1
|
Weissbart H, Martin AE. The structure and statistics of language jointly shape cross-frequency neural dynamics during spoken language comprehension. Nat Commun 2024; 15:8850. [PMID: 39397036 PMCID: PMC11471778 DOI: 10.1038/s41467-024-53128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Humans excel at extracting structurally-determined meaning from speech despite inherent physical variability. This study explores the brain's ability to predict and understand spoken language robustly. It investigates the relationship between structural and statistical language knowledge in brain dynamics, focusing on phase and amplitude modulation. Using syntactic features from constituent hierarchies and surface statistics from a transformer model as predictors of forward encoding models, we reconstructed cross-frequency neural dynamics from MEG data during audiobook listening. Our findings challenge a strict separation of linguistic structure and statistics in the brain, with both aiding neural signal reconstruction. Syntactic features have a more temporally spread impact, and both word entropy and the number of closing syntactic constituents are linked to the phase-amplitude coupling of neural dynamics, implying a role in temporal prediction and cortical oscillation alignment during speech processing. Our results indicate that structured and statistical information jointly shape neural dynamics during spoken language comprehension and suggest an integration process via a cross-frequency coupling mechanism.
Collapse
Affiliation(s)
- Hugo Weissbart
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - Andrea E Martin
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Giglio L, Sharoh D, Ostarek M, Hagoort P. Connectivity of Fronto-Temporal Regions in Syntactic Structure Building During Speaking and Listening. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:922-941. [PMID: 39439740 PMCID: PMC11495677 DOI: 10.1162/nol_a_00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
The neural infrastructure for sentence production and comprehension has been found to be mostly shared. The same regions are engaged during speaking and listening, with some differences in how strongly they activate depending on modality. In this study, we investigated how modality affects the connectivity between regions previously found to be involved in syntactic processing across modalities. We determined how constituent size and modality affected the connectivity of the pars triangularis of the left inferior frontal gyrus (LIFG) and of the left posterior temporal lobe (LPTL) with the pars opercularis of the LIFG, the left anterior temporal lobe (LATL), and the rest of the brain. We found that constituent size reliably increased the connectivity across these frontal and temporal ROIs. Connectivity between the two LIFG regions and the LPTL was enhanced as a function of constituent size in both modalities, and it was upregulated in production possibly because of linearization and motor planning in the frontal cortex. The connectivity of both ROIs with the LATL was lower and only enhanced for larger constituent sizes, suggesting a contributing role of the LATL in sentence processing in both modalities. These results thus show that the connectivity among fronto-temporal regions is upregulated for syntactic structure building in both sentence production and comprehension, providing further evidence for accounts of shared neural resources for sentence-level processing across modalities.
Collapse
Affiliation(s)
- Laura Giglio
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Daniel Sharoh
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Markus Ostarek
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Yang M, Liu Y, Yue Z, Yang G, Jiang X, Cai Y, Zhang Y, Yang X, Li D, Chen L. Transcranial photobiomodulation on the left inferior frontal gyrus enhances Mandarin Chinese L1 and L2 complex sentence processing performances. BRAIN AND LANGUAGE 2024; 256:105458. [PMID: 39197357 DOI: 10.1016/j.bandl.2024.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
This study investigated the causal enhancing effect of transcranial photobiomodulation (tPBM) over the left inferior frontal gyrus (LIFG) on syntactically complex Mandarin Chinese first language (L1) and second language (L2) sentence processing performances. Two (L1 and L2) groups of participants (thirty per group) were recruited to receive the double-blind, sham-controlled tPBM intervention via LIFG, followed by the sentence processing, the verbal working memory (WM), and the visual WM tasks. Results revealed a consistent pattern for both groups: (a) tPBM enhanced sentence processing performance but not verbal WM for linear processing of unstructured sequences and visual WM performances; (b) Participants with lower sentence processing performances under sham tPBM benefited more from active tPBM. Taken together, the current study substantiated that tPBM enhanced L1 and L2 sentence processing, and would serve as a promising and cost-effective noninvasive brain stimulation (NIBS) tool for future applications on upregulating the human language faculty.
