventeen patients with idiopathic temporomandibular disorder (TMD) and 17 age- and sex-matched healthy controls underwent resting state functional MRI, and rumination about pain was assessed through the rumination subscale of the Pain Catastrophizing Scale. Compared with healthy controls, we found that TMD patients exhibited enhanced mPFC FC with other DMN regions, including the posterior cingulate cortex (PCC)/precuneus (PCu) and retrosplenial cortex. We also found that individual differences in pain rumination in the chronic pain patients (but not in healthy controls) were positively correlated to mPFC FC with the PCC/PCu, retrosplenial cortex, medial thalamus, and periaqueductal/periventricular gray. These data implicate communication within the DMN and of the DMN with the descending modulatory system as a mechanism underlying the degree to which patients ruminate about their chronic pain.
Collapse
|
35
|
Rempe T, Wolff S, Riedel C, Baron R, Stroman PW, Jansen O, Gierthmühlen J. Spinal and supraspinal processing of thermal stimuli: an fMRI study. J Magn Reson Imaging 2014; 41:1046-55. [PMID: 24737401 DOI: 10.1002/jmri.24627] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/01/2014] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI). MATERIALS AND METHODS Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single-shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm). RESULTS Increased activity was observed in ipsi- and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52-0.98, P < 0.05). CONCLUSION Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046-1055. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Torge Rempe
- Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany; Department of Neurology, University Hospital of Kiel, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Scherder EJA, Plooij B. Assessment and management of pain, with particular emphasis on central neuropathic pain, in moderate to severe dementia. Drugs Aging 2013; 29:701-6. [PMID: 23018606 DOI: 10.1007/s40266-012-0001-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In patients with dementia, undertreatment of pain, irrespective of its aetiology, is widely recognized; the risk for undertreatment increases with the severity of dementia. We argue, however, that central neuropathic pain is by far the most undertreated type of pain in patients with dementia. Central pain is a type of neuropathic pain that is known to occur in stroke patients and is caused by white matter lesions. Although white matter lesions are also a neuropathological hallmark of dementia, central neuropathic pain has hardly been described in dementia. Therefore, the goal of this review was to address assessment and management of pain, with particular emphasis on central neuropathic pain, in moderate to severe dementia. Concerning pain assessment, the findings of this review suggest that self-report pain rating scales, in particular the Verbal Rating Scale, the Horizontal Visual Analogue Scale and the Faces Pain Scale can be administered to patients in a more advanced stage of dementia. For those who are no longer able to communicate pain, pain observation scales are most appropriate. Self-report and pain observation should be combined, if possible. For an overview of assessment tools to measure pain with older people unable to verbally communicate, we refer readers to the City of Hope Pain and Palliative Care Resource Center ( http://prc.coh.org/PAIN-NOA.htm ). The review further highlights that behavioural disturbances, e.g. agitation and physical inactivity, as well as autonomic responses, e.g. an increase in blood pressure and heart rate, may contribute to a more reliable assessment of pain. With respect to central neuropathic pain in particular, assessment of sensory abilities (touch, pinprick, temperature and vibration), mood (e.g. anxiety) and determination of the presence of a Babinsky reflex, accelerated tendon reflexes, and spasticity may contribute to reliable assessment. Management of pain, not of a central origin, starts with paracetamol (acetaminophen), which, together with opioids, is the most frequently prescribed analgesic drug in dementia. Non-steroidal anti-inflammatory drugs are hardly prescribed in a residential setting. Some authors advise starting treatment with a low dose of opioids. Antidepressants and antiepileptic drugs appear to have a positive effect on central neuropathic pain. In the review, advantages and disadvantages of amitriptyline, carbamazepine, lamotrigine, gabapentin and pregabalin are discussed; a negative effect of these drugs on liver and kidney functions, as well as on cognitive functions in patients who already suffer from cognitive impairment is highlighted. Next to pharmacotherapy, non-pharmacological treatment strategies such as transcutaneous electrical nerve stimulation may be effective as long as afferent pathways transmitting the electrical stimulus are still intact.
