1
|
Carneiro KO, Campos GZ, Scafuro Lima JM, Rocha RDS, Vaz-Velho M, Todorov SD. The Role of Lactic Acid Bacteria in Meat Products, Not Just as Starter Cultures. Foods 2024; 13:3170. [PMID: 39410205 PMCID: PMC11475535 DOI: 10.3390/foods13193170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Lactic acid bacteria (LABs) are microorganisms of significant scientific and industrial importance and have great potential for application in meat and meat products. This comprehensive review addresses the main characteristics of LABs, their nutritional, functional, and technological benefits, and especially their importance not only as starter cultures. LABs produce several metabolites during their fermentation process, which include bioactive compounds, such as peptides with antimicrobial, antidiabetic, antihypertensive, and immunomodulatory properties. These metabolites present several benefits as health promoters but are also important from a technological point of view. For example, bacteriocins, organic acids, and other compounds are of great importance, whether from a sensory or product quality or a safety point of view. With the production of GABA, exopolysaccharides, antioxidants, and vitamins are beneficial metabolites that influence safety, technological processes, and even health-promoting consumer benefits. Despite the benefits, this review also highlights that some LABs may present virulence properties, requiring critical evaluation for using specific strains in food formulations. Overall, this review hopes to contribute to the scientific literature by increasing knowledge of the various benefits of LABs in meat and meat products.
Collapse
Affiliation(s)
- Kayque Ordonho Carneiro
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - Gabriela Zampieri Campos
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - João Marcos Scafuro Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - Ramon da Silva Rocha
- Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Manuela Vaz-Velho
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4960-320 Viana do Castelo, Portugal;
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4960-320 Viana do Castelo, Portugal;
| |
Collapse
|
2
|
Colucci Cante R, Nigro F, Passannanti F, Lentini G, Gallo M, Nigro R, Budelli AL. Gut health benefits and associated systemic effects provided by functional components from the fermentation of natural matrices. Compr Rev Food Sci Food Saf 2024; 23:e13356. [PMID: 38767859 DOI: 10.1111/1541-4337.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/26/2024] [Accepted: 04/06/2024] [Indexed: 05/22/2024]
Abstract
Recently, the role of the gut microbiota in metabolic health, immunity, behavioral balance, longevity, and intestine comfort has been the object of several studies from scientific communities. They were encouraged by a growing interest from food industries and consumers toward novel fermented ingredients and formulations with powerful biological effects, such as pre, pro, and postbiotic products. Depending on the selected strains, the operating conditions, the addition of suitable reagents or enzymes, the equipment, and the reactor configurations, functional compounds with high bioactivity, such as short-chain fatty acids, gamma-aminobutyric acid, bioactive peptides, and serotonin, can be enhanced and/or produced through fermentation of several vegetable matrices. Otherwise, their formation can also be promoted directly in the gut after the dietary intake of fermented foods: In this case, fermentation will aim to increase the content of precursor substances, such as indigestible fibers, polyphenols, some amino acids, and resistant starch, which can be potentially metabolized by endogenous gut microorganisms and converted in healthy molecules. This review provides an overview of the main functional components currently investigated in literature and the associated gut health benefits. The current state of the art about fermentation technology as a promising functionalization tool to promote the direct or indirect formation of gut-health-enhancing components was deepened, highlighting the importance of optimizing microorganism selection, system setups, and process conditions according to the target compound of interest. The collected data suggested the possibility of gaining novel functional food ingredients or products rich in functional molecules through fermentation without performing additional extraction and purification stages, which are needed when conventional culture broths are used.
Collapse
Affiliation(s)
- Rosa Colucci Cante
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Rome, Italy
| | - Federica Nigro
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Francesca Passannanti
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Giulia Lentini
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
| | - Marianna Gallo
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Rome, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Roberto Nigro
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
3
|
Tang QY, Huang BL, Huang X. Altered functional connectivity between the default mode network in primary angle-closure glaucoma patients. Neuroreport 2024; 35:129-135. [PMID: 38251458 DOI: 10.1097/wnr.0000000000001995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Previous studies have recognized glaucoma as a neurodegenerative disease that causes extensive brain damage and is closely associated with cognitive function. In this study, we employed functional MRI to examine the intrinsic functional connectivity patterns of the default mode network (DMN) in patients diagnosed with primary angle-closure glaucoma (PACG), exploring its association with cognitive dysfunction. A total of 34 patients diagnosed with PACG and 34 healthy controls (HC), who were matched in terms of sex, age, and education, were included in the control group. The posterior cingulate cortex (PCC) was selected as the region of interest to examine functional connectivity alterations. Compared with the HC group, functional connectivity was attenuated in left anterior cingulum cortex and left paracentral lobule between with PCC in the PACG group, the results are statistically significant. Our study revealed that patients with PACG exhibit weakened functional connectivity within the DMN. This finding suggests the presence of a neurological mechanism that is associated with both visual dysfunction and cognitive impairments in PACG patients. Furthermore, our study provides neuroimaging evidence that can aid in the exploration of spontaneous neurological alterations and facilitate a deeper investigation of alterations in the visual conduction pathways of PACG patients.
Collapse
Affiliation(s)
- Qiu-Yu Tang
- College of Clinical Medicine, Jiangxi University of Chinese Medicine
| | - Bing-Lin Huang
- College of Clinical Medicine, Jiangxi University of Chinese Medicine
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Hancock F, Rosas FE, McCutcheon RA, Cabral J, Dipasquale O, Turkheimer FE. Metastability as a candidate neuromechanistic biomarker of schizophrenia pathology. PLoS One 2023; 18:e0282707. [PMID: 36952467 PMCID: PMC10035891 DOI: 10.1371/journal.pone.0282707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
The disconnection hypothesis of schizophrenia proposes that symptoms of the disorder arise as a result of aberrant functional integration between segregated areas of the brain. The concept of metastability characterizes the coexistence of competing tendencies for functional integration and functional segregation in the brain, and is therefore well suited for the study of schizophrenia. In this study, we investigate metastability as a candidate neuromechanistic biomarker of schizophrenia pathology, including a demonstration of reliability and face validity. Group-level discrimination, individual-level classification, pathophysiological relevance, and explanatory power were assessed using two independent case-control studies of schizophrenia, the Human Connectome Project Early Psychosis (HCPEP) study (controls n = 53, non-affective psychosis n = 82) and the Cobre study (controls n = 71, cases n = 59). In this work we extend Leading Eigenvector Dynamic Analysis (LEiDA) to capture specific features of dynamic functional connectivity and then implement a novel approach to estimate metastability. We used non-parametric testing to evaluate group-level differences and a naïve Bayes classifier to discriminate cases from controls. Our results show that our new approach is capable of discriminating cases from controls with elevated effect sizes relative to published literature, reflected in an up to 76% area under the curve (AUC) in out-of-sample classification analyses. Additionally, our new metric showed explanatory power of between 81-92% for measures of integration and segregation. Furthermore, our analyses demonstrated that patients with early psychosis exhibit intermittent disconnectivity of subcortical regions with frontal cortex and cerebellar regions, introducing new insights about the mechanistic bases of these conditions. Overall, these findings demonstrate reliability and face validity of metastability as a candidate neuromechanistic biomarker of schizophrenia pathology.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, United Kingdom
| | - Fernando E. Rosas
- Department of Informatics, University of Sussex, Brighton, United Kingdom
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
- Centre for Complexity Science, Imperial College London, London, United Kingdom
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
| | - Robert A. McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, London, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Joana Cabral
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Life and Health Sciences Research Institute School of Medicine, University of Minho, Braga, Portugal
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, United Kingdom
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, United Kingdom
| |
Collapse
|
5
|
Turkheimer FE, Liu J, Fagerholm ED, Dazzan P, Loggia ML, Bettelheim E. The art of pain: A quantitative color analysis of the self-portraits of Frida Kahlo. Front Hum Neurosci 2022; 16:1000656. [PMID: 36118965 PMCID: PMC9478482 DOI: 10.3389/fnhum.2022.1000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Frida Kahlo (1907–1954) was a Mexican artist who is remembered for her self-portraits, pain and passion, and bold, vibrant colors. This work aims to use her life story and her artistic production in a longitudinal study to examine with quantitative tools the effects of physical and emotional pain (rage) on artistic expression. Kahlo suffered from polio as a child, was involved in a bus accident as a teenager where she suffered multiple fractures of her spine and had 30 operations throughout her lifetime. She also had a tempestuous relationship with her painter husband, Diego Rivera. Her physical and personal troubles however became the texture of her vivid visual vocabulary—usually expressed through the depiction of Mexican and indigenous culture or the female experience and form. We applied color analysis to a series of Frida's self-portraits and revealed a very strong association of physical pain and emotional rage with low wavelength colors (red and yellow), indicating that the expression of her ailments was, consciously or not, achieved by increasing the perceived luminance of the canvas. Further quantitative analysis that used the fractal dimension identified “The broken column” as the portrait with higher compositional complexity, which matches previous critical acclaim of this portrait as the climax of her art. These results confirm the ability of color analysis to extract emotional and cognitive features from artistic work. We suggest that these tools could be used as markers to support artistic and creative interventions in mental health.
