1
|
Ortega Moreno L, Bagues A, Martínez V, Abalo R. New Pieces for an Old Puzzle: Approaching Parkinson's Disease from Translatable Animal Models, Gut Microbiota Modulation, and Lipidomics. Nutrients 2023; 15:2775. [PMID: 37375679 DOI: 10.3390/nu15122775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by disabling motor alterations that are diagnosed at a relatively late stage in its development, and non-motor symptoms, including those affecting the gastrointestinal tract (mainly constipation), which start much earlier than the motor symptoms. Remarkably, current treatments only reduce motor symptoms, not without important drawbacks (relatively low efficiency and impactful side effects). Thus, new approaches are needed to halt PD progression and, possibly, to prevent its development, including new therapeutic strategies that target PD etiopathogeny and new biomarkers. Our aim was to review some of these new approaches. Although PD is complex and heterogeneous, compelling evidence suggests it might have a gastrointestinal origin, at least in a significant number of patients, and findings in recently developed animal models strongly support this hypothesis. Furthermore, the modulation of the gut microbiome, mainly through probiotics, is being tested to improve motor and non-motor symptoms and even to prevent PD. Finally, lipidomics has emerged as a useful tool to identify lipid biomarkers that may help analyze PD progression and treatment efficacy in a personalized manner, although, as of today, it has only scarcely been applied to monitor gut motility, dysbiosis, and probiotic effects in PD. Altogether, these new pieces should be helpful in solving the old puzzle of PD.
Collapse
Affiliation(s)
- Lorena Ortega Moreno
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Ana Bagues
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
2
|
Stahn L, Rasińska J, Dehne T, Schreyer S, Hakus A, Gossen M, Steiner B, Hemmati-Sadeghi S. Sleeping Beauty transposon system for GDNF overexpression of entrapped stem cells in fibrin hydrogel in a rat model of Parkinson's disease. Drug Deliv Transl Res 2023; 13:1745-1765. [PMID: 36853436 PMCID: PMC10125957 DOI: 10.1007/s13346-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 03/01/2023]
Abstract
There is currently no causal treatment available for Parkinson's disease (PD). However, the use of glial cell line-derived neurotrophic factor (GDNF) to provide regenerative effects for neurons is promising. Such approaches require translational delivery systems that are functional in diseased tissue. To do so, we used a non-viral Sleeping Beauty (SB) transposon system to overexpress GDNF in adipose tissue-derived mesenchymal stromal cells (adMSCs). Entrapment of cells in fibrin hydrogel was used to boost potential neurorestorative effects. Functional GDNF-adMSCs were able to secrete 1066.8 ± 169.4 ng GDNF/120,000 cells in vitro. The GDNF-adMSCs were detectable for up to 1 month after transplantation in a mild 6-hydroxydopamine (6-OHDA) hemiparkinson male rat model. Entrapment of GDNF-adMSCs enabled GDNF secretion in surrounding tissue in a more concentrated manner, also tending to prolong GDNF secretion relatively. GDNF-adMSCs entrapped in hydrogel also led to positive immunomodulatory effects via an 83% reduction of regional IL-1β levels compared to the non-entrapped GDNF-adMSC group after 1 month. Furthermore, GDNF-adMSC-treated groups showed higher recovery of tyrosine hydroxylase (TH)-expressing cells, indicating a neuroprotective function, although this was not strong enough to show significant improvement in motor performance. Our findings establish a promising GDNF treatment system in a PD model. Entrapment of GDNF-adMSCs mediated positive immunomodulatory effects. Although the durability of the hydrogel needs to be extended to unlock its full potential for motor improvements, the neuroprotective effects of GDNF were evident and safe. Further motor behavioral tests and other disease models are necessary to evaluate this treatment option adequately.