Collapse
Affiliation(s)
- Erik J A Scherder
- Department of Clinical Neuropsychology, VU University, Amsterdam, The Netherlands.
| | | |
Collapse
|
37
|
Fallon N, Alghamdi J, Chiu Y, Sluming V, Nurmikko T, Stancak A. Structural alterations in brainstem of fibromyalgia syndrome patients correlate with sensitivity to mechanical pressure. NEUROIMAGE-CLINICAL 2013; 3:163-70. [PMID: 24179860 PMCID: PMC3791285 DOI: 10.1016/j.nicl.2013.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/20/2013] [Accepted: 07/31/2013] [Indexed: 12/25/2022]
Abstract
Fibromyalgia syndrome is a chronic pain disorder characterised by widespread pain and tenderness in muscles and deep tissues. Current theories regarding the pathophysiological origins of fibromyalgia syndrome point towards central sensitisation and a decreased capacity of descending nociceptive controls. Morphological alterations to subcortical brain regions may contribute to such pathophysiological mechanisms, and to pain and other symptoms seen in fibromyalgia. Therefore, we evaluated geometric differences in subcortical structures in fibromyalgia patients relative to healthy people using a novel method of shape analysis. Sixteen female fibromyalgia patients and 15 age and sex matched, healthy control subjects underwent high-resolution T1-weighted magnetic resonance image scanning. Data was analysed using shape analysis of 15 subcortical regions and standard voxel-based morphometry analysis. Fibromyalgia syndrome patients, relative to healthy control participants, exhibited alterations to the shape of the left lateral aspect of the lower brainstem (medulla). The mean total volume of the brainstem was also found to be significantly reduced in the patient group compared to healthy control subjects, and this brainstem volume reduction in patient group significantly correlated with clinical manual tender point scale scores. Voxel-based morphometry analysis revealed that patients also demonstrated decreased local grey matter volumes in the brainstem (pons) and left precuneus, and increased grey matter volumes in bilateral primary somatosensory cortices. Results suggest that the volume reduction and associated geometric shape alterations seen in the brainstem of the patient group may contribute to sensitivity to pressure pain in fibromyalgia syndrome. This finding may be due to structure-related deficiencies in regions subserving descending nociceptive control. Fibromyalgia syndrome patients exhibited shape alterations in the brainstem. The mean brainstem volume was also significantly reduced in FMS patients. This volume reduction correlated with clinical manual tender point scores. Structural alterations in the brainstem may contribute to clinical symptoms of FMS.
Collapse
Affiliation(s)
- Nicholas Fallon
- Department of Experimental Psychology, Institute of Psychology, Health, and Society, University of Liverpool, Liverpool, UK
- Corresponding author at: Department of Experimental Psychology, Institute of Psychology, Health, and Society, Eleanor Rathbone Building, Bedford Street South, Liverpool L69 7ZA, UK. Tel.: + 44 151 794 2961.
| | - Jamaan Alghamdi
- Physics Department, Faculty of Science, King Abdulaziz University at Jeddah, Saudi Arabia
| | - Yee Chiu
- Wirral University Teaching Hospital NHS Foundation Trust, Wirral, UK
| | - Vanessa Sluming
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | - Turo Nurmikko
- Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Andrej Stancak
- Department of Experimental Psychology, Institute of Psychology, Health, and Society, University of Liverpool, Liverpool, UK
| |
Collapse
|
38
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Sabariego M, Donaire R, Morón I, Torres C, Martínez-Conejero JA, Tobeña A, Esteban FJ, Fernández-Teruel A. Gene expression in amygdala as a function of differential trait anxiety levels in genetically heterogeneous NIH-HS rats. Behav Brain Res 2013; 252:422-31. [PMID: 23777796 DOI: 10.1016/j.bbr.2013.05.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
To identify genes involved in anxiety/fear traits, we analyzed the gene expression profile in the amygdala of genetically heterogeneous NIH-HS rats. The NIH-HS rat stock has revealed to be a unique genetic resource for the fine mapping of Quantitative Trait Loci (QTLs) to very small genomic regions, due to the high amount of genetic recombinants accumulated along more than 50 breeding generations, and for the same reason it can be expected that those genetically heterogeneous rats should be especially useful for studying differential gene expression as a function of anxiety-(or other)-related traits. We selected high- and low-anxious NIH-HS rats differing in their number of avoidances in a single 50-trial session of the two-way active avoidance task. Rats were also tested in unconditioned anxiety tests (e.g., elevated zero-maze). Three weeks after behavioural testing, the amygdala was dissected and prepared for the microarray study. There appeared 6 significantly down-regulated and 28 up-regulated genes (fold-change >|2|, FDR<0.05) between the low- and high-anxious groups, with central nervous system-related functions. Regression analyses (stepwise) revealed that differential expression of some genes could be predictive of anxiety/fear responses. Among those genes for which the present results suggest a link with individual differences in trait anxiety, six relevant genes were examined with qRT-PCR, four of which (Ucn3, Tacr3, H2-M9 and Arr3) were validated. Remarkably, some of them are characterized by sharing known functions related with hormonal HPA-axis responses to (and/or modulation of) stress, anxiety or fear, and putative involvement in related neurobehavioural functions. The results confirm the usefulness of NIH-HS rats as a good animal model for research on the neurogenetic basis of anxiety and fear, while suggesting the involvement of some neuropeptide/neuroendocrine pathways on the development of differential anxiety profiles.