Collapse
Affiliation(s)
- Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- *Correspondence: Federico E. Turkheimer
| | - Jingyi Liu
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Erik D. Fagerholm
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paola Dazzan
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Eric Bettelheim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Vohryzek J, Cabral J, Vuust P, Deco G, Kringelbach ML. Understanding brain states across spacetime informed by whole-brain modelling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210247. [PMID: 35599554 PMCID: PMC9125224 DOI: 10.1098/rsta.2021.0247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 05/26/2023]
Abstract
In order to survive in a complex environment, the human brain relies on the ability to flexibly adapt ongoing behaviour according to intrinsic and extrinsic signals. This capability has been linked to specific whole-brain activity patterns whose relative stability (order) allows for consistent functioning, supported by sufficient intrinsic instability needed for optimal adaptability. The emergent, spontaneous balance between order and disorder in brain activity over spacetime underpins distinct brain states. For example, depression is characterized by excessively rigid, highly ordered states, while psychedelics can bring about more disordered, sometimes overly flexible states. Recent developments in systems, computational and theoretical neuroscience have started to make inroads into the characterization of such complex dynamics over space and time. Here, we review recent insights drawn from neuroimaging and whole-brain modelling motivating using mechanistic principles from dynamical system theory to study and characterize brain states. We show how different healthy and altered brain states are associated to characteristic spacetime dynamics which in turn may offer insights that in time can inspire new treatments for rebalancing brain states in disease. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Berto S, Treacher AH, Caglayan E, Luo D, Haney JR, Gandal MJ, Geschwind DH, Montillo AA, Konopka G. Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. Nat Commun 2022; 13:3328. [PMID: 35680911 PMCID: PMC9184501 DOI: 10.1038/s41467-022-31053-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Gene expression covaries with brain activity as measured by resting state functional magnetic resonance imaging (MRI). However, it is unclear how genomic differences driven by disease state can affect this relationship. Here, we integrate from the ABIDE I and II imaging cohorts with datasets of gene expression in brains of neurotypical individuals and individuals with autism spectrum disorder (ASD) with regionally matched brain activity measurements from fMRI datasets. We identify genes linked with brain activity whose association is disrupted in ASD. We identified a subset of genes that showed a differential developmental trajectory in individuals with ASD compared with controls. These genes are enriched in voltage-gated ion channels and inhibitory neurons, pointing to excitation-inhibition imbalance in ASD. We further assessed differences at the regional level showing that the primary visual cortex is the most affected region in ASD. Our results link disrupted brain expression patterns of individuals with ASD to brain activity and show developmental, cell type, and regional enrichment of activity linked genes.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alex H Treacher
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Emre Caglayan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Danni Luo
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jillian R Haney
- Program in Neurobehavioral Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael J Gandal
- Program in Neurobehavioral Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel H Geschwind
- Program in Neurobehavioral Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Albert A Montillo
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
8
|
Hancock F, Rosas FE, Mediano PAM, Luppi AI, Cabral J, Dipasquale O, Turkheimer FE. May the 4C's be with you: an overview of complexity-inspired frameworks for analysing resting-state neuroimaging data. J R Soc Interface 2022; 19:20220214. [PMID: 35765805 PMCID: PMC9240685 DOI: 10.1098/rsif.2022.0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
Competing and complementary models of resting-state brain dynamics contribute to our phenomenological and mechanistic understanding of whole-brain coordination and communication, and provide potential evidence for differential brain functioning associated with normal and pathological behaviour. These neuroscientific theories stem from the perspectives of physics, engineering, mathematics and psychology and create a complicated landscape of domain-specific terminology and meaning, which, when used outside of that domain, may lead to incorrect assumptions and conclusions within the neuroscience community. Here, we review and clarify the key concepts of connectivity, computation, criticality and coherence-the 4C's-and outline a potential role for metastability as a common denominator across these propositions. We analyse and synthesize whole-brain neuroimaging research, examined through functional magnetic imaging, to demonstrate that complexity science offers a principled and integrated approach to describe, and potentially understand, macroscale spontaneous brain functioning.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London SW7 2DD, UK
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Pedro A. M. Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Department of Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- Alan Turing Institute, London, UK
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Verification of Lactobacillus brevis tolerance to simulated gastric juice and the potential effects of postbiotic gamma-aminobutyric acid in streptozotocin-induced diabetic mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Rezaei Z, Jafari Z, Afrashteh N, Torabi R, Singh S, Kolb BE, Davidsen J, Mohajerani MH. Prenatal stress dysregulates resting-state functional connectivity and sensory motifs. Neurobiol Stress 2021; 15:100345. [PMID: 34124321 PMCID: PMC8173309 DOI: 10.1016/j.ynstr.2021.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
Prenatal stress (PS) can impact fetal brain structure and function and contribute to higher vulnerability to neurodevelopmental and neuropsychiatric disorders. To understand how PS alters evoked and spontaneous neocortical activity and intrinsic brain functional connectivity, mesoscale voltage imaging was performed in adult C57BL/6NJ mice that had been exposed to auditory stress on gestational days 12-16, the age at which neocortex is developing. PS mice had a four-fold higher basal corticosterone level and reduced amplitude of cortical sensory-evoked responses to visual, auditory, whisker, forelimb, and hindlimb stimuli. Relative to control animals, PS led to a general reduction of resting-state functional connectivity, as well as reduced inter-modular connectivity, enhanced intra-modular connectivity, and altered frequency of auditory and forelimb spontaneous sensory motifs. These resting-state changes resulted in a cortical connectivity pattern featuring disjoint but tight modules and a decline in network efficiency. The findings demonstrate that cortical connectivity is sensitive to PS and exposed offspring may be at risk for adult stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Navvab Afrashteh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Reza Torabi
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Surjeet Singh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Bryan E. Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Majid H. Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| |
Collapse
|
11
|
Whiteside DJ, Jones PS, Ghosh BCP, Coyle-Gilchrist I, Gerhard A, Hu MT, Klein JC, Leigh PN, Church A, Burn DJ, Morris HR, Rowe JB, Rittman T. Altered network stability in progressive supranuclear palsy. Neurobiol Aging 2021; 107:109-117. [PMID: 34419788 PMCID: PMC8599965 DOI: 10.1016/j.neurobiolaging.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023]
Abstract
We investigated network dynamics in the tauopathy progressive supranuclear palsy Abnormal temporal properties of large-scale networks are related to phenotype Progressive supranuclear palsy paradoxically increases frontoparietal state time Reductions in neural signal complexity relate to altered network dynamics Dynamic network and topological changes occur distally to primary sites of atrophy
The clinical syndromes of Progressive Supranuclear Palsy (PSP) may be mediated by abnormal temporal dynamics of brain networks, due to the impact of atrophy, synapse loss and neurotransmitter deficits. We tested the hypothesis that alterations in signal complexity in neural networks influence short-latency state transitions. Ninety-four participants with PSP and 64 healthy controls were recruited from two independent cohorts. All participants underwent clinical and neuropsychological testing and resting-state functional MRI. Network dynamics were assessed using hidden Markov models and neural signal complexity measured in terms of multiscale entropy. In both cohorts, PSP increased the proportion of time in networks associated with higher cognitive functions. This effect correlated with clinical severity as measured by the PSP-rating-scale, and with reduced neural signal complexity. Regional atrophy influenced abnormal brain-state occupancy, but abnormal network topology and dynamics were not restricted to areas of atrophy. Our findings show that the pathology of PSP causes clinically relevant changes in neural temporal dynamics, leading to a greater proportion of time in inefficient brain-states.
