1
|
Ma LH, Li S, Jiao XH, Li ZY, Zhou Y, Zhou CR, Zhou CH, Zheng H, Wu YQ. BLA-involved circuits in neuropsychiatric disorders. Ageing Res Rev 2024; 99:102363. [PMID: 38838785 DOI: 10.1016/j.arr.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
2
|
Jiang S, Wang X, Cao T, Kang R, Huang L. Insights on therapeutic potential of clemastine in neurological disorders. Front Mol Neurosci 2023; 16:1279985. [PMID: 37840769 PMCID: PMC10568021 DOI: 10.3389/fnmol.2023.1279985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Clemastine, a Food and Drug Administration (FDA)-approved compound, is recognized as a first-generation, widely available antihistamine that reduces histamine-induced symptoms. Evidence has confirmed that clemastine can transport across the blood-brain barrier and act on specific neurons and neuroglia to exert its protective effect. In this review, we summarize the beneficial effects of clemastine in various central nervous system (CNS) disorders, including neurodegenerative disease, neurodevelopmental deficits, brain injury, and psychiatric disorders. Additionally, we highlight key cellular links between clemastine and different CNS cells, in particular in oligodendrocyte progenitor cells (OPCs), oligodendrocytes (OLs), microglia, and neurons.
Collapse
Affiliation(s)
- Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueji Wang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianyu Cao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rongtian Kang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Ministry of Education, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Mohamed W, Kumar J, Alghamdi BS, Soliman AH, Toshihide Y. Neurodegeneration and inflammation crosstalk: Therapeutic targets and perspectives. IBRO Neurosci Rep 2023; 14:95-110. [PMID: 37388502 PMCID: PMC10300452 DOI: 10.1016/j.ibneur.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Glia, which was formerly considered to exist just to connect neurons, now plays a key function in a wide range of physiological events, including formation of memory, learning, neuroplasticity, synaptic plasticity, energy consumption, and homeostasis of ions. Glial cells regulate the brain's immune responses and confers nutritional and structural aid to neurons, making them an important player in a broad range of neurological disorders. Alzheimer's, ALS, Parkinson's, frontotemporal dementia (FTD), and epilepsy are a few of the neurodegenerative diseases that have been linked to microglia and astroglia cells, in particular. Synapse growth is aided by glial cell activity, and this activity has an effect on neuronal signalling. Each glial malfunction in diverse neurodegenerative diseases is distinct, and we will discuss its significance in the progression of the illness, as well as its potential for future treatment.
Collapse
Affiliation(s)
- Wael Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
4
|
Kim S, Nam Y, Kim HS, Jung H, Jeon SG, Hong SB, Moon M. Alteration of Neural Pathways and Its Implications in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040845. [PMID: 35453595 PMCID: PMC9025507 DOI: 10.3390/biomedicines10040845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by cognitive and behavioral symptoms. These AD-related manifestations result from the alteration of neural circuitry by aggregated forms of amyloid-β (Aβ) and hyperphosphorylated tau, which are neurotoxic. From a neuroscience perspective, identifying neural circuits that integrate various inputs and outputs to determine behaviors can provide insight into the principles of behavior. Therefore, it is crucial to understand the alterations in the neural circuits associated with AD-related behavioral and psychological symptoms. Interestingly, it is well known that the alteration of neural circuitry is prominent in the brains of patients with AD. Here, we selected specific regions in the AD brain that are associated with AD-related behavioral and psychological symptoms, and reviewed studies of healthy and altered efferent pathways to the target regions. Moreover, we propose that specific neural circuits that are altered in the AD brain can be potential targets for AD treatment. Furthermore, we provide therapeutic implications for targeting neuronal circuits through various therapeutic approaches and the appropriate timing of treatment for AD.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
- Correspondence:
| |
Collapse
|
5
|
Yan Y, Aierken A, Wang C, Song D, Ni J, Wang Z, Quan Z, Qing H. A potential biomarker of preclinical Alzheimer's disease: The olfactory dysfunction and its pathogenesis-based neural circuitry impairments. Neurosci Biobehav Rev 2021; 132:857-869. [PMID: 34810025 DOI: 10.1016/j.neubiorev.2021.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 01/24/2023]
Abstract
The olfactory dysfunction can signal and act as a potential biomarker of preclinical AD. However, the precise regulatory mechanism of olfactory function on the neural pathogenesis of AD is still unclear. The impairment of neural networks in olfaction system has been shown to be tightly associated with AD. As key brain regions of the olfactory system, the olfactory bulb (OB) and the piriform cortex (PCx) have a profound influence on the olfactory function. Therefore, this review will explore the mechanism of olfactory dysfunction in preclinical AD in the perspective of abnormal neural networks in the OB and PCx and their associated brain regions, especially from two aspects of aberrant oscillations and synaptic plasticity damages, which help better understand the underlying mechanism of olfactory neural network damages related to AD.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
6
|
Monterey MD, Wei H, Wu X, Wu JQ. The Many Faces of Astrocytes in Alzheimer's Disease. Front Neurol 2021; 12:619626. [PMID: 34531807 PMCID: PMC8438135 DOI: 10.3389/fneur.2021.619626] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/20/2021] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and is the most common cause of dementia in an aging population. The majority of research effort has focused on the role of neurons in neurodegeneration and current therapies have limited ability to slow disease progression. Recently more attention has been given to the role of astrocytes in the process of neurodegeneration. Specifically, reactive astrocytes have both advantageous and adverse effects during neurodegeneration. The ability to isolate and depict astrocyte phenotype has been challenging. However, with the recent development of single-cell sequencing technologies researchers are provided with the resource to delineate specific biomarkers associated with reactive astrocytes in AD. In this review, we will focus on the role of astrocytes in normal conditions and the pathological development of AD. We will further review recent developments in the understanding of astrocyte heterogeneity and associated biomarkers. A better understanding of astrocyte contributions and phenotypic changes in AD can ultimately lead to more effective therapeutic targets.