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Uncertainty increases pain: evidence for a novel mechanism of pain modulation involving the periaqueductal gray. J Neurosci 2013; 33:5638-46. [PMID: 23536078 DOI: 10.1523/jneurosci.4984-12.2013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Predictions about sensory input exert a dominant effect on what we perceive, and this is particularly true for the experience of pain. However, it remains unclear what component of prediction, from an information-theoretic perspective, controls this effect. We used a vicarious pain observation paradigm to study how the underlying statistics of predictive information modulate experience. Subjects observed judgments that a group of people made to a painful thermal stimulus, before receiving the same stimulus themselves. We show that the mean observed rating exerted a strong assimilative effect on subjective pain. In addition, we show that observed uncertainty had a specific and potent hyperalgesic effect. Using computational functional magnetic resonance imaging, we found that this effect correlated with activity in the periaqueductal gray. Our results provide evidence for a novel form of cognitive hyperalgesia relating to perceptual uncertainty, induced here by vicarious observation, with control mediated by the brainstem pain modulatory system.
Collapse
|
40
|
Abdelhamid RE, Kovacs KJ, Pasley JD, Nunez MG, Larson AA. Forced swim-induced musculoskeletal hyperalgesia is mediated by CRF2 receptors but not by TRPV1 receptors. Neuropharmacology 2013; 72:29-37. [PMID: 23624287 DOI: 10.1016/j.neuropharm.2013.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 11/26/2022]
Abstract
The exacerbation of musculoskeletal pain by stress in humans is modeled by the musculoskeletal hyperalgesia in rodents following a forced swim. We hypothesized that stress-sensitive corticotropin releasing factor (CRF) receptors and transient receptor vanilloid 1 (TRPV1) receptors are responsible for the swim stress-induced musculoskeletal hyperalgesia. We confirmed that a cold swim (26 °C) caused a transient, morphine-sensitive decrease in grip force responses reflecting musculoskeletal hyperalgesia in mice. Pretreatment with the CRF2 receptor antagonist astressin 2B, but not the CRF1 receptor antagonist NBI-35965, attenuated this hyperalgesia. Desensitizing the TRPV1 receptor centrally or peripherally using desensitizing doses of resiniferatoxin (RTX) failed to prevent the musculoskeletal hyperalgesia produced by cold swim. SB-366791, a TRPV1 antagonist, also failed to influence swim-induced hyperalgesia. Together these data indicate that swim stress-induced musculoskeletal hyperalgesia is mediated, in part, by CRF2 receptors but is independent of the TRPV1 receptor.
Collapse
Affiliation(s)
- Ramy E Abdelhamid
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue Room 295, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
41
|
Rouwette T, Vanelderen P, de Reus M, Loohuis NO, Giele J, van Egmond J, Scheenen W, Scheffer GJ, Roubos E, Vissers K, Kozicz T. Experimental neuropathy increases limbic forebrain CRF. Eur J Pain 2012; 16:61-71. [PMID: 21684787 DOI: 10.1016/j.ejpain.2011.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuropathic pain is often accompanied by stress, anxiety and depression. Although there is evidence for involvement of corticotropin-releasing factor (CRF), the detailed neuronal basis of these pain-related mood alterations is unknown. This study shows that peripheral mononeuropathy was accompanied by changes in limbic forebrain CRF, but did not lead to changes in the functioning of the hypothalamo-pituitary-adrenal axis and the midbrain Edinger-Westphal centrally projecting (EWcp) neuron population, which play main roles in the organism's response to acute pain. Twenty-four days after chronic constriction injury (CCI) of the rat sciatic nerve, the oval bed nucleus of the stria terminalis (BSTov) contained substantially more Crf mRNA as did the central amygdala (CeA), which, in addition, possessed more CRF. In contrast, Crf mRNA and CRF contents of the hypothalamic paraventricular nucleus (PVN) were unaffected by CCI. Similarly, EWcp neurons, producing the CRF family member urocortin 1 (Ucn1) and constitutively activated by various stressors including acute pain, did not show an effect of CCI on Ucn1 mRNA or Ucn1. Also, the immediate early gene products cFos and deltaFosB in the EWcp were unaffected by CCI. These results indicate that neuropathic pain does not act via the HPA-axis or the EWcp, but includes a main role of Crf in the limbic system, which is in clear contrast to stressors like acute and chronic pain, which primarily act on the PVN and the EWcp.
