1
|
Petrovic I, Amiridis IG, Kannas T, Tsampalaki Z, Holobar A, Sahinis C, Kellis E, Stankovic D, Enoka RM. Footedness but not dominance influences force steadiness during isometric dorsiflexion in young men. J Electromyogr Kinesiol 2023; 73:102828. [PMID: 37782992 DOI: 10.1016/j.jelekin.2023.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
The aim of the study was to assess the potential influence of footedness and dominance on maximal force, force fluctuations and neural drive during dorsiflexion. Fifteen left-footed (LF) and fifteen right-footed (RF) young adults performed 2 maximal voluntary contractions (MVC) and 3 steady submaximal isometric contractions at five target forces (5, 10, 20, 40 and 60% MVC) with the dorsiflexors of both legs. High-density electromyography (EMG) was used to record the discharge characteristics of motor units (MUs) of Tibialis Anterior. MVC force and EMG amplitude (root mean square) were similar between the two legs and groups (p > 0.05). Force fluctuations (Coefficient of Variation, CoV for force), mean discharge rate of MUs, discharge variability (CoV of interspike interval), and variability in neural drive (standard deviation of filtered cumulative spike train) were greater (p < 0.05) and the input-output gain of the MUs (ΔDR/ΔF) was lower (p < 0.05) for the LF relative to the RF group. The differences in force fluctuations during steady contractions with the dorsiflexors were associated with footedness but not with dominance. They reflect greater variability in motor neuron output, as suggested by coefficient of variation for interspike interval (independent input) and the standard deviation of the smoothed discharge times (common input).
Collapse
Affiliation(s)
- Ivana Petrovic
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Greece; Faculty of Sport and Physical Education, University of Niš, Serbia
| | - Ioannis G Amiridis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Greece.
| | - Theodoros Kannas
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Greece
| | - Zoi Tsampalaki
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Greece
| | - Ales Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia
| | - Chrysostomos Sahinis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Greece
| | - Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Greece
| | - Daniel Stankovic
- Faculty of Sport and Physical Education, University of Niš, Serbia
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
2
|
Sax van der Weyden MN, Kearney JW, Cortes N, Fernandes O, Martin JR. Common law enforcement load carriage systems have limited acute effects on postural stability and muscle activity. APPLIED ERGONOMICS 2023; 113:104091. [PMID: 37437354 DOI: 10.1016/j.apergo.2023.104091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Law enforcement officers are inherently at a high risk of injury and the loads they must carry during their occupational duties further increase their injury risk. It is unknown how different methods of carrying a law enforcement officer's load influence factors related to injury risk. This study assessed the effects of common law enforcement load carriage systems on muscular activity and postural stability while standing. Twenty-four participants performed single and dual-task (i.e. concurrent performance of cognitive tasks) standing while wearing a duty belt, tactical vest, and no load. The postural stability and muscle activity were measured and effects of condition and task examined. Dual task standing decreased postural stability and increased muscular activity. The belt and vest (7.2 kg each) increased muscle activity compared to control for the right abdominals, low back, right thigh. The duty belt resulted in less muscle activity in the right abdominals but more muscle activity in the left multifidus compared to the control. The findings indicate that common law enforcement load carriage systems increase muscular activity but do not affect postural stability. However, the lack of differences between the duty belt and tactical vest did not provide clear support for one load carriage system versus the other.
Collapse
Affiliation(s)
- Megan N Sax van der Weyden
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, VA, USA; School of Kinesiology, George Mason University, VA, USA.
| | - James W Kearney
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, VA, USA; School of Kinesiology, George Mason University, VA, USA.
| | - Nelson Cortes
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Essex, England, UK; Department of Bioengineering. George Mason University, VA, USA.
| | - Orlando Fernandes
- School of Science and Technology, University of Évora, Évora, Portugal.
| | - Joel R Martin
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, VA, USA; School of Kinesiology, George Mason University, VA, USA.