Collapse
Affiliation(s)
- Mingchuan Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Zhaoqian Yue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Guang Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Xu Jiang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yuqi Zhang
- School of Chinese as a Second Language, Peking University, Beijing 100871, China
| | - Xiujie Yang
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Educational System Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Wu J, Cheng Y, Qu X, Kang T, Cai Y, Wang P, Zaccarella E, Friederici AD, Hartwigsen G, Chen L. Continuous Theta-Burst Stimulation on the Left Posterior Inferior Frontal Gyrus Perturbs Complex Syntactic Processing Stability in Mandarin Chinese. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:608-627. [PMID: 38939729 PMCID: PMC11210936 DOI: 10.1162/nol_a_00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/12/2024] [Indexed: 06/29/2024]
Abstract
The structure of human language is inherently hierarchical. The left posterior inferior frontal gyrus (LpIFG) is proposed to be a core region for constructing syntactic hierarchies. However, it remains unclear whether LpIFG plays a causal role in syntactic processing in Mandarin Chinese and whether its contribution depends on syntactic complexity, working memory, or both. We addressed these questions by applying inhibitory continuous theta-burst stimulation (cTBS) over LpIFG. Thirty-two participants processed sentences containing embedded relative clauses (i.e., complex syntactic processing), syntactically simpler coordinated sentences (i.e., simple syntactic processing), and non-hierarchical word lists (i.e., word list processing) after receiving real or sham cTBS. We found that cTBS significantly increased the coefficient of variation, a representative index of processing stability, in complex syntactic processing (esp., when subject relative clause was embedded) but not in the other two conditions. No significant changes in d' and reaction time were detected in these conditions. The findings suggest that (a) inhibitory effect of cTBS on the LpIFG might be prominent in perturbing the complex syntactic processing stability but subtle in altering the processing quality; and (b) the causal role of the LpIFG seems to be specific for syntactic processing rather than working memory capacity, further evidencing their separability in LpIFG. Collectively, these results support the notion of the LpIFG as a core region for complex syntactic processing across languages.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Tianmin Kang
- Department of Psychology, Skidmore College, Saratoga Springs, NY, USA
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Peng Wang
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Shain C, Kean H, Casto C, Lipkin B, Affourtit J, Siegelman M, Mollica F, Fedorenko E. Distributed Sensitivity to Syntax and Semantics throughout the Language Network. J Cogn Neurosci 2024; 36:1427-1471. [PMID: 38683732 DOI: 10.1162/jocn_a_02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Human language is expressive because it is compositional: The meaning of a sentence (semantics) can be inferred from its structure (syntax). It is commonly believed that language syntax and semantics are processed by distinct brain regions. Here, we revisit this claim using precision fMRI methods to capture separation or overlap of function in the brains of individual participants. Contrary to prior claims, we find distributed sensitivity to both syntax and semantics throughout a broad frontotemporal brain network. Our results join a growing body of evidence for an integrated network for language in the human brain within which internal specialization is primarily a matter of degree rather than kind, in contrast with influential proposals that advocate distinct specialization of different brain areas for different types of linguistic functions.
Collapse
Affiliation(s)
| | - Hope Kean
- Massachusetts Institute of Technology
| | | | | | | | | | | | | |
Collapse
|
6
|
Eichner C, Berger P, Klein CC, Friederici AD. Lateralization of dorsal fiber tract targeting Broca's area concurs with language skills during development. Prog Neurobiol 2024; 236:102602. [PMID: 38582324 DOI: 10.1016/j.pneurobio.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/26/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Language is bounded to the left hemisphere in the adult brain and the functional lateralization can already be observed early during development. Here we investigate whether this is paralleled by a lateralization of the white matter structural language network. We analyze the strength and microstructural properties of language-related fiber tracts connecting temporal and frontal cortices with a separation of two dorsal tracts, one targeting the posterior Broca's area (BA44) and one targeting the precentral gyrus (BA6). In a large sample of young children (3-6 years), we demonstrate that, in contrast to the BA6-targeting tract, the microstructural asymmetry of the BA44-targeting fiber tract significantly correlates locally with different aspects of development. While the asymmetry in its anterior segment reflects age, the asymmetry in its posterior segment is associated with the children's language skills. These findings demonstrate a fine-grained structure-to-function mapping in the lateralized network and go beyond our current view of language-related human brain maturation.