Collapse
Affiliation(s)
- David J Whiteside
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK.
| | - P Simon Jones
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Boyd C P Ghosh
- Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| | | | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Michele T Hu
- Oxford Parkinson's Disease Centre and Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Johannes C Klein
- Oxford Parkinson's Disease Centre and Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - P Nigel Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
| | | | - David J Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London. Queen Square Institute of Neurology, London, UK
| | - James B Rowe
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Timothy Rittman
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| |
Collapse
|
12
|
Turkheimer FE, Rosas FE, Dipasquale O, Martins D, Fagerholm ED, Expert P, Váša F, Lord LD, Leech R. A Complex Systems Perspective on Neuroimaging Studies of Behavior and Its Disorders. Neuroscientist 2021; 28:382-399. [PMID: 33593120 PMCID: PMC9344570 DOI: 10.1177/1073858421994784] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study of complex systems deals with emergent behavior that arises as
a result of nonlinear spatiotemporal interactions between a large
number of components both within the system, as well as between the
system and its environment. There is a strong case to be made that
neural systems as well as their emergent behavior and disorders can be
studied within the framework of complexity science. In particular, the
field of neuroimaging has begun to apply both theoretical and
experimental procedures originating in complexity science—usually in
parallel with traditional methodologies. Here, we illustrate the basic
properties that characterize complex systems and evaluate how they
relate to what we have learned about brain structure and function from
neuroimaging experiments. We then argue in favor of adopting a complex
systems-based methodology in the study of neuroimaging, alongside
appropriate experimental paradigms, and with minimal influences from
noncomplex system approaches. Our exposition includes a review of the
fundamental mathematical concepts, combined with practical examples
and a compilation of results from the literature.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK.,Data Science Institute, Imperial College London, London, UK.,Centre for Complexity Science, Imperial College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erik D Fagerholm
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul Expert
- Global Digital Health Unit, School of Public Health, Imperial College London, London, UK
| | - František Váša
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Robert Leech
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Fagerholm ED, Tangwiriyasakul C, Friston KJ, Violante IR, Williams S, Carmichael DW, Perani S, Turkheimer FE, Moran RJ, Leech R, Richardson MP. Neural diffusivity and pre-emptive epileptic seizure intervention. PLoS Comput Biol 2020; 16:e1008448. [PMID: 33259483 PMCID: PMC7732083 DOI: 10.1371/journal.pcbi.1008448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/11/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022] Open
Abstract
The propagation of epileptic seizure activity in the brain is a widespread pathophysiology that, in principle, should yield to intervention techniques guided by mathematical models of neuronal ensemble dynamics. During a seizure, neural activity will deviate from its current dynamical regime to one in which there are significant signal fluctuations. In silico treatments of neural activity are an important tool for the understanding of how the healthy brain can maintain stability, as well as of how pathology can lead to seizures. The hope is that, contained within the mathematical foundations of such treatments, there lie potential strategies for mitigating instabilities, e.g. via external stimulation. Here, we demonstrate that the dynamic causal modelling neuronal state equation generalises to a Fokker-Planck formalism if one extends the framework to model the ways in which activity propagates along the structural connections of neural systems. Using the Jacobian of this generalised state equation, we show that an initially unstable system can be rendered stable via a reduction in diffusivity–i.e., by lowering the rate at which neuronal fluctuations disperse to neighbouring regions. We show, for neural systems prone to epileptic seizures, that such a reduction in diffusivity can be achieved via external stimulation. Specifically, we show that this stimulation should be applied in such a way as to temporarily mirror the activity profile of a pathological region in its functionally connected areas. This counter-intuitive method is intended to be used pre-emptively–i.e., in order to mitigate the effects of the seizure, or ideally even prevent it from occurring in the first place. We offer proof of principle using simulations based on functional neuroimaging data collected from patients with idiopathic generalised epilepsy, in which we successfully suppress pathological activity in a distinct sub-network prior to seizure onset. Our hope is that this technique can form the basis for future real-time monitoring and intervention devices that are capable of treating epilepsy in a non-invasive manner. Epilepsy is a disease that affects over 50 million people worldwide. Current treatments include dangerous surgical procedures in which brain connections are severed, or even in which entire problem brain regions are removed. Pharmaceutical options are available, but only about one third of patients are responsive. However, even in these cases the drugs can cause such severe side effects that the patients sometimes choose to suffer seizures. We are proposing an innovative treatment of epilepsy that could be achieved by using non-invasive electrical stimulation. Specifically, we show that stimulation should be applied in such a way as to mirror the activity in a problem brain region, by targeting its neighbouring areas. This counterintuitive approach is based on a mathematical model in which this mirroring strategy is applied pre-emptively, i.e. long before the seizure has a chance to set in. The hope is that future clinical trials will be able to use this model to lessen the effect of seizures, or even prevent them from occurring in the first place.
Collapse
Affiliation(s)
- Erik D. Fagerholm
- Department of Neuroimaging, King’s College London, London, United Kingdom
- * E-mail:
| | - Chayanin Tangwiriyasakul
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Inês R. Violante
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Steven Williams
- Department of Neuroimaging, King’s College London, London, United Kingdom
| | - David W. Carmichael
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Developmental Neurosciences, University College London, London, United Kingdom
| | - Suejen Perani
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | | | - Rosalyn J. Moran
- Department of Neuroimaging, King’s College London, London, United Kingdom
| | - Robert Leech
- Department of Neuroimaging, King’s College London, London, United Kingdom
| | - Mark P. Richardson
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
- Centre for Epilepsy, King's College Hospital, London, United Kingdom
| |
Collapse
|
14
|
Turkheimer FE, Fagerholm ED, Vignando M, Dafflon J, Da Costa PF, Dazzan P, Leech R. A GABA Interneuron Deficit Model of the Art of Vincent van Gogh. Front Psychiatry 2020; 11:685. [PMID: 32754073 PMCID: PMC7370815 DOI: 10.3389/fpsyt.2020.00685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
Vincent van Gogh was one of the most influential artists of the Western world, having shaped the post-impressionist art movement by shifting its boundaries forward into abstract expressionism. His distinctive style, which was not valued by the art-buying public during his lifetime, is nowadays one of the most sought after. However, despite the great deal of attention from academic and artistic circles, one important question remains open: was van Gogh's original style a visual manifestation distinct from his troubled mind, or was it in fact a by-product of an impairment that resulted from the psychiatric illness that marred his entire life? In this paper, we use a previously published multi-scale model of brain function to piece together a number of disparate observations about van Gogh's life and art. In particular, we first quantitatively analyze the brushwork of his large production of self-portraits using the image autocorrelation and demonstrate a strong association between the contrasts in the paintings, the occurrence of psychiatric symptoms, and his simultaneous use of absinthe-a strong liquor known to affect gamma aminobutyric acid (GABA) alpha receptors. Secondly, we propose that van Gogh suffered from a defective function of parvalbumin interneurons, which seems likely given his family history of schizophrenia and his addiction to substances associated with GABA action. This could explain the need for the artist to increasingly amplify the contrasts in his brushwork as his disease progressed, as well as his tendency to merge esthetic and personal experiences into a new form of abstraction.