Collapse
Affiliation(s)
- T Rouwette
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kozlov AP, Nizhnikov ME, Varlinskaya EI, Spear NE. The role of social isolation in ethanol effects on the preweanling rat. Behav Brain Res 2012; 227:43-57. [PMID: 22051944 DOI: 10.1016/j.bbr.2011.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/19/2011] [Indexed: 01/08/2023]
Abstract
The present experiments investigated the effects of acute ethanol exposure on voluntary intake of 0.1% saccharin or water as well as behavioral and nociceptive reactivity in 12-day-old (P12) rats exposed to differing levels of isolation. The effects of ethanol emerged only during short-term social isolation (STSI) with different patterns observed in males and females and in pups exposed to saccharin or water. The 0.5g/kg ethanol dose selectively increased saccharin intake in females, decreased rearing activity in males and attenuated isolation-induced analgesia (IIA) in all water-exposed pups. Ingestion of saccharin decreased IIA, and the 0.5g/kg ethanol dose further reduced IIA. The 1.0g/kg ethanol dose, administered either intragastrically or intraparentionally, also decreased IIA in P12 females, but not in P9 pups. A significant correlation between voluntary saccharin intake and baseline nociceptive reactivity was revealed in saline injected animals, saccharin intake was inversely correlated with behavioral activation and latency of reaction to noxious heat after 0.5g/kg ethanol in females. The 0.5g/kg ethanol dose did not affect plasma corticosterone (CORT) measured 5h after maternal separation or 20min after ethanol injection. Female pups CORT level was inversely correlated with magnitude of IIA that accompanied the first episode of STSI (pretest isolation) 1.5-2h before CORT measurement. The present findings suggest that the anxiolytic properties of ethanol are responsible for enhancement of saccharin intake during STSI. Furthermore, differential reactivity of P12 males and females to STSI plays an important role in ethanol effects observed at this age.
Collapse
Affiliation(s)
- Andrey P Kozlov
- Center for Development & Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | | | | | | |
Collapse
|
43
|
Morgado C, Terra PP, Tavares I. Neuronal hyperactivity at the spinal cord and periaqueductal grey during painful diabetic neuropathy: Effects of gabapentin. Eur J Pain 2012; 14:693-9. [DOI: 10.1016/j.ejpain.2009.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/04/2009] [Accepted: 11/27/2009] [Indexed: 02/08/2023]
|
44
|
Mitchell VA, Jeong HJ, Drew GM, Vaughan CW. Cholecystokinin exerts an effect via the endocannabinoid system to inhibit GABAergic transmission in midbrain periaqueductal gray. Neuropsychopharmacology 2011; 36:1801-10. [PMID: 21525858 PMCID: PMC3154098 DOI: 10.1038/npp.2011.59] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cholecystokinin modulates pain and anxiety via its functions within brain regions such as the midbrain periaqueductal gray (PAG). The aim of this study was to examine the cellular actions of cholecystokinin on PAG neurons. Whole-cell patch clamp recordings were made from rat midbrain PAG slices in vitro to examine the postsynaptic effects of cholecystokinin and its effects on synaptic transmission. Sulfated cholecystokinin-(26-33) (CCK-S, 100-300 nM), but not non-sulfated cholecystokinin-(26-33) (CCK-NS, 100-300 nM) produced an inward current in a sub-population of opioid sensitive and insensitive PAG neurons, which did not reverse over a range of membrane potentials. The CCK-S-induced current was abolished by the CCK1 selective antagonist devazepide (100 nM), but not by the CCK2 selective antagonists CI988 (100 nM, 1 μM) and LY225910 (1 μM). CCK-S, but not CCK-NS produced a reduction in the amplitude of evoked GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) and an increase in the evoked IPSC paired-pulse ratio. By contrast, CCK-S had little effect on the rate and amplitude of TTX-resistant miniature IPSCs under basal conditions and when external K(+) was elevated. The CCK-S-induced inhibition of evoked IPSCs was abolished by the cannabinoid CB1 receptor antagonist AM251 (3 μM), the mGluR5 antagonist MPEP (10 μM) and the 1, 2-diacylglycerol lipase (DAGLα) inhibitor tetrahydrolipstatin (10 μM). In addition, CCK-S produced an increase in the rate of spontaneous non-NMDA-mediated, TTX-dependent excitatory postsynaptic currents (EPSCs). These results suggest that cholecystokinin produces direct neuronal depolarisation via CCK1 receptors and inhibits GABAergic synaptic transmission via action potential-dependent release of glutamate and mGluR5-induced endocannabinoid signaling. Thus, cholecystokinin has cellular actions within the PAG that can both oppose and reinforce opioid and cannabinoid modulation of pain and anxiety within this brain structure.