Collapse
Affiliation(s)
- Laura Stahn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Justyna Rasińska
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Tilo Dehne
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie Schreyer
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Aileen Hakus
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 21502 Teltow, Germany
| | - Barbara Steiner
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
3
|
Pinizzotto CC, Patwardhan A, Aldarondo D, Kritzer MF. Task-specific effects of biological sex and sex hormones on object recognition memories in a 6-hydroxydopamine-lesion model of Parkinson's disease in adult male and female rats. Horm Behav 2022; 144:105206. [PMID: 35653829 DOI: 10.1016/j.yhbeh.2022.105206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/13/2023]
Abstract
Many patients with Parkinson's disease (PD) experience cognitive or memory impairments with few therapeutic options available to mitigate them. This has fueled interest in determining how factors including sex and sex hormones modulate higher order function in this disease. The objective of this study was to use the Novel Object Recognition (NOR) and Object-in-Place (OiP) paradigms to compare the effects of a bilateral neostriatal 6-hydroxydopamine (6-OHDA) lesion model of PD in gonadally intact male and female rats, in orchidectomized male rats and in orchidectomized males supplemented with 17β-estradiol or testosterone propionate on measures of recognition memory similar to those at risk in PD. These studies showed that 6-ODHA lesions impaired discrimination in both tasks in males but not females. Further, 6-OHDA lesions disrupted NOR performance similarly in all males regardless of whether they were gonadally intact, orchidectomized or hormone-supplemented. In contrast, OiP performance was disrupted in males that were orchidectomized or 6-OHDA-lesioned but was spared in orchidectomized and orchidectomized, 6-OHDA lesioned males supplemented with 17β-estradiol. The distinct effects that sex and/or sex hormones have on 6-OHDA lesion-induced NOR vs. OiP deficits identified here also differ from corresponding impacts recently described for 6-OHDA lesion-induced deficits in spatial working memory and episodic memory. Together, the collective data provide strong evidence for effects of sex and sex hormones on cognition and memory in PD as being behavioral task and behavioral domain specific. This specificity could explain why a cohesive clinical picture of endocrine impacts on higher order function in PD has remained elusive.
Collapse
Affiliation(s)
- Claudia C Pinizzotto
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Aishwarya Patwardhan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Daniel Aldarondo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| |
Collapse
|
4
|
Bhat PV, Anand T, Mohan Manu T, Khanum F. Restorative effect of l-Dopa treatment against Ochratoxin A induced neurotoxicity. Neurochem Int 2018; 118:252-263. [DOI: 10.1016/j.neuint.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 04/04/2018] [Indexed: 11/30/2022]
|
5
|
Deep Brain Stimulation of Hemiparkinsonian Rats with Unipolar and Bipolar Electrodes for up to 6 Weeks: Behavioral Testing of Freely Moving Animals. PARKINSONS DISEASE 2017; 2017:5693589. [PMID: 28758044 PMCID: PMC5512044 DOI: 10.1155/2017/5693589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Although the clinical use of deep brain stimulation (DBS) is increasing, its basic mechanisms of action are still poorly understood. Platinum/iridium electrodes were inserted into the subthalamic nucleus of rats with unilateral 6-OHDA-induced lesions of the medial forebrain bundle. Six behavioral parameters were compared with respect to their potential to detect DBS effects. Locomotor function was quantified by (i) apomorphine-induced rotation, (ii) initiation time, (iii) the number of adjusting steps in the stepping test, and (iv) the total migration distance in the open field test. Sensorimotor neglect and anxiety were quantified by (v) the retrieval bias in the corridor test and (vi) the ratio of migration distance in the center versus in the periphery in the open field test, respectively. In our setup, unipolar stimulation was found to be more efficient than bipolar stimulation for achieving beneficial long-term DBS effects. Performance in the apomorphine-induced rotation test showed no improvement after 6 weeks. DBS reduced the initiation time of the contralateral paw in the stepping test after 3 weeks of DBS followed by 3 weeks without DBS. Similarly, sensorimotor neglect was improved. The latter two parameters were found to be most appropriate for judging therapeutic DBS effects.