Collapse
Affiliation(s)
- Michael D Monterey
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
7
|
Melikov R, Srivastava SB, Karatum O, Dogru-Yuksel IB, Dikbas UM, Kavakli IH, Nizamoglu S. Bidirectional optical neuromodulation using capacitive charge-transfer. BIOMEDICAL OPTICS EXPRESS 2020; 11:6068-6077. [PMID: 33282475 PMCID: PMC7687954 DOI: 10.1364/boe.399755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/12/2023]
Abstract
Artificial control of neural activity allows for understanding complex neural networks and improving therapy of neurological disorders. Here, we demonstrate that utilization of photovoltaic biointerfaces combined with light waveform shaping can generate safe capacitive currents for bidirectional modulation of neurons. The differential photoresponse of the biointerface due to double layer capacitance facilitates the direction control of capacitive currents depending on the slope of light intensity. Moreover, the strength of capacitive currents is controlled by changing the rise and fall time slope of light intensity. This approach allows for high-level control of the hyperpolarization and depolarization of membrane potential at single-cell level. Our results pave the way toward advanced bioelectronic functionalities for wireless and safe control of neural activity.
Collapse
Affiliation(s)
- Rustamzhon Melikov
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | | | - Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Itir Bakis Dogru-Yuksel
- Graduate School of Biomedical Sciences and Engineering, Koc University, Istanbul 34450, Turkey
| | - Ugur Meric Dikbas
- Molecular Biology and Genetics, College of Science, Koc University, Istanbul 34450, Turkey
| | - Ibrahim Halil Kavakli
- Molecular Biology and Genetics, College of Science, Koc University, Istanbul 34450, Turkey
- College of Engineering, Chemical and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
- Graduate School of Biomedical Sciences and Engineering, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
8
|
Novel imaging and related techniques for studies of diseases of the central nervous system: a review. Cell Tissue Res 2020; 380:415-424. [PMID: 32072308 DOI: 10.1007/s00441-020-03183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Imaging technologies for the analysis of the central nervous system are rapidly developing. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging, tracer-based magnetic resonance imaging, CLARITY technology and optogenetics can be used to visualize small molecules in brain tissues, the interstitial system of the brain and neuronal circuits in whole-brain samples. These tools serve as powerful technical means to explore the mechanisms underlying disease models and to evaluate the effects of drugs. Here, we review the constituting principles of these imaging techniques and describe their applications in the field of neuroscience.
Collapse
|
9
|
Andrews MG, Nowakowski TJ. Human brain development through the lens of cerebral organoid models. Brain Res 2019; 1725:146470. [PMID: 31542572 PMCID: PMC6887101 DOI: 10.1016/j.brainres.2019.146470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
The brain is one of the most complex organs in the body, which emerges from a relatively simple set of basic 'building blocks' during early development according to complex cellular and molecular events orchestrated through a set of inherited instructions. Innovations in stem cell technologies have enabled modelling of neural cells using two- and three-dimensional cultures. In particular, cerebral ('brain') organoids have taken the center stage of brain development models that have the potential for providing meaningful insight into human neurodevelopmental and neurological disorders. We review the current understanding of cellular events during human brain organogenesis, and the events occurring during cerebral organoid differentiation. We highlight the strengths and weaknesses of this experimental model system. In particular, we explain evidence that organoids can mimic many aspects of early neural development, including neural induction, patterning, and broad neurogenesis and gliogenesis programs, offering the opportunity to study genetic regulation of these processes in a human context. Several shortcomings of the current culture methods limit the utility of cerebral organoids to spontaneously give rise to many important cell types, and to model higher order features of tissue organization. We suggest that future studies aim to improve these features in order to make them better models for the study of laminar organization, circuit formation and how disruptions of these processes relate to disease.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurology, University of California, San Francisco, CA, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
10
|
Topographical Visualization of the Reciprocal Projection between the Medial Septum and the Hippocampus in the 5XFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20163992. [PMID: 31426329 PMCID: PMC6721212 DOI: 10.3390/ijms20163992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
It is widely known that the degeneration of neural circuits is prominent in the brains of Alzheimer’s disease (AD) patients. The reciprocal connectivity of the medial septum (MS) and hippocampus, which constitutes the septo-hippocampo-septal (SHS) loop, is known to be associated with learning and memory. Despite the importance of the reciprocal projections between the MS and hippocampus in AD, the alteration of bidirectional connectivity between two structures has not yet been investigated at the mesoscale level. In this study, we adopted AD animal model, five familial AD mutations (5XFAD) mice, and anterograde and retrograde tracers, BDA and DiI, respectively, to visualize the pathology-related changes in topographical connectivity of the SHS loop in the 5XFAD brain. By comparing 4.5-month-old and 14-month-old 5XFAD mice, we successfully identified key circuit components of the SHS loop altered in 5XFAD brains. Remarkably, the SHS loop began to degenerate in 4.5-month-old 5XFAD mice before the onset of neuronal loss. The impairment of connectivity between the MS and hippocampus was accelerated in 14-month-old 5XFAD mice. These results demonstrate, for the first time, topographical evidence for the degradation of the interconnection between the MS and hippocampus at the mesoscale level in a mouse model of AD. Our results provide structural and functional insights into the interconnectivity of the MS and hippocampus, which will inform the use and development of various therapeutic approaches that target neural circuits for the treatment of AD.