Collapse
Affiliation(s)
- Vanessa A Mitchell
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Hyo-Jin Jeong
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Geoffrey M Drew
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Christopher W Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia,Pain Management Research Institute, Level 13, Kolling Building, Kolling Institute for Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia, Tel: +61 29 926 4950, Fax: +61 29 926 7659, E-mail: , http://www.pmri.med.usyd.edu.au
| |
Collapse
|
45
|
Takahashi K, Taguchi T, Tanaka S, Sadato N, Qiu Y, Kakigi R, Mizumura K. Painful muscle stimulation preferentially activates emotion-related brain regions compared to painful skin stimulation. Neurosci Res 2011; 70:285-93. [DOI: 10.1016/j.neures.2011.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 11/16/2022]
|
46
|
Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res 2011; 1381:187-201. [DOI: 10.1016/j.brainres.2011.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 02/07/2023]
|
47
|
Jiménez-Velázquez G, López-Muñoz FJ, Fernández-Guasti A. Parallel anxiolytic-like and antinociceptive actions of diazepam in the anterior basolateral amygdala and dorsal periaqueductal gray. Brain Res 2010; 1349:11-20. [DOI: 10.1016/j.brainres.2010.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 01/10/2023]
|
48
|
CCK as a modulator of cardiovascular function. J Chem Neuroanat 2009; 38:176-84. [DOI: 10.1016/j.jchemneu.2009.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/22/2009] [Accepted: 06/19/2009] [Indexed: 02/07/2023]
|
49
|
The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 2009; 47:987-94. [PMID: 19481610 DOI: 10.1016/j.neuroimage.2009.05.059] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/17/2009] [Accepted: 05/22/2009] [Indexed: 12/11/2022] Open
Abstract
The idea that pain can lead to feelings of frustration, worry, anxiety and depression seems obvious, particularly if it is of a chronic nature. However, there is also evidence for the reverse causal relationship in which negative mood and emotion can lead to pain or exacerbate it. Here, we review findings from studies on the modulation of pain by experimentally induced mood changes and clinical mood disorders. We discuss possible neural mechanisms underlying this modulatory influence focusing on the periaqueductal grey (PAG), amygdala, anterior cingulate cortex (ACC) and anterior insula as key players in both, pain and affective processing.
Collapse
|
50
|
Abstract
Studies show that inducing a positive mood or diverting attention from pain decreases pain perception. Nevertheless, induction manipulations, such as viewing interesting movies or performing mathematical tasks, often influence both emotional and attentional states. Imaging studies have examined the neural basis of psychological pain modulation, but none has explicitly separated the effects of emotion and attention. Using odors to modulate mood and shift attention from pain, we previously showed that the perceptual consequences of changing mood differed from those of altering attention, with mood primarily altering pain unpleasantness and attention preferentially altering pain intensity. These findings suggest that brain circuits involved in pain modulation provoked by mood or attention are partially separable. Here we used functional magnetic resonance imaging to directly compare the neurocircuitry involved in mood- and attention-related pain modulation. We manipulated independently mood state and attention direction, using tasks involving heat pain and pleasant and unpleasant odors. Pleasant odors, independent of attentional focus, induced positive mood changes and decreased pain unpleasantness and pain-related activity within the anterior cingulate (ACC), medial thalamus, and primary and secondary somatosensory cortices. The effects of attentional state were less robust, with only the activity in anterior insular cortex (aIC) showing possible attentional modulation. Lateral inferior frontal cortex [LinfF; Brodmann's area (BA) 45/47] activity correlated with mood-related modulation, whereas superior posterior parietal (SPP; BA7) and entorhinal activity correlated with attention-related modulation. ACC activity covaried with LinfF and periacqueductal gray activity, whereas aIC activity covaried with SPP activity. These findings suggest that separate neuromodulatory circuits underlie emotional and attentional modulation of pain.
Collapse
|