Collapse
|
6
|
Leikas JV, Kääriäinen TM, Jalkanen AJ, Lehtonen M, Rantamäki T, Forsberg MM. Combined ipsilateral limb use score as an index of motor deficits and neurorestoration in parkinsonian rats. J Neurosci Res 2017; 95:1858-1870. [PMID: 28134996 DOI: 10.1002/jnr.24022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022]
Abstract
Our aim was to apply a robust non-drug induced sensorimotor test battery to assess the efficacy of neurorestorative therapies on the motor deficits caused by partial unilateral 6-OHDA lesion mimicking early stage PD. Since the 6-OHDA lesion protocols to induce partial DA depletion in striatum vary extensively between laboratories, we evaluated the associations between different intrastriatal 6-OHDA doses (1 X 0-20 and 2 X 0-30 µg), striatal DA depletion (HPLC-ECD) and D-amphetamine induced rotation to identify a lesion protocol that would produce 40-60% striatal DA depletion. Doses ≥ 6 µg produced a significant DA depletion (ANOVA, P < 0.0001). 6-OHDA dose range (6-14 µg) causing 40-60% DA depletion induced very variable rotational responses. Next, intrastriatal 1 × 10 and 1 × 14 µg doses were compared with a full lesion (10 µg into the medial forebrain bundle) with regard to their effects on adjusting step, cylinder, and vibrissae test performance. A combined ipsilateral score (average of each test) was found more sensitive in distinguishing between different lesions than any test alone. Finally, five-week treadmill exercise starting two weeks post-lesion was able to restore impaired limb use (combined score; mixed model, P < 0.05) and striatal DA depletion (ANOVA, P < 0.05) in rats with partial lesion (1 × 10 µg). Notably, D-amphetamine induced rotation significantly decreased between weeks one to seven post-lesion (t-test, P < 0.01). In conclusion, intrastriatal 1 × 10 µg of 6-OHDA produces 40-60% striatal DA depletion robustly, and the combined ipsilateral score provides an efficient means for testing of the efficacy of neurorestorative or neuroprotective treatments for PD. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juuso V Leikas
- School of Pharmacy (Pharmacology), University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tiina M Kääriäinen
- School of Pharmacy (Pharmacology), University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Present address: Orion Corporation Orion Pharma, P.O. Box 425, FI-20101, Turku, Finland
| | - Aaro J Jalkanen
- School of Pharmacy (Pharmacology), University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy (Pharmacology), University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tomi Rantamäki
- Neuroscience Center, University of Helsinki, P.O. Box 56, FI-00790, Helsinki, Finland.,Faculty of Biological and Environmental Sciences, Department of Biosciences, Division of Physiology and Neuroscience, University of Helsinki, P.O. Box 56, FI-00790, Helsinki, Finland
| | - Markus M Forsberg
- School of Pharmacy (Pharmacology), University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
7
|
Pienaar IS, Vernon A, Winn P. The Cellular Diversity of the Pedunculopontine Nucleus: Relevance to Behavior in Health and Aspects of Parkinson's Disease. Neuroscientist 2016; 23:415-431. [PMID: 27932591 DOI: 10.1177/1073858416682471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The pedunculopontine nucleus (PPN) is a rostral brainstem structure that has extensive connections with basal ganglia nuclei and the thalamus. Through these the PPN contributes to neural circuits that effect cortical and hippocampal activity. The PPN also has descending connections to nuclei of the pontine and medullary reticular formations, deep cerebellar nuclei, and the spinal cord. Interest in the PPN has increased dramatically since it was first suggested to be a novel target for treating patients with Parkinson's disease who are refractory to medication. However, application of frequency-specific electrical stimulation of the PPN has produced inconsistent results. A central reason for this is that the PPN is not a heterogeneous structure. In this article, we review current knowledge of the neurochemical identity and topographical distribution of neurons within the PPN of both humans and experimental animals, focusing on studies that used neuronally selective targeting strategies to ascertain how the neurochemical heterogeneity of the PPN relates to its diverse functions in relation to movement and cognitive processes. If the therapeutic potential of the PPN is to be realized, it is critical to understand the complex structure-function relationships that exist here.
Collapse
Affiliation(s)
- Ilse S Pienaar
- 1 Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Cane Road, London, UK.,2 Faculty of Health and Life Sciences, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Anthony Vernon
- 3 Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip Winn
- 4 Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
8
|
Pienaar IS, Gartside SE, Sharma P, De Paola V, Gretenkord S, Withers D, Elson JL, Dexter DT. Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson's disease. Mol Neurodegener 2015; 10:47. [PMID: 26394842 PMCID: PMC4580350 DOI: 10.1186/s13024-015-0044-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Patients with advanced Parkinson's disease (PD) often present with axial symptoms, including postural- and gait difficulties that respond poorly to dopaminergic agents. Although deep brain stimulation (DBS) of a highly heterogeneous brain structure, the pedunculopontine nucleus (PPN), improves such symptoms, the underlying neuronal substrate responsible for the clinical benefits remains largely unknown, thus hampering optimization of DBS interventions. Choline acetyltransferase (ChAT)::Cre(+) transgenic rats were sham-lesioned or rendered parkinsonian through intranigral, unihemispheric stereotaxic administration of the ubiquitin-proteasomal system inhibitor, lactacystin, combined with designer receptors exclusively activated by designer drugs (DREADD), to activate the cholinergic neurons of the nucleus tegmenti pedunculopontine (PPTg), the rat equivalent of the human PPN. We have previously shown that the lactacystin rat model accurately reflects aspects of PD, including a partial loss of PPTg cholinergic neurons, similar to what is seen in the post-mortem brains of advanced PD patients. RESULTS In this manuscript, we show that transient activation of the remaining PPTg cholinergic neurons in the lactacystin rat model of PD, via peripheral administration of the cognate DREADD ligand, clozapine-N-oxide (CNO), dramatically improved motor symptoms, as was assessed by behavioral tests that measured postural instability, gait, sensorimotor integration, forelimb akinesia and general motor activity. In vivo electrophysiological recordings revealed increased spiking activity of PPTg putative cholinergic neurons during CNO-induced activation. c-Fos expression in DREADD overexpressed ChAT-immunopositive (ChAT+) neurons of the PPTg was also increased by CNO administration, consistent with upregulated neuronal activation in this defined neuronal population. CONCLUSIONS Overall, these findings provide evidence that functional modulation of PPN cholinergic neurons alleviates parkinsonian motor symptoms.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 ONN, UK.