Collapse
|
11
|
Xu L, Zhang W, Liu X, Zhang C, Wang P, Zhao X. Circulatory Levels of Toxic Metals (Aluminum, Cadmium, Mercury, Lead) in Patients with Alzheimer's Disease: A Quantitative Meta-Analysis and Systematic Review. J Alzheimers Dis 2019; 62:361-372. [PMID: 29439342 DOI: 10.3233/jad-170811] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Environmental exposure to toxic metals has been postulated to play a role in the pathophysiological processes of Alzheimer's disease (AD). However, the circulatory levels of toxic metals in AD patients are not consistent in previous studies. OBJECTIVE To systematically assess levels of toxic metals (aluminum, mercury, cadmium, lead) in the circulation (blood, serum/plasma) of AD patients and controls. METHODS PubMed, Web of Science, Science Direct, Cochrane Library, and the China National Knowledge Infrastructure (CNKI) were systematically searched to identify studies published up to January 1, 2017. Meta-analyses were performed using random-effects models and the pooled standardized mean difference (SMD) were reported with 95% confidence intervals (CI). RESULTS We identified 17, 7, 8, and 10 studies for aluminum, mercury, cadmium, and lead, respectively. Meta-analyses showed significantly elevated circulatory levels of aluminum (SMD = 1.08, 95% CI: 0.66, 1.50), mercury (SMD = 0.55, 95% CI, 0.15, 0.95), and cadmium (SMD = 0.62, 95% CI: 0.12, 1.11), whereas lower levels of lead (SMD = -0.23, 95% CI: -0.38, -0.07) in AD patients than in controls. Publication bias was only observed for aluminum studies, but the "trim and fill" analysis showed that the publication bias did not alter the direction of the effect. Sensitivity analyses showed no studies from the pooled analysis changed the results. CONCLUSION Compared to controls, circulatory levels of aluminum, mercury, and cadmium are significantly higher but the levels of lead were reduced in AD patients. These findings suggest that elevated aluminum, mercury, and cadmium in the circulation, especially in serum may play a role in the progression of AD.
Collapse
Affiliation(s)
- Lin Xu
- Department of Toxicology, School of Public Health, Shandong University, Jinan, China
| | - Wenchao Zhang
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, China
| | - Xianchen Liu
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cuili Zhang
- Department of Toxicology, School of Public Health, Shandong University, Jinan, China
| | - Pin Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Xiulan Zhao
- Department of Toxicology, School of Public Health, Shandong University, Jinan, China
| |
Collapse
|
12
|
Rahimi F. Aptamers Selected for Recognizing Amyloid β-Protein-A Case for Cautious Optimism. Int J Mol Sci 2018; 19:ijms19030668. [PMID: 29495486 PMCID: PMC5877529 DOI: 10.3390/ijms19030668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are versatile oligonucleotide ligands used for molecular recognition of diverse targets. However, application of aptamers to the field of amyloid β-protein (Aβ) has been limited so far. Aβ is an intrinsically disordered protein that exists in a dynamic conformational equilibrium, presenting time-dependent ensembles of short-lived, metastable structures and assemblies that have been generally difficult to isolate and characterize. Moreover, despite understanding of potential physiological roles of Aβ, this peptide has been linked to the pathogenesis of Alzheimer disease, and its pathogenic roles remain controversial. Accumulated scientific evidence thus far highlights undesirable or nonspecific interactions between selected aptamers and different Aβ assemblies likely due to the metastable nature of Aβ or inherent affinity of RNA oligonucleotides to β-sheet-rich fibrillar structures of amyloidogenic proteins. Accordingly, lessons drawn from Aβ–aptamer studies emphasize that purity and uniformity of the protein target and rigorous characterization of aptamers’ specificity are important for realizing and garnering the full potential of aptamers selected for recognizing Aβ or other intrinsically disordered proteins. This review summarizes studies of aptamers selected for recognizing different Aβ assemblies and highlights controversies, difficulties, and limitations of such studies.
Collapse
Affiliation(s)
- Farid Rahimi
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|