| |
Collapse
|
3
|
Sozzi S, Ghai S, Schieppati M. The 'Postural Rhythm' of the Ground Reaction Force during Upright Stance and Its Conversion to Body Sway-The Effect of Vision, Support Surface and Adaptation to Repeated Trials. Brain Sci 2023; 13:978. [PMID: 37508910 PMCID: PMC10377030 DOI: 10.3390/brainsci13070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
The ground reaction force (GRF) recorded by a platform when a person stands upright lies at the interface between the neural networks controlling stance and the body sway deduced from centre of pressure (CoP) displacement. It can be decomposed into vertical (VGRF) and horizontal (HGRF) vectors. Few studies have addressed the modulation of the GRFs by the sensory conditions and their relationship with body sway. We reconsidered the features of the GRFs oscillations in healthy young subjects (n = 24) standing for 90 s, with the aim of characterising the possible effects of vision, support surface and adaptation to repeated trials, and the correspondence between HGRF and CoP time-series. We compared the frequency spectra of these variables with eyes open or closed on solid support surface (EOS, ECS) and on foam (EOF, ECF). All stance trials were repeated in a sequence of eight. Conditions were randomised across different days. The oscillations of the VGRF, HGRF and CoP differed between each other, as per the dominant frequency of their spectra (around 4 Hz, 0.8 Hz and <0.4 Hz, respectively) featuring a low-pass filter effect from VGRF to HGRF to CoP. GRF frequencies hardly changed as a function of the experimental conditions, including adaptation. CoP frequencies diminished to <0.2 Hz when vision was available on hard support surface. Amplitudes of both GRFs and CoP oscillations decreased in the order ECF > EOF > ECS ≈ EOS. Adaptation had no effect except in ECF condition. Specific rhythms of the GRFs do not transfer to the CoP frequency, whereas the magnitude of the forces acting on the ground ultimately determines body sway. The discrepancies in the time-series of the HGRF and CoP oscillations confirm that the body's oscillation mode cannot be dictated by the inverted pendulum model in any experimental conditions. The findings emphasise the robustness of the VGRF "postural rhythm" and its correspondence with the cortical theta rhythm, shed new insight on current principles of balance control and on understanding of upright stance in healthy and elderly people as well as on injury prevention and rehabilitation.
Collapse
Affiliation(s)
| | - Shashank Ghai
- Department of Political, Historical, Religious and Cultural Studies, Karlstad University, 65188 Karlstad, Sweden
- Centre for Societal Risk Research, Karlstad University, 65188 Karlstad, Sweden
| | | |
Collapse
|
4
|
Sozzi S, Do MC, Schieppati M. Vertical ground reaction force oscillation during standing on hard and compliant surfaces: The “postural rhythm”. Front Neurol 2022; 13:975752. [PMID: 36119676 PMCID: PMC9475112 DOI: 10.3389/fneur.2022.975752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/10/2022] [Indexed: 11/14/2022] Open
Abstract
When a person stands upright quietly, the position of the Centre of Mass (CoM), the vertical force acting on the ground and the geometrical configuration of body segments is accurately controlled around to the direction of gravity by multiple feedback mechanisms and by integrative brain centres that coordinate multi-joint movements. This is not always easy and the postural muscles continuously produce appropriate torques, recorded as ground reaction force by a force platform. We studied 23 young adults during a 90 s period, standing at ease on a hard (Solid) and on a compliant support (Foam) with eyes open (EO) and with eyes closed (EC), focusing on the vertical component of the ground reaction force (VGRF). Analysis of VGRF time series gave the amplitude of their rhythmic oscillations (the root mean square, RMS) and of their frequency spectrum. Sway Area and Path Length of the Centre of Pressure (CoP) were also calculated. VGRF RMS (as well as CoP sway measures) increased in the order EO Solid ≈ EC Solid < EO Foam < EC Foam. The VGRF frequency spectra featured prevailing frequencies around 4–5 Hz under all tested conditions, slightly higher on Solid than Foam support. Around that value, the VGRF frequencies varied in a larger range on hard than on compliant support. Sway Area and Path Length were inversely related to the prevailing VGRF frequency. Vision compared to no-vision decreased Sway Area and Path Length and VGRF RMS on Foam support. However, no significant effect of vision was found on VGRF mean frequency for either base of support condition. A description of the VGRF, at the interface between balance control mechanisms and sway of the CoP, can contribute information on how upright balance is maintained. Analysis of the frequency pattern of VGRF oscillations and its role in the maintenance of upright stance should complement the traditional measures of CoP excursions in the horizontal plane.