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Sarah E Gartside
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Puneet Sharma
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 ONN, UK
| | - Vincenzo De Paola
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sabine Gretenkord
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Dominic Withers
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
- Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
| | - David T Dexter
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 ONN, UK
| |
Collapse
|
9
|
Geldenhuys WJ, Guseman TL, Pienaar IS, Dluzen DE, Young JW. A novel biomechanical analysis of gait changes in the MPTP mouse model of Parkinson's disease. PeerJ 2015; 3:e1175. [PMID: 26339553 PMCID: PMC4558067 DOI: 10.7717/peerj.1175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/21/2015] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is an age-associated neurodegenerative disorder hallmarked by a loss of mesencephalic dopaminergic neurons. Accurate recapitulation of the PD movement phenotype in animal models of the disease is critical for understanding disease etiology and developing novel therapeutic treatments. However, most existing behavioral assays currently applied to such animal models fail to adequately detect and subsequently quantify the subtle changes associated with the progressive stages of PD. In this study, we used a video-based analysis system to develop and validate a novel protocol for tracking locomotor performance in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We anticipated that (1) treated mice should use slower, shorter, and less frequent strides and (2) that gait deficits should monotonically increase following MPTP administration, as the effects of neurodegeneration become manifest. Video-based biomechanical analyses, utilizing behavioral measures motivated by the comparative biomechanics literature, were used to quantify gait dynamics over a seven-day period following MPTP treatment. Analyses revealed shuffling behaviors consistent with the gait symptoms of advanced PD in humans. Here we also document dramatic gender-based differences in locomotor performance during the progression of the MPTP-induced lesion, despite male and female mice showing similar losses of striatal dopaminergic cells following MPTP administration. Whereas female mice appeared to be protected against gait deficits, males showed multiple changes in gait kinematics, consistent with the loss of locomotor agility and stability. Overall, these data show that the novel video analysis protocol presented here is a robust method capable of detecting subtle changes in gait biomechanics in a mouse model of PD. Our findings indicate that this method is a useful means by which to easily and economically screen preclinical therapeutic compounds for protecting against or reversing neuropathology associated with PD neurodegeneration.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University (NEOMED) , Rootstown, OH , USA
| | - Tamara L Guseman
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, (NEOMED) , Rootstown, OH , USA
| | - Ilse S Pienaar
- Center for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London , London , United Kingdom
| | - Dean E Dluzen
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, (NEOMED) , Rootstown, OH , USA ; Current affiliation: Department of Anatomy, Southern Illinois University School of Medicine , Carbondale, IL , USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, (NEOMED) , Rootstown, OH , USA
| |
Collapse
|
10
|
Pienaar IS, Dexter DT, Gradinaru V. Neurophysiological and Optogenetic Assessment of Brain Networks Involved in Motor Control. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
11
|
Sharma P, Pienaar IS. Pharmacogenetic and optical dissection for mechanistic understanding of Parkinson's disease: Potential utilities revealed through behavioural assessment. Neurosci Biobehav Rev 2014; 47:87-100. [DOI: 10.1016/j.neubiorev.2014.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/04/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023]
|
12
|
Abstract
Parkinson's disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women.