Collapse
Affiliation(s)
- Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Cortical interneurons display striking differences in shape, physiology, and other attributes, challenging us to appropriately classify them. We previously suggested that interneuron types should be defined by their role in cortical processing. Here, we revisit the question of how to codify their diversity based upon their division of labor and function as controllers of cortical information flow. We suggest that developmental trajectories provide a guide for appreciating interneuron diversity and argue that subtype identity is generated using a configurational (rather than combinatorial) code of transcription factors that produce attractor states in the underlying gene regulatory network. We present our updated three-stage model for interneuron specification: an initial cardinal step, allocating interneurons into a few major classes, followed by definitive refinement, creating subclasses upon settling within the cortex, and lastly, state determination, reflecting the incorporation of interneurons into functional circuit ensembles. We close by discussing findings indicating that major interneuron classes are both evolutionarily ancient and conserved. We propose that the complexity of cortical circuits is generated by phylogenetically old interneuron types, complemented by an evolutionary increase in principal neuron diversity. This suggests that a natural neurobiological definition of interneuron types might be derived from a match between their developmental origin and computational function.
Collapse
Affiliation(s)
- Gord Fishell
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02142, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adam Kepecs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| |
Collapse
|
16
|
Diez-Gutiérrez L, San Vicente L, R. Barrón LJ, Villarán MDC, Chávarri M. Gamma-aminobutyric acid and probiotics: Multiple health benefits and their future in the global functional food and nutraceuticals market. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103669] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
17
|
Plastic Adaptation to Pathology in Psychiatry: Are Patients with Psychiatric Disorders Pathological Experts? Neuroscientist 2019; 26:208-223. [DOI: 10.1177/1073858419867083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Psychiatric disorders share the same pattern of longitudinal evolution and have courses that tend to be chronic and recurrent. These aspects of chronicity and longitudinal evolution are currently studied under the deficit-oriented neuroprogression framework. Interestingly, considering the plasticity of the brain, it is also necessary to emphasize the bidirectional nature of neuroprogression. We review evidence highlighting alterations of the brain associated with the longitudinal evolution of psychiatric disorders from the framework of neuroplastic adaptation to pathology. This new framework highlights that substantial plasticity and remodeling may occur beyond the classic deficit-oriented neuroprogressive framework, which has been associated with progressive loss of gray matter thickness, decreased brain connectivity, and chronic inflammation. We also integrate the brain economy concept in the neuroplastic adaptation to pathology framework, emphasizing that to preserve its economy, i.e. function, the brain learns how to cope with the disease by adapting its architecture. Neuroplastic adaptation to pathology is a proposition for a paradigm shift to overcome the shortcomings of traditional psychiatric diagnostic boundaries; this approach can disentangle both the specific pathophysiology of psychiatric symptoms and the adaptation to pathology, thus offering a new framework for both diagnosis and treatment.
Collapse
|
18
|
Brown BL, Meyer-Ortmanns H, Pleimling M. Dynamically generated hierarchies in games of competition. Phys Rev E 2019; 99:062116. [PMID: 31330747 DOI: 10.1103/physreve.99.062116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 02/05/2023]
Abstract
Spatial many-species predator-prey systems have been shown to yield very rich space-time patterns. This observation begs the question whether there exist universal mechanisms for generating this type of emerging complex patterns in nonequilibrium systems. In this work we investigate the possibility of dynamically generated hierarchies in predator-prey systems. We analyze a nine-species model with competing interactions and show that the studied situation results in the spontaneous formation of spirals within spirals. The parameter dependence of these intriguing nested spirals is elucidated. This is achieved through the numerical investigation of various quantities (correlation lengths, densities of empty sites, Fourier analysis of species densities, interface fluctuations) that allows us to gain a rather complete understanding of the spatial arrangements and the temporal evolution of the system. A possible generalization of the interaction scheme yielding dynamically generated hierarchies is discussed. As cyclic interactions occur spontaneously in systems with competing strategies, the mechanism discussed in this work should contribute to our understanding of various social and biological systems.
Collapse
Affiliation(s)
- Barton L Brown
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | | | - Michel Pleimling
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA.,Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061-0563, USA
| |
Collapse
|
19
|
Patania A, Selvaggi P, Veronese M, Dipasquale O, Expert P, Petri G. Topological gene expression networks recapitulate brain anatomy and function. Netw Neurosci 2019; 3:744-762. [PMID: 31410377 PMCID: PMC6663211 DOI: 10.1162/netn_a_00094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Understanding how gene expression translates to and affects human behavior is one of the ultimate goals of neuroscience. In this paper, we present a pipeline based on Mapper, a topological simplification tool, to analyze gene co-expression data. We first validate the method by reproducing key results from the literature on the Allen Human Brain Atlas and the correlations between resting-state fMRI and gene co-expression maps. We then analyze a dopamine-related gene set and find that co-expression networks produced by Mapper return a structure that matches the well-known anatomy of the dopaminergic pathway. Our results suggest that network based descriptions can be a powerful tool to explore the relationships between genetic pathways and their association with brain function and its perturbation due to illness and/or pharmacological challenges.
Collapse
Affiliation(s)
- Alice Patania
- Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Paul Expert
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
- Department of Mathematics, Imperial College London, London, UK
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, UK
- Global Digital Health Unit, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Giovanni Petri
- ISI Foundation, Turin, Italy
- ISI Global Science Foundation, New York, NY, USA
| |
Collapse
|
20
|
Li X, Wang A, Xu J, Sun Z, Xia J, Wang P, Wang B, Zhang M, Tian J. Reduced Dynamic Interactions Within Intrinsic Functional Brain Networks in Early Blind Patients. Front Neurosci 2019; 13:268. [PMID: 30983956 PMCID: PMC6448007 DOI: 10.3389/fnins.2019.00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
Neuroimaging studies in early blind (EB) patients have shown altered connections or brain networks. However, it remains unclear how the causal relationships are disrupted within intrinsic brain networks. In our study, we used spectral dynamic causal modeling (DCM) to estimate the causal interactions using resting-state data in a group of 20 EB patients and 20 healthy controls (HC). Coupling parameters in specific regions were estimated, including the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and inferior parietal lobule (IPC) in the default mode network (DMN); dorsal anterior cingulate cortex (dACC) and bilateral anterior insulae (AI) in the salience network (SN), and bilateral frontal eye fields (FEF) and superior parietal lobes (SPL) within the dorsal attention network (DAN). Statistical analyses found that all endogenous connections and the connections from the mPFC to bilateral IPCs in EB patients were significantly reduced within the DMN, and the effective connectivity from the PCC and lIPC to the mPFC, and from the mPFC to the PCC were enhanced. For the SN, all significant connections in EB patients were significantly decreased, except the intrinsic right AI connections. Within the DAN, more significant effective connections were observed to be reduced between the EB and HC groups, while only the connections from the right SPL to the left SPL and the intrinsic connection in the left SPL were significantly enhanced. Furthermore, discovery of more decreased effective connections in the EB subjects suggested that the disrupted causal interactions between specific regions are responsive to the compensatory brain plasticity in early deprivation.