Collapse
Affiliation(s)
- Stefania Sozzi
- Istituti Clinici Scientifici Maugeri IRCCS, Centro Studi Attività Motorie (CSAM), Pavia, Italy
| | - Manh-Cuong Do
- Complexité, Innovation, Activités Motrices et Sportives (CIAMS), Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives (CIAMS), Université d'Orléans, Orléans, France
| | - Marco Schieppati
- Istituti Clinici Scientifici Maugeri IRCCS, Centro Studi Attività Motorie (CSAM), Pavia, Italy
- *Correspondence: Marco Schieppati ;
| |
Collapse
|
5
|
Petrovic I, Amiridis IG, Holobar A, Trypidakis G, Kellis E, Enoka RM. Leg Dominance Does Not Influence Maximal Force, Force Steadiness, or Motor Unit Discharge Characteristics. Med Sci Sports Exerc 2022; 54:1278-1287. [PMID: 35324535 DOI: 10.1249/mss.0000000000002921] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The aim of our study was to compare maximal force, force steadiness, and discharge characteristics of motor units in tibialis anterior during contractions with the dorsiflexors of the dominant and nondominant legs at low-to-moderate target forces and three ankle angles. METHODS Twenty young adults performed maximal and submaximal isometric contractions (5%, 10%, 20%, 40%, and 60% of maximal voluntary contraction (MVC)) with the dorsiflexors of the dominant and nondominant legs at three ankle angles (75°, short length; 90°, intermediate length; 105°, long length). High-density EMG signals from the tibialis anterior muscle of each leg were recorded. RESULTS Maximal force (average dominant, 182.9 ± 64.5 N; nondominant, 179.0 ± 58.8 N) and the fluctuations in force, quantified as absolute (SD) and normalized amplitudes (coefficient of variation (CoV)), were similar between the two legs across the three ankle angles (average CoV for dominant, 1.5% ± 1.0%; nondominant, 1.7% ± 1.3%). The CoV for force for both legs decreased from 5% to 20% MVC force, and then it plateaued at 40% and 60% MVC force. EMG amplitude, mean discharge rate of motor units, discharge variability (interspike interval), and the variability in neural drive (filtered cumulative spike train) were similar between the two legs across the submaximal contractions. CONCLUSIONS MVC force and force steadiness were similar across ankle angles and target forces between the dominant and nondominant legs. The attributes that underlie the self-reported identification of a dominant leg were not associated with the force capacity or the control of force for the dorsiflexor muscles, at least during isometric contractions.
Collapse
Affiliation(s)
| | - Ioannis G Amiridis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, GREECE
| | - Ales Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, SLOVENIA
| | - Georgios Trypidakis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, GREECE
| | - Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, GREECE
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO
| |
Collapse
|
6
|
Sozzi S, Nardone A, Schieppati M. Specific Posture-Stabilising Effects of Vision and Touch Are Revealed by Distinct Changes of Body Oscillation Frequencies. Front Neurol 2021; 12:756984. [PMID: 34880823 PMCID: PMC8645986 DOI: 10.3389/fneur.2021.756984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023] Open
Abstract
We addressed postural instability during stance with eyes closed (EC) on a compliant surface in healthy young people. Spectral analysis of the centre of foot pressure oscillations was used to identify the effects of haptic information (light-touch, EC-LT), or vision (eyes open, EO), or both (EO-LT). Spectral median frequency was strongly reduced by EO and EO-LT, while spectral amplitude was reduced by all "stabilising" sensory conditions. Reduction in spectrum level by EO mainly appeared in the high-frequency range. Reduction by LT was much larger than that induced by the vision in the low-frequency range, less so in the high-frequency range. Touch and vision together produced a fall in spectral amplitude across all windows, more so in anteroposterior (AP) direction. Lowermost frequencies contributed poorly to geometric measures (sway path and area) for all sensory conditions. The same subjects participated in control experiments on a solid base of support. Median frequency and amplitude of the spectrum and geometric measures were largely smaller when standing on solid than on foam base but poorly affected by the sensory conditions. Frequency analysis but not geometric measures allowed to disclose unique tuning of the postural control mode by haptic and visual information. During standing on foam, the vision did not reduce low-frequency oscillations, while touch diminished the entire spectrum, except for the medium-high frequencies, as if sway reduction by touch would rely on rapid balance corrections. The combination of frequency analysis with sensory conditions is a promising approach to explore altered postural mechanisms and prospective interventions in subjects with central or peripheral nervous system disorders.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie (CSAM), Istituti Clinici Scientifici Maugeri SB (Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS), Pavia, Italy
| | - Antonio Nardone
- Neurorehabilitation and Spinal Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Istituti Clinici Scientifici Maugeri SB (Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS), University of Pavia, Pavia, Italy
| | - Marco Schieppati
- Istituti Clinici Scientifici Maugeri SB, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| |
Collapse
|
7
|
Minamisawa T, Chiba N, Suzuki E. Association of bilateral lower limb coordination while standing with body sway control and aging. Somatosens Mot Res 2021; 38:294-302. [PMID: 34496708 DOI: 10.1080/08990220.2021.1973402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Coordinated movements of both lower limbs may be a clinically important indicator of motor control during quiet standing. From a neurological point of view, it is known that extensive coupling of muscles must be coordinated an upright posture. However, movement coordination between the lower limbs is the final motor output, is unknown. In this study, we focussed on the ground reaction force (GRF) vector and clarified the time and frequency characteristics of the force vectors of both lower limbs. MATERIALS AND METHODS A total of 16 healthy young adults and 18 healthy older adults participated and placed each bare foot on one of two force plates to measure the GRF vectors (i.e., anteroposterior, mediolateral, and vertical) of each lower limb and determine the centre of mass (COM) acceleration in the anteroposterior direction (COMacc). Characteristics of the coordination of both lower limbs during movements were analysed using coherence analysis and cross-correlation function analysis (CCF). RESULTS The coherence levels of the force vectors of both lower limbs were higher in all three directions and significantly increased in the older adults. CCF analysis showed that the force vectors of both lower limbs were negatively correlated at the zero-time lag. Moreover, a weak correlation was observed between COMacc and coherence values. CONCLUSIONS The assessment of bilateral lower limb connectivity using force vectors can be used as an evaluation method to reflect changes in the ability to control bipedal standing during ageing.