Collapse
|
13
|
Pienaar IS, van de Berg W. A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked Parkinsonian rats. Exp Neurol 2013; 248:213-23. [DOI: 10.1016/j.expneurol.2013.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
|
14
|
de Araújo DP, De Sousa CNS, Araújo PVP, Menezes CEDS, Sousa Rodrigues FT, Escudeiro SS, Lima NBC, Patrocínio MCA, Aguiar LMV, Viana GSDB, Vasconcelos SMM. Behavioral and neurochemical effects of alpha-lipoic Acid in the model of Parkinson's disease induced by unilateral stereotaxic injection of 6-ohda in rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:571378. [PMID: 24023579 PMCID: PMC3760123 DOI: 10.1155/2013/571378] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate behavioral and neurochemical effects of α -lipoic acid (100 mg/kg or 200 mg/kg) alone or associated with L-DOPA using an animal model of Parkinson's disease induced by stereotaxic injection of 6-hydroxydopamine (6-OHDA) in rat striatum. Motor behavior was assessed by monitoring body rotations induced by apomorphine, open field test and cylinder test. Oxidative stress was accessed by determination of lipid peroxidation using the TBARS method, concentration of nitrite and evaluation of catalase activity. α -Lipoic acid decreased body rotations induced by apomorphine, as well as caused an improvement in motor performance by increasing locomotor activity in the open field test and use of contralateral paw (in the opposite side of the lesion produced by 6-OHDA) at cylinder test. α -lipoic acid showed antioxidant effects, decreasing lipid peroxidation and nitrite levels and interacting with antioxidant system by decreasing of endogenous catalase activity. Therefore, α -lipoic acid prevented the damage induced by 6-OHDA or by chronic use of L-DOPA in dopaminergic neurons, suggesting that α -lipoic could be a new therapeutic target for Parkinson's disease prevention and treatment.
Collapse
Affiliation(s)
- Dayane Pessoa de Araújo
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Caren Nádia Soares De Sousa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Paulo Victor Pontes Araújo
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Carlos Eduardo de Souza Menezes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Francisca Taciana Sousa Rodrigues
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Sarah Souza Escudeiro
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | | | | | - Lissiana Magna Vasconcelos Aguiar
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Glauce Socorro de Barros Viana
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| |
Collapse
|
15
|
Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis. Behav Brain Res 2013; 256:56-63. [PMID: 23916743 DOI: 10.1016/j.bbr.2013.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022]
Abstract
Neural cell replacement therapy using fetal striatal cells has provided evidence of disease modification in clinical trials in Huntington's disease (HD) patients, although the results have been inconsistent. One of the contributing factors to the variable outcome could be the different capacity of transplanted cells derived from the primordial striatum to proliferate and maturate into striatal projection neurons. Based on the rodent lesion model of HD, the current study investigated how intrastriatal-striatal grafts from variable aged donors develop in vivo and how they influence functional recovery. Young adult female Sprague-Dawley rats were lesioned unilaterally in the dorso-striatum with quinolinic acid (0.12 M) and transplanted 14 days later with single cell suspension grafts equivalent of one whole ganglionic eminence (WGE) from donors of embryonic developmental age E13, E14, or E15; animals with or without striatal lesion served as controls. All animals were tested on the Cylinder and the Corridor tests, as well as on apomorphine-induced rotation at baseline, post-lesion/pre-grafting, and at 6 and 10 weeks post-grafting. A week prior to perfusion, a sub-group in each grafted group received fluorogold injections into the ipsilateral globus pallidus to study graft efferent projections. In summary, the data demonstrates that the age of the embryonic donor tissue has an impact on both the graft mediated functional recovery, and on the in vivo cellular composition of the striatal transplant. E13 tissue grafts gave the best overall outcome indicating that WGE from different donor ages have different potential to promote functional recovery. Understanding the stages and process in rodent striatal development could improve tissue selection in clinical trials of cell therapy in HD.
Collapse
|
16
|
Bury A, Pienaar IS. Behavioral testing regimens in genetic-based animal models of Parkinson's disease: cogencies and caveats. Neurosci Biobehav Rev 2013; 37:846-59. [PMID: 23558176 DOI: 10.1016/j.neubiorev.2013.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 12/20/2022]
Abstract
Although the onset and progression of Parkinson's disease (PD) is fundamentally sporadic, identification of several of the genes implicated in the disease has provided significant insight concerning patho-physiological mechanisms potentially underlying sporadic PD. Moreover, such studies have caused a revolution in the way researchers view the disease. Since single genes responsible for rare familial forms of the disease have only been identified within the past few years, animal models based on these defects have only recently been generated, thereby not leaving a lot of time for their evaluation and subsequent improvement. The current article provides an extensive review of the major motor and non-motor behavioral tests used in genetically-induced Parkinsonian animals. Moreover, we assess the insights concerning the etiopathogenesis of PD generated from use of such tests and how these have improved available treatment strategies for alleviating aspects of sporadic and non-sporadic parkinsonism.
Collapse
Affiliation(s)
- Alexander Bury
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, United Kingdom
| | | |
Collapse
|