Collapse
Affiliation(s)
- Xianglin Li
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Junhai Xu
- Tianjin Key Laboratory of Cognitive Computing and Application, School of Artificial Intelligence, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Zhenbo Sun
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Jikai Xia
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Tian
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,School of Life Sciences and Technology, Xidian University, Xi'an, China
| |
Collapse
|
21
|
Pujol J, Blanco-Hinojo L, Maciá D, Alonso P, Harrison BJ, Martínez-Vilavella G, Deus J, Menchón JM, Cardoner N, Soriano-Mas C. Mapping Alterations of the Functional Structure of the Cerebral Cortex in Obsessive–Compulsive Disorder. Cereb Cortex 2019; 29:4753-4762. [DOI: 10.1093/cercor/bhz008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
AbstractWe mapped alterations of the functional structure of the cerebral cortex using a novel imaging approach in a sample of 160 obsessive–compulsive disorder (OCD) patients. Whole-brain functional connectivity maps were generated using multidistance measures of intracortical neural activity coupling defined within isodistant local areas. OCD patients demonstrated neural activity desynchronization within the orbitofrontal cortex and in primary somatosensory, auditory, visual, gustatory, and olfactory areas. Symptom severity was significantly associated with the degree of functional structure alteration in OCD-relevant brain regions. By means of a novel imaging perspective, we once again identified brain alterations in the orbitofrontal cortex, involving areas purportedly implicated in the pathophysiology of OCD. However, our results also indicated that weaker intracortical activity coupling is also present in each primary sensory area. On the basis of previous neurophysiological studies, such cortical activity desynchronization may best be interpreted as reflecting deficient inhibitory neuron activity and altered sensory filtering.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Dídac Maciá
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Pino Alonso
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Spain
| | - Ben J Harrison
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
| | | | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Department of Clinical and Health Psychology, Autonomous University of Barcelona, Spain
| | - José M Menchón
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Spain
| | - Narcís Cardoner
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Mental Health Department, Parc Taulí Sabadell University Hospital, Institut d’Investigació i Innovació Sanitària Parc Taulí (I3PT), Barelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Carles Soriano-Mas
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
22
|
Turkheimer FE, Hellyer P, Kehagia AA, Expert P, Lord LD, Vohryzek J, De Faria Dafflon J, Brammer M, Leech R. Conflicting emergences. Weak vs. strong emergence for the modelling of brain function. Neurosci Biobehav Rev 2019; 99:3-10. [PMID: 30684520 DOI: 10.1016/j.neubiorev.2019.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 02/03/2023]
Abstract
The concept of "emergence" has become commonplace in the modelling of complex systems, both natural and man-made; a functional property" emerges" from a system when it cannot be readily explained by the properties of the system's sub-units. A bewildering array of adaptive and sophisticated behaviours can be observed from large ensembles of elementary agents such as ant colonies, bird flocks or by the interactions of elementary material units such as molecules or weather elements. Ultimately, emergence has been adopted as the ontological support of a number of attempts to model brain function. This manuscript aims to clarify the ontology of emergence and delve into its many facets, particularly into its "strong" and "weak" versions that underpin two different approaches to the modelling of behaviour. The first group of models is here represented by the "free energy" principle of brain function and the "integrated information theory" of consciousness. The second group is instead represented by computational models such as oscillatory networks that use mathematical scalable representations to generate emergent behaviours and are then able to bridge neurobiology with higher mental functions. Drawing on the epistemological literature, we observe that due to their loose mechanistic links with the underlying biology, models based on strong forms of emergence are at risk of metaphysical implausibility. This, in practical terms, translates into the over determination that occurs when the proposed model becomes only one of a large set of possible explanations for the observable phenomena. On the other hand, computational models that start from biologically plausible elementary units, hence are weakly emergent, are not limited by ontological faults and, if scalable and able to realistically simulate the hierarchies of brain output, represent a powerful vehicle for future neuroscientific research programmes.
Collapse
Affiliation(s)
| | | | | | - Paul Expert
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, UK
| | | | | | | | - Mick Brammer
- Institute of Psychiatry, King's College London, UK
| | - Robert Leech
- Institute of Psychiatry, King's College London, UK
| |
Collapse
|
23
|
Rabinovich MI, Varona P. Discrete Sequential Information Coding: Heteroclinic Cognitive Dynamics. Front Comput Neurosci 2018; 12:73. [PMID: 30245621 PMCID: PMC6137616 DOI: 10.3389/fncom.2018.00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Discrete sequential information coding is a key mechanism that transforms complex cognitive brain activity into a low-dimensional dynamical process based on the sequential switching among finite numbers of patterns. The storage size of the corresponding process is large because of the permutation capacity as a function of control signals in ensembles of these patterns. Extracting low-dimensional functional dynamics from multiple large-scale neural populations is a central problem both in neuro- and cognitive- sciences. Experimental results in the last decade represent a solid base for the creation of low-dimensional models of different cognitive functions and allow moving toward a dynamical theory of consciousness. We discuss here a methodology to build simple kinetic equations that can be the mathematical skeleton of this theory. Models of the corresponding discrete information processing can be designed using the following dynamical principles: (i) clusterization of the neural activity in space and time and formation of information patterns; (ii) robustness of the sequential dynamics based on heteroclinic chains of metastable clusters; and (iii) sensitivity of such sequential dynamics to intrinsic and external informational signals. We analyze sequential discrete coding based on winnerless competition low-frequency dynamics. Under such dynamics, entrainment, and heteroclinic coordination leads to a large variety of coding regimes that are invariant in time.
Collapse
Affiliation(s)
- Mikhail I Rabinovich
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, United States
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Asllani M, Expert P, Carletti T. A minimally invasive neurostimulation method for controlling abnormal synchronisation in the neuronal activity. PLoS Comput Biol 2018; 14:e1006296. [PMID: 30024878 PMCID: PMC6067766 DOI: 10.1371/journal.pcbi.1006296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/31/2018] [Accepted: 06/12/2018] [Indexed: 12/04/2022] Open
Abstract
Many collective phenomena in Nature emerge from the -partial- synchronisation of the units comprising a system. In the case of the brain, this self-organised process allows groups of neurons to fire in highly intricate partially synchronised patterns and eventually lead to high level cognitive outputs and control over the human body. However, when the synchronisation patterns are altered and hypersynchronisation occurs, undesirable effects can occur. This is particularly striking and well documented in the case of epileptic seizures and tremors in neurodegenerative diseases such as Parkinson's disease. In this paper, we propose an innovative, minimally invasive, control method that can effectively desynchronise misfiring brain regions and thus mitigate and even eliminate the symptoms of the diseases. The control strategy, grounded in the Hamiltonian control theory, is applied to ensembles of neurons modelled via the Kuramoto or the Stuart-Landau models and allows for heterogeneous coupling among the interacting unities. The theory has been complemented with dedicated numerical simulations performed using the small-world Newman-Watts network and the random Erdős-Rényi network. Finally the method has been compared with the gold-standard Proportional-Differential Feedback control technique. Our method is shown to achieve equivalent levels of desynchronisation using lesser control strength and/or fewer controllers, being thus minimally invasive.