Collapse
Affiliation(s)
- Tadayoshi Minamisawa
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Noboru Chiba
- Department of Occupational Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Eizaburo Suzuki
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| |
Collapse
|
8
|
Cregg AC, Foley RCA, Livingston LA, La Delfa NJ. A biomechanical evaluation of different footrest heights during standing computer work. ERGONOMICS 2021; 64:342-353. [PMID: 33021134 DOI: 10.1080/00140139.2020.1832261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Working at a standing desk is a popular strategy to help reduce low back pain development during prolonged computer work. The purpose of this study was to examine how muscle activity, joint kinematics, weight distribution, balance and low back discomfort were affected by utilising footrests at different heights while working at a standing desk. Sixteen individuals performed a computer task at a standing workstation under four conditions: flat ground stance, and standing with one leg elevated on a low (10 cm), medium (20 cm), or high (30 cm) footrest. Footrest usage altered lumbo-pelvic and bilateral hip joint angles, muscle activity, weight distribution, and range of sway in the elevated limb. Additionally, footrest height altered lumbo-pelvic and hip joint position in the elevated limb. Discomfort increased with time across all conditions. Results suggest that intermittent utilisation of a footrest should be considered to promote changes in posture and muscle activity during prolonged computer use. Practitioner summary: This laboratory study showed that utilising a footrest between the heights of 10-30 cm during standing computer work may be beneficial to promote changes in posture and muscle activity over time. However, we recommend exercising caution while maintaining any standing position beyond 10 min of consecutive use. Abbreviations: LBP: low back pain; PD: pain developer; NPD: non-pain developer; GMe: gluteus medius; TFL: tensor fascia lata; LES: lumbar erector spinae; COP: centre of pressure; NDI: northern digital incorporated; CV: coefficient of variation; WHQ: waterloo handedness questionnaire; WFQ: waterloo footedness questionnaire; VAS: visual analogue scale; OBDI: Oswestry back disability index; IBS: International Society of Biomechanics; sEMG: surface electromyography; MVIC: maximum voluntary isometric contraction; RMS: root mean square; A/P: anterior/posterior; M/L: medial/lateral; % MVE: percentage of maximum voluntary excitation; ROM: range of motion; MCID: minimum clinically important difference.
Collapse
Affiliation(s)
- Andrew C Cregg
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Canada
| | - Ryan C A Foley
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Canada
| | | | | |
Collapse
|
9
|
Bojanek EK, Wang Z, White SP, Mosconi MW. Postural control processes during standing and step initiation in autism spectrum disorder. J Neurodev Disord 2020; 12:1. [PMID: 31906846 PMCID: PMC6945692 DOI: 10.1186/s11689-019-9305-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/24/2019] [Indexed: 11/16/2022] Open
Abstract
Background Individuals with autism spectrum disorder (ASD) show a reduced ability to maintain postural stability, though motor control mechanisms contributing to these issues and the extent to which they are associated with other gross motor activities (e.g., stepping) are not yet known. Methods Seventeen individuals with ASD and 20 typically developing (TD) controls (ages 6–19 years) completed three tests of postural control during standing. During the neutral stance, individuals stood with their feet shoulder width apart. During the Romberg one stance, they stood with feet close together. During the circular sway, participants stood with feet shoulder width apart and swayed in a circular motion. The standard deviation (SD) of their center of pressure (COP) in the mediolateral (ML) and anteroposterior (AP) directions and the COP trajectory length were examined for each stance. We also assessed mutual information (MI), or the shared dependencies between COP in the ML and AP directions. Participants also completed a stepping task in which they stepped forward from one force platform to an adjacent platform. The amplitude and duration of anticipatory postural adjustments (APAs) were examined, as were the maximum lateral sway, duration, and velocity of COP adjustments following the initial step. We examined stepping variables using separate one-way ANCOVAs with height as a covariate. The relationships between postural control and stepping measures and ASD symptom severity were assessed using Spearman correlations with scores on the Autism Diagnostic Observation Schedule–Second Edition (ADOS-2) and the Autism Diagnostic Interview-Revised (ADI-R). Results Individuals with ASD showed increased COP trajectory length across stance conditions (p = 0.05) and reduced MI during circular sway relative to TD controls (p = 0.02). During stepping, groups did not differ on APA amplitude (p = 0.97) or duration (p = 0.41), but during their initial step, individuals with ASD showed reduced ML sway (p = 0.06), reduced body transfer duration (p < 0.01), and increased body transfer velocity (p = 0.02) compared to controls. Greater neutral stance COPML variability (r = 0.55, p = 0.02) and decreased lateral sway (r = − 0.55, p = 0.02) when stepping were associated with more severe restricted and repetitive behaviors in participants with ASD. Conclusions We found that individuals with ASD showed reduced MI during circular sway suggesting a reduced ability to effectively coordinate joint movements during dynamic postural adjustments. Additionally, individuals with ASD showed reduced lateral sway when stepping indicating that motor rigidity may interfere with balance and gait. Postural control and stepping deficits were related to repetitive behaviors in individuals with ASD indicating that motor rigidity and key clinical issues in ASD may represent overlapping pathological processes.