Collapse
Affiliation(s)
- Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Philipp Berger
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Research Group Milestones of Early Cognitive Development, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Cheslie C Klein
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Research Group Milestones of Early Cognitive Development, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| |
Collapse
|
7
|
Papitto G, Friederici AD, Zaccarella E. Distinct neural mechanisms for action access and execution in the human brain: insights from an fMRI study. Cereb Cortex 2024; 34:bhae163. [PMID: 38629799 PMCID: PMC11022341 DOI: 10.1093/cercor/bhae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Goal-directed actions are fundamental to human behavior, whereby inner goals are achieved through mapping action representations to motor outputs. The left premotor cortex (BA6) and the posterior portion of Broca's area (BA44) are two modulatory poles of the action system. However, how these regions support the representation-output mapping within the system is not yet understood. To address this, we conducted a finger-tapping functional magnetic resonance imaging experiment using action categories ranging from specific to general. Our study found distinct neural behaviors in BA44 and BA6 during action category processing and motor execution. During access of action categories, activity in a posterior portion of BA44 (pBA44) decreased linearly as action categories became less specific. Conversely, during motor execution, activity in BA6 increased linearly with less specific categories. These findings highlight the differential roles of pBA44 and BA6 in action processing. We suggest that pBA44 facilitates access to action categories by utilizing motor information from the behavioral context while the premotor cortex integrates motor information to execute the selected action. This finding enhances our understanding of the interplay between prefrontal cortical regions and premotor cortex in mapping action representation to motor execution and, more in general, of the cortical mechanisms underlying human behavior.
Collapse
Affiliation(s)
- Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103 Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Stephanstraße 1a, 04103 Leipzig, Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Giglio L, Ostarek M, Sharoh D, Hagoort P. Diverging neural dynamics for syntactic structure building in naturalistic speaking and listening. Proc Natl Acad Sci U S A 2024; 121:e2310766121. [PMID: 38442171 PMCID: PMC10945772 DOI: 10.1073/pnas.2310766121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
The neural correlates of sentence production are typically studied using task paradigms that differ considerably from the experience of speaking outside of an experimental setting. In this fMRI study, we aimed to gain a better understanding of syntactic processing in spontaneous production versus naturalistic comprehension in three regions of interest (BA44, BA45, and left posterior middle temporal gyrus). A group of participants (n = 16) was asked to speak about the events of an episode of a TV series in the scanner. Another group of participants (n = 36) listened to the spoken recall of a participant from the first group. To model syntactic processing, we extracted word-by-word metrics of phrase-structure building with a top-down and a bottom-up parser that make different hypotheses about the timing of structure building. While the top-down parser anticipates syntactic structure, sometimes before it is obvious to the listener, the bottom-up parser builds syntactic structure in an integratory way after all of the evidence has been presented. In comprehension, neural activity was found to be better modeled by the bottom-up parser, while in production, it was better modeled by the top-down parser. We additionally modeled structure building in production with two strategies that were developed here to make different predictions about the incrementality of structure building during speaking. We found evidence for highly incremental and anticipatory structure building in production, which was confirmed by a converging analysis of the pausing patterns in speech. Overall, this study shows the feasibility of studying the neural dynamics of spontaneous language production.
Collapse
Affiliation(s)
- Laura Giglio
- Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen6525EN, The Netherlands
| | - Markus Ostarek
- Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
| | - Daniel Sharoh
- Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen6525EN, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen6525EN, The Netherlands
| |
Collapse
|
9
|
Wagley N, Hu X, Satterfield T, Bedore LM, Booth JR, Kovelman I. Neural specificity for semantic and syntactic processing in Spanish-English bilingual children. BRAIN AND LANGUAGE 2024; 250:105380. [PMID: 38301503 PMCID: PMC10947424 DOI: 10.1016/j.bandl.2024.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Brain development for language processing is associated with neural specialization of left perisylvian pathways, but this has not been investigated in young bilinguals. We examined specificity for syntax and semantics in early exposed Spanish-English speaking children (N = 65, ages 7-11) using an auditory sentence judgement task in English, their dominant language of use. During functional near infrared spectroscopy (fNIRS), the morphosyntax task elicited activation in left inferior frontal gyrus (IFG) and the semantic task elicited activation in left posterior middle temporal gyrus (MTG). Task comparisons revealed specialization in left superior temporal (STG) for morphosyntax and left MTG and angular gyrus for semantics. Although skills in neither language were uniquely related to specialization, skills in both languages were related to engagement of the left MTG for semantics and left IFG for syntax. These results are consistent with models suggesting a positive cross-linguistic interaction in those with higher language proficiency.