Collapse
Affiliation(s)
- Malbor Asllani
- naXys, Namur Institute for Complex Systems, University of Namur, Namur, Belgium
| | - Paul Expert
- Department of Mathematics, Imperial College London, London, United Kingdom
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| | - Timoteo Carletti
- naXys, Namur Institute for Complex Systems, University of Namur, Namur, Belgium
| |
Collapse
|
25
|
Zhang L, Fan D, Wang Q. Synchronous high-frequency oscillations in inhibitory-dominant network motifs consisting of three dentate gyrus-CA3 systems. CHAOS (WOODBURY, N.Y.) 2018; 28:063101. [PMID: 29960405 DOI: 10.1063/1.5017012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies on the structural-functional connectomes of the human brain have demonstrated the existence of synchronous firings in a specific brain network motif. In particular, synchronization of high-frequency oscillations (HFOs) has been observed in the experimental data sets of temporal lobe epilepsy (TLE). In addition, both clinical and experimental evidences have accumulated to demonstrate the effect of electrical stimulation on TLE, which, however, remains largely unexplored. In this work, we first employ our previously proposed dentate gyrus (DG)-CA3 network model to investigate the influence of an external electrical stimulus on the HFO transitions. The results indicate that the reinforcing stimulus can induce the HFO transitions of the DG-CA3 system from the gamma band to the fast ripples band. Along with that, the consistent oscillations of neurons within DG-CA3 can also be enhanced with the increasing of stimulus. Then, we expand into a simple motif of three coupled DG-CA3 systems in both the feedforward inhibition and feedback inhibition connections, to investigate the synchronous evolutions of HFOs by regulating both the stimulation strength and inhibitory function. It is shown that the comprehensive effects, which lead to band transition, are independent of the motif configurations. The enhanced external electrical stimulus weakens the synchronism and correlation of connected motifs. In contrast, we demonstrate that the increased inhibitory coupling could facilitate correlation to some extent. Overall, our work highlights the possible origin of synchronous HFOs of hippocampal motifs governed by external inputs and inhibitory connection, which might contribute to a better understanding of the interplay between synchronization dynamics and epileptic structure in the human brain.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| | - Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| |
Collapse
|
26
|
Wang DJJ, Jann K, Fan C, Qiao Y, Zang YF, Lu H, Yang Y. Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity. Front Neurosci 2018; 12:352. [PMID: 29896081 PMCID: PMC5986880 DOI: 10.3389/fnins.2018.00352] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023] Open
Abstract
Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing—increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.
Collapse
Affiliation(s)
- Danny J J Wang
- Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kay Jann
- Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chang Fan
- Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Qiao
- Department of Psychology, Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yu-Feng Zang
- Department of Psychology, Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
27
|
Richetto J, Chesters R, Cattaneo A, Labouesse MA, Gutierrez AMC, Wood TC, Luoni A, Meyer U, Vernon A, Riva MA. Genome-Wide Transcriptional Profiling and Structural Magnetic Resonance Imaging in the Maternal Immune Activation Model of Neurodevelopmental Disorders. Cereb Cortex 2018; 27:3397-3413. [PMID: 27797829 DOI: 10.1093/cercor/bhw320] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/28/2016] [Indexed: 01/26/2023] Open
Abstract
Prenatal exposure to maternal infection increases the risk of neurodevelopmental disorders, including schizophrenia and autism. The molecular processes underlying this pathological association, however, are only partially understood. Here, we combined unbiased genome-wide transcriptional profiling with follow-up epigenetic analyses and structural magnetic resonance imaging to explore convergent molecular and neuromorphological alterations in corticostriatal areas of adult offspring exposed to prenatal immune activation. Genome-wide transcriptional profiling revealed that prenatal immune activation caused a differential expression of 116 and 251 genes in the medial prefrontal cortex and nucleus accumbens, respectively. A large part of genes that were commonly affected in both brain areas were related to myelin functionality and stability. Subsequent epigenetic analyses indicated that altered DNA methylation of promoter regions might contribute to the differential expression of myelin-related genes. Quantitative relaxometry comparing T1, T2, and myelin water fraction revealed sparse increases in T1 relaxation times and consistent reductions in T2 relaxation times. Together, our multi-system approach demonstrates that prenatal viral-like immune activation causes myelin-related transcriptional and epigenetic changes in corticostriatal areas. Even though these abnormalities do not seem to be associated with overt white matter reduction, they may provide a molecular mechanism whereby prenatal infection can impair myelin functionality and stability.
Collapse
Affiliation(s)
- Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Robert Chesters
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Annamaria Cattaneo
- Biological Psychiatry Laboratory, IRCCS Fatebenefratelli San Giovanni di Dio, Brescia, Italy.,Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, UK
| | - Marie A Labouesse
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Ana Maria Carrillo Gutierrez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Anthony Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
McFarland DJ. How neuroscience can inform the study of individual differences in cognitive abilities. Rev Neurosci 2018; 28:343-362. [PMID: 28195556 DOI: 10.1515/revneuro-2016-0073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Theories of human mental abilities should be consistent with what is known in neuroscience. Currently, tests of human mental abilities are modeled by cognitive constructs such as attention, working memory, and speed of information processing. These constructs are in turn related to a single general ability. However, brains are very complex systems and whether most of the variability between the operations of different brains can be ascribed to a single factor is questionable. Research in neuroscience suggests that psychological processes such as perception, attention, decision, and executive control are emergent properties of interacting distributed networks. The modules that make up these networks use similar computational processes that involve multiple forms of neural plasticity, each having different time constants. Accordingly, these networks might best be characterized in terms of the information they process rather than in terms of abstract psychological processes such as working memory and executive control.
Collapse
|
29
|
Abstract
Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.
Collapse
|
30
|
Hellyer PJ, Clopath C, Kehagia AA, Turkheimer FE, Leech R. From homeostasis to behavior: Balanced activity in an exploration of embodied dynamic environmental-neural interaction. PLoS Comput Biol 2017; 13:e1005721. [PMID: 28837556 PMCID: PMC5587328 DOI: 10.1371/journal.pcbi.1005721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/06/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
In recent years, there have been many computational simulations of spontaneous neural dynamics. Here, we describe a simple model of spontaneous neural dynamics that controls an agent moving in a simple virtual environment. These dynamics generate interesting brain-environment feedback interactions that rapidly destabilize neural and behavioral dynamics demonstrating the need for homeostatic mechanisms. We investigate roles for homeostatic plasticity both locally (local inhibition adjusting to balance excitatory input) as well as more globally (regional "task negative" activity that compensates for "task positive", sensory input in another region) balancing neural activity and leading to more stable behavior (trajectories through the environment). Our results suggest complementary functional roles for both local and macroscale mechanisms in maintaining neural and behavioral dynamics and a novel functional role for macroscopic "task-negative" patterns of activity (e.g., the default mode network).
Collapse
Affiliation(s)
- Peter John Hellyer
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL), Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Angie A. Kehagia
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Federico E. Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Robert Leech
- Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL), Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
31
|
Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging. Sci Rep 2017; 7:6452. [PMID: 28743861 PMCID: PMC5527085 DOI: 10.1038/s41598-017-05484-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Simultaneous MR-PET-EEG (magnetic resonance imaging - positron emission tomography – electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here for the first time. It enables the assessment of molecular metabolic information with high spatial and temporal resolution in a given brain simultaneously. Here, we characterize the brain’s default mode network (DMN) in healthy male subjects using multimodal fingerprinting by quantifying energy metabolism via 2- [18F]fluoro-2-desoxy-D-glucose PET (FDG-PET), the inhibition – excitation balance of neuronal activation via magnetic resonance spectroscopy (MRS), its functional connectivity via fMRI and its electrophysiological signature via EEG. The trimodal approach reveals a complementary fingerprint. Neuronal activation within the DMN as assessed with fMRI is positively correlated with the mean standard uptake value of FDG. Electrical source localization of EEG signals shows a significant difference between the dorsal DMN and sensorimotor network in the frequency range of δ, θ, α and β–1, but not with β–2 and β–3. In addition to basic neuroscience questions addressing neurovascular-metabolic coupling, this new methodology lays the foundation for individual physiological and pathological fingerprints for a wide research field addressing healthy aging, gender effects, plasticity and different psychiatric and neurological diseases.