Collapse
Affiliation(s)
- Erin K Bojanek
- Life Span Institute and Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS, 66045, USA.,Kansas Center for Autism Research and Training (K-CART), University of Kansas Medical Center, Overland Park, KS, 66213, USA
| | - Zheng Wang
- Department of Occupational Therapy, University of Florida, 1225 Center Drive PO Box 100164, Gainesville, FL, 32611, USA
| | - Stormi P White
- Marcus Autism Center, Department of Pediatrics, Emory University School of Medicine, 1920 Briarcliff Road, Atlanta, GA, 30329-4010, USA
| | - Matthew W Mosconi
- Life Span Institute and Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS, 66045, USA. .,Kansas Center for Autism Research and Training (K-CART), University of Kansas Medical Center, Overland Park, KS, 66213, USA.
| |
Collapse
|
10
|
Fettrow T, Reimann H, Grenet D, Thompson E, Crenshaw J, Higginson J, Jeka J. Interdependence of balance mechanisms during bipedal locomotion. PLoS One 2019; 14:e0225902. [PMID: 31800620 PMCID: PMC6892559 DOI: 10.1371/journal.pone.0225902] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022] Open
Abstract
Our main interest is to identify how humans maintain upright while walking. Balance during standing and walking is different, primarily due to a gait cycle which the nervous system must contend with a variety of body configurations and frequent perturbations (i.e., heel-strike). We have identified three mechanisms that healthy young adults use to respond to a visually perceived fall to the side. The lateral ankle mechanism and the foot placement mechanism are used to shift the center of pressure in the direction of the perceived fall, and the center of mass away from the perceived fall. The push-off mechanism, a systematic change in ankle plantarflexion angle in the trailing leg, results in fine adjustments to medial-lateral balance near the end of double stance. The focus here is to understand how the three basic balance mechanisms are coordinated to produce an overall balance response. The results indicate that lateral ankle and foot placement mechanisms are inversely related. Larger lateral ankle responses lead to smaller foot placement changes. Correlations involving the push-off mechanism, while significant, were weak. However, the consistency of the correlations across stimulus conditions suggest the push-off mechanism has the role of small adjustments to medial-lateral movement near the end of the balance response. This verifies that a fundamental feature of human bipedal gait is a highly flexible balance system that recruits and coordinates multiple mechanisms to maintain upright balance during walking to accommodate extreme changes in body configuration and frequent perturbations.
Collapse
Affiliation(s)
- Tyler Fettrow
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
- Department of Kinesiology, Temple University, Philadelphia, PA, United States of America
| | - Hendrik Reimann
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
- Department of Kinesiology, Temple University, Philadelphia, PA, United States of America
| | - David Grenet
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Elizabeth Thompson
- Department of Physical Therapy, University of Delaware, Newark, DE, United States of America
- Department of Kinesiology, Temple University, Philadelphia, PA, United States of America
- Department of Physical Therapy, Temple University, Philadelphia, PA, United States of America
| | - Jeremy Crenshaw
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Jill Higginson
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States of America
| | - John Jeka
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
- Department of Kinesiology, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
11
|
García-Massó X, Skypala J, Jandacka D, Estevan I. Reliability of a new analysis to compute time to stabilization following a single leg drop jump landing in children. PLoS One 2019; 14:e0212124. [PMID: 30753223 PMCID: PMC6372174 DOI: 10.1371/journal.pone.0212124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 11/29/2022] Open
Abstract
Although a number of different methods have been proposed to assess the time to stabilization (TTS), none is reliable in every axis and no tests of this type have been carried out on children. The purpose of this study was thus to develop a new computational method to obtain TTS using a time-scale (frequency) approach [i.e. continuous wavelet transformation (WAV)] in children. Thirty normally-developed children (mean age 10.16 years, SD = 1.52) participated in the study. Every participant performed 30 single-leg drop jump landings with the dominant lower limb (barefoot) on a force plate from three different heights (15cm, 20cm and 25cm). Five signals were used to compute the TTS: i) Raw, ii) Root mean squared, iii) Sequential average processing, iv) the fitting curve of the signal using an unbounded third order polynomial fit, and v) WAV. The reliability of the TTS was determined by computing both the Intraclass Correlation Coefficient (ICC) and the Standard Error of the Measurement (SEM).In the antero-posterior and vertical axes, the values obtained with the WAV signal from all heights were similar to those obtained by raw, root mean squared and sequential average processing. The values obtained for the medio-lateral axis were relatively small. This WAV provided substantial-to-good ICC values and low SEM for almost all the axes and heights. The results of the current study thus suggest the WAV method could be used to compute overall TTS when studying children's dynamic postural stability.
Collapse
Affiliation(s)
- Xavier García-Massó
- HUMAG Research Group, Department of Teaching of Music, Visual and Corporal Expression, University of Valencia, Valencia, Spain
| | - Jiri Skypala
- Department of Human Movement Studies, Human Motion Diagnostic Centre, University of Ostrava, Ostrava, Czech Republic
| | - Daniel Jandacka
- Department of Human Movement Studies, Human Motion Diagnostic Centre, University of Ostrava, Ostrava, Czech Republic
| | - Isaac Estevan
- AFIPS Research Group, Department of Teaching of Music, Visual and Corporal Expression, University of Valencia, Valencia, Spain
| |
Collapse
|
12
|
Wang Z, Khemani P, Schmitt LM, Lui S, Mosconi MW. Static and dynamic postural control deficits in aging fragile X mental retardation 1 (FMR1) gene premutation carriers. J Neurodev Disord 2019; 11:2. [PMID: 30665341 PMCID: PMC6341725 DOI: 10.1186/s11689-018-9261-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Individuals with premutation alleles of the fragile X mental retardation 1 (FMR1) gene are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS) during aging. Characterization of motor issues associated with aging in FMR1 premutation carriers is needed to determine neurodegenerative processes and establish new biobehavioral indicators to help identify individuals at greatest risk of developing FXTAS. METHODS We examined postural stability in 18 premutation carriers ages 46-77 years and 14 age-matched healthy controls. Participants completed a test of static stance and two tests of dynamic postural sway on a force platform to quantify postural variability and complexity. CGG repeat length was measured for each premutation carrier, and MRI and neurological evaluations were conducted to identify carriers who currently met criteria for FXTAS. Of the 18 premutation carriers, seven met criteria for definite/probable FXTAS (FXTAS+), seven showed no MRI or neurological signs of FXTAS (FXTAS-), and four were inconclusive due to insufficient data. RESULTS Compared to controls, premutation carriers showed increased center of pressure (COP) variability in the mediolateral (COPML) direction during static stance and reduced COP variability in the anterior-posterior (COPAP) direction during dynamic AP sway. They also showed reductions in COPML complexity during each postural condition. FXTAS+ individuals showed reduced COPAP variability compared to FXTAS- carriers and healthy controls during dynamic AP sway. Across all carriers, increased sway variability during static stance and decreased sway variability in target directions during dynamic sways were associated with greater CGG repeat length and more severe neurologically rated posture and gait abnormalities. CONCLUSION Our findings indicate that aging FMR1 premutation carriers show static and dynamic postural control deficits relative to healthy controls implicating degenerative processes of spinocerebellar and cerebellar-brainstem circuits that may be independent of or precede the onset of FXTAS. Our finding that FXTAS+ and FXTAS- premutation carriers differed on their level of intentional AP sway suggests that neural mechanisms of dynamic postural control may be differentially impacted in patients with FXTAS, and its measurement may be useful for rapidly and precisely identifying disease presence and onset.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, FL, 32611, USA. .,University of Florida, 1225 Center Drive, PO Box 100164, Gainesville, FL, 326100164, USA.
| | - Pravin Khemani
- Department of Neurology, Swedish Neuroscience Institute, Seattle, WA, 98121, USA
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Su Lui
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, 66045, USA.,Clinical Child Psychology Program, University of Kansas, Lawrence, KS, 66045, USA.,Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
13
|
Kurz E, Herbsleb M, Gabriel HHW, Hilberg T. Posturographic and ankle muscle activation characteristics in patients with haemophilia. Haemophilia 2018; 25:136-143. [PMID: 30520541 DOI: 10.1111/hae.13650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/05/2018] [Accepted: 11/05/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The objective of this work was to examine the interrelations of posturographic and surface EMG (SEMG) characteristics of ankle muscles in patients with haemophilia while standing naturally. METHODS Surface EMG of five bilaterally recorded ankle muscles was conducted in 24 patients with haemophilia (PwH, age: 42 [11] years, mean [SD], 22 A, 2 B, 21 severe, 3 moderate) with median (quartiles) WFH orthopaedic joint score of 30 (20/39) points and 24 non-haemophilic controls (Con, age: 42 [12]). Force plate (IBS) signals were captured simultaneously during bipedal stance with eyes open. Load proportion of the left and right sides as well as heel and forefoot were calculated via four independent pressure transducers. Overall, weight distribution (WD) indices are reported with higher results representing a poorer WD. RESULTS Analyses of WD showed large differences between groups (PwH: 10.2 [5.4], Con: 5.2 [2.9], P < 0.001, d = 1.15). After clustering PwH, large effects (P = 0.02, ηp 2 > 0.16) were found for amplitude ratios of the lateral gastrocnemius (LG) muscle. In PwH, the degree of joint alteration of the right lower limb was associated with load proportion of the left side (ρ > 0.64, P = 0.001). CONCLUSION Patients with greater dysbalance showed higher forefoot loads and appeared to compensate their altered joint situations with considerably higher amplitude ratios of LG. Further studies should investigate whether therapeutic interventions could alter postural alignment and muscle activation and how these can influence patients' joint function and symptoms.