Collapse
|
32
|
Díaz-Parra A, Osborn Z, Canals S, Moratal D, Sporns O. Structural and functional, empirical and modeled connectivity in the cerebral cortex of the rat. Neuroimage 2017; 159:170-184. [PMID: 28739119 PMCID: PMC5724396 DOI: 10.1016/j.neuroimage.2017.07.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022] Open
Abstract
Connectomics data from animal models provide an invaluable opportunity to reveal the complex interplay between structure and function in the mammalian brain. In this work, we investigate the relationship between structural and functional connectivity in the rat brain cortex using a directed anatomical network generated from a carefully curated meta-analysis of published tracing data, along with resting-state functional MRI data obtained from a group of 14 anesthetized Wistar rats. We found a high correspondence between the strength of functional connections, measured as blood oxygen level dependent (BOLD) signal correlations between cortical regions, and the weight of the corresponding anatomical links in the connectome graph (maximum Spearman rank-order correlation ρ=0.48). At the network-level, regions belonging to the same functionally defined community tend to form more mutual weighted connections between each other compared to regions located in different communities. We further found that functional communities in resting-state networks are enriched in densely connected anatomical motifs. Importantly, these higher-order structural subgraphs cannot be explained by lower-order topological properties, suggesting that dense structural patterns support functional associations in the resting brain. Simulations of brain-wide resting-state activity based on neural mass models implemented on the empirical rat anatomical connectome demonstrated high correlation between the simulated and the measured functional connectivity (maximum Pearson correlation ρ=0.53), further suggesting that the topology of structural connections plays an important role in shaping functional cortical networks.
Collapse
Affiliation(s)
- Antonio Díaz-Parra
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Zachary Osborn
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Indiana University Network Science Institute, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
33
|
Brown DR, Cavanagh JF. The sound and the fury: Late positive potential is sensitive to sound affect. Psychophysiology 2017; 54:1812-1825. [PMID: 28726287 DOI: 10.1111/psyp.12959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 01/10/2023]
Abstract
Emotion is an emergent construct of multiple distinct neural processes. EEG is uniquely sensitive to real-time neural computations, and thus is a promising tool to study the construction of emotion. This series of studies aimed to probe the mechanistic contribution of the late positive potential (LPP) to multimodal emotion perception. Experiment 1 revealed that LPP amplitudes for visual images, sounds, and visual images paired with sounds were larger for negatively rated stimuli than for neutrally rated stimuli. Experiment 2 manipulated this audiovisual enhancement by altering the valence pairings with congruent (e.g., positive audio + positive visual) or conflicting emotional pairs (e.g., positive audio + negative visual). Negative visual stimuli evoked larger early LPP amplitudes than positive visual stimuli, regardless of sound pairing. However, time frequency analyses revealed significant midfrontal theta-band power differences for conflicting over congruent stimuli pairs, suggesting very early (∼500 ms) realization of thematic fidelity violations. Interestingly, late LPP modulations were reflective of the opposite pattern of congruency, whereby congruent over conflicting pairs had larger LPP amplitudes. Together, these findings suggest that enhanced parietal activity for affective valence is modality independent and sensitive to complex affective processes. Furthermore, these findings suggest that altered neural activities for affective visual stimuli are enhanced by concurrent affective sounds, paving the way toward an understanding of the construction of multimodal affective experience.
Collapse
Affiliation(s)
- Darin R Brown
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
34
|
Serruya MD. Connecting the Brain to Itself through an Emulation. Front Neurosci 2017; 11:373. [PMID: 28713235 PMCID: PMC5492113 DOI: 10.3389/fnins.2017.00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023] Open
Abstract
Pilot clinical trials of human patients implanted with devices that can chronically record and stimulate ensembles of hundreds to thousands of individual neurons offer the possibility of expanding the substrate of cognition. Parallel trains of firing rate activity can be delivered in real-time to an array of intermediate external modules that in turn can trigger parallel trains of stimulation back into the brain. These modules may be built in software, VLSI firmware, or biological tissue as in vitro culture preparations or in vivo ectopic construct organoids. Arrays of modules can be constructed as early stage whole brain emulators, following canonical intra- and inter-regional circuits. By using machine learning algorithms and classic tasks known to activate quasi-orthogonal functional connectivity patterns, bedside testing can rapidly identify ensemble tuning properties and in turn cycle through a sequence of external module architectures to explore which can causatively alter perception and behavior. Whole brain emulation both (1) serves to augment human neural function, compensating for disease and injury as an auxiliary parallel system, and (2) has its independent operation bootstrapped by a human-in-the-loop to identify optimal micro- and macro-architectures, update synaptic weights, and entrain behaviors. In this manner, closed-loop brain-computer interface pilot clinical trials can advance strong artificial intelligence development and forge new therapies to restore independence in children and adults with neurological conditions.
Collapse
Affiliation(s)
- Mijail D Serruya
- Neurology, Thomas Jefferson UniversityPhiladelphia, PA, United States
| |
Collapse
|
35
|
Lord LD, Stevner AB, Deco G, Kringelbach ML. Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0283. [PMID: 28507228 PMCID: PMC5434074 DOI: 10.1098/rsta.2016.0283] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 05/18/2023]
Abstract
To survive in an ever-changing environment, the brain must seamlessly integrate a rich stream of incoming information into coherent internal representations that can then be used to efficiently plan for action. The brain must, however, balance its ability to integrate information from various sources with a complementary capacity to segregate information into modules which perform specialized computations in local circuits. Importantly, evidence suggests that imbalances in the brain's ability to bind together and/or segregate information over both space and time is a common feature of several neuropsychiatric disorders. Most studies have, however, until recently strictly attempted to characterize the principles of integration and segregation in static (i.e. time-invariant) representations of human brain networks, hence disregarding the complex spatio-temporal nature of these processes. In the present Review, we describe how the emerging discipline of whole-brain computational connectomics may be used to study the causal mechanisms of the integration and segregation of information on behaviourally relevant timescales. We emphasize how novel methods from network science and whole-brain computational modelling can expand beyond traditional neuroimaging paradigms and help to uncover the neurobiological determinants of the abnormal integration and segregation of information in neuropsychiatric disorders.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'.