Collapse
Affiliation(s)
- Eduard Kurz
- Department of Orthopedic and Trauma Surgery, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.,Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Marco Herbsleb
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Holger H W Gabriel
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thomas Hilberg
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
14
|
Carrick FR, Pagnacco G, Hankir A, Abdulrahman M, Zaman R, Kalambaheti ER, Barton DA, Link PE, Oggero E. The Treatment of Autism Spectrum Disorder With Auditory Neurofeedback: A Randomized Placebo Controlled Trial Using the Mente Autism Device. Front Neurol 2018; 9:537. [PMID: 30026726 PMCID: PMC6041407 DOI: 10.3389/fneur.2018.00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/18/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction: Children affected by autism spectrum disorder (ASD) often have impairment of social interaction and demonstrate difficulty with emotional communication, display of posture and facial expression, with recognized relationships between postural control mechanisms and cognitive functions. Beside standard biomedical interventions and psychopharmacological treatments, there is increasing interest in the use of alternative non-invasive treatments such as neurofeedback (NFB) that could potentially modulate brain activity resulting in behavioral modification. Methods: Eighty-three ASD subjects were randomized to an Active group receiving NFB using the Mente device and a Control group using a Sham device. Both groups used the device each morning for 45 minutes over a 12 week home based trial without any other clinical interventions. Pre and Post standard ASD questionnaires, qEEG and posturography were used to measure the effectiveness of the treatment. Results: Thirty-four subjects (17 Active and 17 Control) completed the study. Statistically and substantively significant changes were found in several outcome measures for subjects that received the treatment. Similar changes were not detected in the Control group. Conclusions: Our results show that a short 12 week course of NFB using the Mente Autism device can lead to significant changes in brain activity (qEEG), sensorimotor behavior (posturography), and behavior (standardized questionnaires) in ASD children.
Collapse
Affiliation(s)
- Frederick R Carrick
- Neurology, Carrick Institute, Cape Canaveral, FL, United States.,Bedfordshire Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom.,Harvard Macy Institute and MGH Institute of Health Professions, Boston, MA, United States
| | - Guido Pagnacco
- Bioengineering, Carrick Institute, Cape Canaveral, FL, United States.,Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY, United States
| | - Ahmed Hankir
- Bedfordshire Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom.,Psychiatry, Carrick Institute, Cape Canaveral, FL, United States.,Leeds York Partnership NHS Foundation Trust, Leeds, United Kingdom
| | - Mahera Abdulrahman
- Department of Medical Education, Dubai Health Authority, Dubai, United Arab Emirates.,Department of Primary Health Care, Dubai Medical College, Dubai, United Arab Emirates
| | - Rashid Zaman
- Bedfordshire Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom.,Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Derek A Barton
- Neurology, Carrick Institute, Cape Canaveral, FL, United States.,Neurology, Plasticity Brain Center, Orlando, FL, United States
| | - Paul E Link
- Neurology, Plasticity Brain Center, Orlando, FL, United States
| | - Elena Oggero
- Bioengineering, Carrick Institute, Cape Canaveral, FL, United States.,Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
15
|
Bressel E, Louder TJ, Raikes AC, Alphonsa S, Kyvelidou A. Water Immersion Affects Episodic Memory and Postural Control in Healthy Older Adults. J Geriatr Phys Ther 2018; 42:E1-E6. [PMID: 29738406 DOI: 10.1519/jpt.0000000000000192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND PURPOSE Previous research has reported that younger adults make fewer cognitive errors on an auditory vigilance task while in chest-deep water compared with on land. The purpose of this study was to extend this previous work to include older adults and to examine the effect of environment (water vs land) on linear and nonlinear measures of postural control under single- and dual-task conditions. METHODS Twenty-one older adult participants (age = 71.6 ± 8.34 years) performed a cognitive (auditory vigilance) and motor (standing balance) task separately and simultaneously on land and in chest-deep water. Listening errors (n = count) from the auditory vigilance test and sample entropy (SampEn), center of pressure area, and velocity for the balance test served as dependent measures. Environment (land vs water) and task (single vs dual) comparisons were made with a Wilcoxon matched-pair test. RESULTS Listening errors were 111% greater during land than during water environments (single-task = 4.0 ± 3.5 vs 1.9 ± 1.7; P = .03). Conversely, SampEn values were 100% greater during water than during land environments (single-task = 0.04 ± 0.01 vs 0.02 ± 0.01; P < .001). Center of pressure area and velocity followed a similar trend to SampEn with respect to environment differences, and none of the measures were different between single- and dual-task conditions (P > .05). CONCLUSIONS The findings of this study expand current support for the potential use of partial aquatic immersion as a viable method for challenging both cognitive and motor abilities in older adults.
Collapse
Affiliation(s)
- Eadric Bressel
- Biomechanics Laboratory, Utah State University, Logan.,Sport Performance Research Institute, Auckland University of Technology, New Zealand
| | - Talin J Louder
- Biomechanics Laboratory, The University of South Dakota, Vermillion
| | - Adam C Raikes
- Social, Cognitive, Affective Neuroscience Laboratory, Department of Psychiatry, The University of Arizona, Tucson
| | | | | |
Collapse
|
16
|
Wang W, Li K, Wei N, Yin C, Yue S. Evaluation of postural instability in stroke patient during quiet standing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:2522-2525. [PMID: 29060412 DOI: 10.1109/embc.2017.8037370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study was designed to investigate the postural instability in stroke survivals during quiet standing. Eleven stroke patients and 11 healthy volunteers (gender- and age-matched) were recruited for this experiment. The center of pressure (COP) signals from both planta in anterior-posterior (AP) and medial-lateral (ML) directions were recorded using a three-dimensional motion capture system (BTS Bioengineering Corp, Italy) when subjects stood on the two adjacent force platforms quietly with their eyes open (EO) for 30 s and with their eyes close (EC) for another 30 s. The standard deviation (SD) for the two limbs and the inter-limb cross correlation-coefficient (CC) of COP series were calculated under EO and EC conditions, respectively. Patients showed significant differences in SD of AP-COP between two sides under EO (p <; 0.05) and EC (p <; 0.001) conditions. The SD of the ML-COP on non-paretic limb of patients was higher than that of controls under EC (p <; 0.05). Lower CC values of AP-COP was found in patients versus controls under two vision conditions (p <; 0.05), and the values in two groups increased significantly after removal of vision information (p <; 0.05). Stroke led to an increased postural sway and decreased inter-limb coordination during quiet standing. This study may facilitate the evaluation of the standing instability in stroke survivors and may improve the strategies for rehabilitation.
Collapse
|
17
|
Wang Z, Hallac RR, Conroy KC, White SP, Kane AA, Collinsworth AL, Sweeney JA, Mosconi MW. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD). J Neurodev Disord 2016; 8:43. [PMID: 27933108 PMCID: PMC5124312 DOI: 10.1186/s11689-016-9178-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
Background Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children’s ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Methods Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children’s postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Results Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial perception of their postural limitation boundary towards target directions and reduced time to correct this error during dynamic postural sways but not during static stance. Regarding postural equilibrium, they showed a compromised ability to decouple ankle dorsi-/plantar-flexion and hip abduction/adduction processes during dynamic stances. Conclusions These results suggest that deficits in both postural orientation and equilibrium processes contribute to reduced postural stability in ASD. Specifically, increased postural sway in ASD appears to reflect patients’ impaired perception of their body movement relative to their own postural limitation boundary as well as a reduced ability to decouple distinct ankle and hip movements to align their body during standing. Our findings that deficits in postural orientation and equilibrium are more pronounced during dynamic compared to static stances suggests that the increased demands of everyday activities in which children must dynamically shift their COP involve more severe postural control deficits in ASD relative to static stance conditions that often are studied. Systematic assessment of dynamic postural control processes in ASD may provide important insights into new treatment targets and neurodevelopmental mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s11689-016-9178-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng Wang
- Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Ave., Suite 2004, Lawrence, KS 66045 USA ; Kansas Center for Autism Research and Training (KCART), University of Kansas Medical School, Overland Park, KS 66213 USA
| | - Rami R Hallac
- Analytical Imaging and Modeling Center, Children's Medical Center, Dallas, TX 75235 USA
| | - Kaitlin C Conroy
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Stormi P White
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Alex A Kane
- Analytical Imaging and Modeling Center, Children's Medical Center, Dallas, TX 75235 USA
| | - Amy L Collinsworth
- Analytical Imaging and Modeling Center, Children's Medical Center, Dallas, TX 75235 USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219 USA
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Ave., Suite 2004, Lawrence, KS 66045 USA ; Kansas Center for Autism Research and Training (KCART), University of Kansas Medical School, Overland Park, KS 66213 USA
| |
Collapse
|