Collapse
Affiliation(s)
| | - Angus B Stevner
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Instituci Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia, Clayton VIC 3800
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Hellyer PJ, Barry EF, Pellizzon A, Veronese M, Rizzo G, Tonietto M, Schütze M, Brammer M, Aurélio Romano-Silva M, Bertoldo A, Turkheimer FE. Protein synthesis is associated with high-speed dynamics and broad-band stability of functional hubs in the brain. Neuroimage 2017; 155:209-216. [PMID: 28465163 PMCID: PMC5519503 DOI: 10.1016/j.neuroimage.2017.04.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 01/30/2023] Open
Abstract
L-[1-11C]leucine PET can be used to measure in vivo protein synthesis in the brain. However, the relationship between regional protein synthesis and on-going neural dynamics is unclear. We use a graph theoretical approach to examine the relationship between cerebral protein synthesis (rCPS) and both static and dynamical measures of functional connectivity (measured using resting state functional MRI, R-fMRI). Our graph theoretical analysis demonstrates a significant positive relationship between protein turnover and static measures of functional connectivity. We compared these results to simple measures of metabolism in the cortex using [18F]FDG PET). Whilst some relationships between [18F]FDG binding and graph theoretical measures was present, there remained a significant relationship between protein turnover and graph theoretical measures, which were more robustly explained by L-[1-11C]Leucine than [18F]FDG PET. This relationship was stronger in dynamics at a faster temporal resolution relative to dynamics measured over a longer epoch. Using a Dynamic connectivity approach, we also demonstrate that broad-band dynamic measures of Functional Connectivity (FC), are inversely correlated with protein turnover, suggesting greater stability of FC in highly interconnected hub regions is supported by protein synthesis. Overall, we demonstrate that cerebral protein synthesis has a strong relationship independent of tissue metabolism to neural dynamics at the macroscopic scale. Spontaneous, neural dynamics are fundamental for information processing & function We combine L-[1-11C]leucine PET with Static and Dynamic measures of network topology ‘Hub’ brain regions are linked to increased protein synthesis, independent of tissue metabolism Stability of network hubs is inversely correlated with protein turnover Strong, stable hubs are supported by protein synthesis
Collapse
Affiliation(s)
- Peter J Hellyer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Bioengineering, Imperial College London, Royal School of Mines, Room 4.35, South Kensington Campus, SW7 2AZ, UK
| | - Erica F Barry
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alberto Pellizzon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gaia Rizzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Matteo Tonietto
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Manuel Schütze
- Instituto Nacional de Ciência e Tecnologia em Medicina Molecular, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Michael Brammer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Instituto Nacional de Ciência e Tecnologia em Medicina Molecular, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marco Aurélio Romano-Silva
- Instituto Nacional de Ciência e Tecnologia em Medicina Molecular, Federal University of Minas Gerais, Belo Horizonte, Brazil; Mental Health Department, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Federico E Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
37
|
Scheinost D, Sinha R, Cross SN, Kwon SH, Sze G, Constable RT, Ment LR. Does prenatal stress alter the developing connectome? Pediatr Res 2017; 81:214-226. [PMID: 27673421 PMCID: PMC5313513 DOI: 10.1038/pr.2016.197] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
Human neurodevelopment requires the organization of neural elements into complex structural and functional networks called the connectome. Emerging data suggest that prenatal exposure to maternal stress plays a role in the wiring, or miswiring, of the developing connectome. Stress-related symptoms are common in women during pregnancy and are risk factors for neurobehavioral disorders ranging from autism spectrum disorder, attention deficit hyperactivity disorder, and addiction, to major depression and schizophrenia. This review focuses on structural and functional connectivity imaging to assess the impact of changes in women's stress-based physiology on the dynamic development of the human connectome in the fetal brain.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut,Department of Child Study, Yale School of Medicine, New Haven, Connecticut,Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Sarah N. Cross
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Soo Hyun Kwon
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Gordon Sze
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Laura R. Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut,Department of Neurology, Yale School of Medicine, New Haven, Connecticut,()
| |
Collapse
|
38
|
Kumar G, Ching S. The Geometry of Plasticity-Induced Sensitization in Isoinhibitory Rate Motifs. Neural Comput 2016; 28:1889-926. [PMID: 27391684 DOI: 10.1162/neco_a_00865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A well-known phenomenon in sensory perception is desensitization, wherein behavioral responses to persistent stimuli become attenuated over time. In this letter, our focus is on studying mechanisms through which desensitization may be mediated at the network level and, specifically, how sensitivity changes arise as a function of long-term plasticity. Our principal object of study is a generic isoinhibitory motif: a small excitatory-inhibitory network with recurrent inhibition. Such a motif is of interest due to its overrepresentation in laminar sensory network architectures. Here, we introduce a sensitivity analysis derived from control theory in which we characterize the fixed-energy reachable set of the motif. This set describes the regions of the phase-space that are more easily (in terms of stimulus energy) accessed, thus providing a holistic assessment of sensitivity. We specifically focus on how the geometry of this set changes due to repetitive application of a persistent stimulus. We find that for certain motif dynamics, this geometry contracts along the stimulus orientation while expanding in orthogonal directions. In other words, the motif not only desensitizes to the persistent input, but heightens its responsiveness (sensitizes) to those that are orthogonal. We develop a perturbation analysis that links this sensitization to both plasticity-induced changes in synaptic weights and the intrinsic dynamics of the network, highlighting that the effect is not purely due to weight-dependent disinhibition. Instead, this effect depends on the relative neuronal time constants and the consequent stimulus-induced drift that arises in the motif phase-space. For tightly distributed (but random) parameter ranges, sensitization is quite generic and manifests in larger recurrent E-I networks within which the motif is embedded.
Collapse
Affiliation(s)
- Gautam Kumar
- Electrical and Systems Engineering Washington University in St. Louis, St. Louis, MO 63130, U.S.A.
| | - ShiNung Ching
- Electrical and Systems Engineering Washington University in St. Louis, St. Louis, MO 63130, U.S.A.
| |
Collapse
|
39
|
Identification of canonical neural events during continuous gameplay of an 8-bit style video game. Neuroimage 2016; 133:1-13. [PMID: 26952196 DOI: 10.1016/j.neuroimage.2016.02.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/04/2016] [Accepted: 02/28/2016] [Indexed: 01/11/2023] Open
Abstract
Cognitive neuroscience suffers from a unique and pervasive problem of generalizability. Since neural findings are often interpreted in the context of a specific manipulation during a carefully controlled task, it is hard to transfer knowledge from one task to another. In this report we address problems of generalizability with two methodological advancements. First, we aimed to transcend status quo experimental procedures with a continuous, engaging task environment. To this end, we created a novel 8-bit style continuous space shooter video game that elicits a multitude of goal-oriented events, such as crashing into a wall or blowing up an enemy with a missile. Second, we aimed to objectively define the psychological significance of these events. To achieve this aim, we used pattern classification of EEG data to derive predictive weights from carefully controlled pre-game exemplar events (oddball target detection and gambling wins and losses) and transferred those weights to EEG activities during video game events. All major goal-oriented events (crashes into the wall, crashes into an enemy, missile hit on an enemy) had a significant between-task transfer bias towards oddball target weights in the time range of the canonical P3, indicating the presence of similar salience detection processes. Missile hits on an enemy were specifically identified as gambling wins, confirming the hypothesis that this goal-oriented event was appetitive. These findings suggest that it is possible to identify the contribution of canonical neural activities during otherwise ambiguous and uncontrolled task performance.
Collapse
|
40
|
Robertson CE, Ratai EM, Kanwisher N. Reduced GABAergic Action in the Autistic Brain. Curr Biol 2015; 26:80-5. [PMID: 26711497 DOI: 10.1016/j.cub.2015.11.019] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
An imbalance between excitatory/inhibitory neurotransmission has been posited as a central characteristic of the neurobiology of autism [1], inspired in part by the striking prevalence of seizures among individuals with the disorder [2]. Evidence supporting this hypothesis has specifically implicated the signaling pathway of the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), in this putative imbalance: GABA receptor genes have been associated with autism in linkage and copy number variation studies [3-7], fewer GABA receptor subunits have been observed in the post-mortem tissue of autistic individuals [8, 9], and GABAergic signaling is disrupted across heterogeneous mouse models of autism [10]. Yet, empirical evidence supporting this hypothesis in humans is lacking, leaving a gulf between animal and human studies of the condition. Here, we present a direct link between GABA signaling and autistic perceptual symptomatology. We first demonstrate a robust, replicated autistic deficit in binocular rivalry [11], a basic visual function that is thought to rely on the balance of excitation/inhibition in visual cortex [12-15]. Then, using magnetic resonance spectroscopy, we demonstrate a tight linkage between binocular rivalry dynamics in typical participants and both GABA and glutamate levels in the visual cortex. Finally, we show that the link between GABA and binocular rivalry dynamics is completely and specifically absent in autism. These results suggest a disruption in inhibitory signaling in the autistic brain and forge a translational path between animal and human models of the condition.
Collapse
Affiliation(s)
- Caroline E Robertson
- Harvard Society of Fellows, Harvard University, Cambridge, MA 02138, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nancy Kanwisher
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| |
Collapse
|