Collapse
Affiliation(s)
- Neelima Wagley
- Arizona State University, Speech and Hearing Science, 976 S Forest Mall, Tempe, AZ 85281, USA.
| | - Xiaosu Hu
- University of Michigan, Department of Psychology, 530 Church St, Ann Arbor, MI 48109, USA
| | - Teresa Satterfield
- University of Michigan, Romance Languages and Literatures, 812 East Washington St, Ann Arbor, MI 48109, USA
| | - Lisa M Bedore
- Temple University, College of Public Health, 1101 W. Montgomery Ave, Philadelphia, PA 19122, USA
| | - James R Booth
- Vanderbilt University, Department of Psychology and Human Development, 230 Appleton Pl., Nashville, TN 37203, USA
| | - Ioulia Kovelman
- University of Michigan, Department of Psychology, 530 Church St, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Umejima K, Flynn S, Sakai KL. Enhanced activations in the dorsal inferior frontal gyrus specifying the who, when, and what for successful building of sentence structures in a new language. Sci Rep 2024; 14:54. [PMID: 38167632 PMCID: PMC10761922 DOI: 10.1038/s41598-023-50896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
It has been argued that the principles constraining first language acquisition also constrain second language acquisition; however, neuroscientific evidence for this is scant, and even less for third and subsequent languages. We conducted fMRI experiments to evaluate this claim by focusing on the building of complex sentence structures in Kazakh, a new language for participants having acquired at least two languages. The participants performed grammaticality judgment and subject-verb matching tasks with spoken sentences. We divided the participants into two groups based on the performance levels attained in one of the experimental tasks: High in Group I and Low in Group II. A direct comparison of the two groups, which examined those participants who parsed the structures, indicated significantly stronger activations for Group I in the dorsal left inferior frontal gyrus (L. IFG). Focusing on Group I, we tested the contrast between the initial and final phases in our testing, which examined when the structures were parsed, as well as the contrast which examined what structures were parsed. These analyses further demonstrated focal activations in the dorsal L. IFG alone. Among the individual participants, stronger activation in the dorsal L. IFG, measured during the sentence presentations, predicted higher accuracy rates and shorter response times for executing the tasks that followed. These results cannot be explained by task difficulty or memory loads, and they, instead, indicate a critical and consistent role of the dorsal L. IFG during the initial to intermediate stages of grammar acquisition in a new target language. Such functional specificity of the dorsal L. IFG provides neuroscientific evidence consistent with the claims made by the Cumulative-Enhancement model in investigating language acquisition beyond target second and third languages.
Collapse
Affiliation(s)
- Keita Umejima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Suzanne Flynn
- Department of Linguistics and Philosophy, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 32-D808, Cambridge, MA, 02139, USA
| | - Kuniyoshi L Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
11
|
Yu J, Zou Y, Wu Y. The neural mechanisms underlying the processing of consonant, vowel and tone during Chinese typing: an fNIRS study. Front Neurosci 2023; 17:1258480. [PMID: 38178832 PMCID: PMC10766364 DOI: 10.3389/fnins.2023.1258480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Many studies have explored the role of consonant, vowel, and tone in Chinese word identification or sentence comprehension. However, few studies have explored their roles and neural basis during Chinese word production, especially when involving neural basis. The present fNIRS study investigated the neural mechanisms of consonant, vowel, and tone processing during Chinese typing. Participants were asked to name the Chinese characters displayed on a computer screen by typing on a keyboard while hearing a simultaneously presented auditory stimulus. The auditory stimulus was either consistent with the characters' pronunciation (consistent condition) or mismatched in the consonant, vowel, or tone of the character pronunciation. The fNIRS results showed that compared with the consistent condition (as baseline), the consonant mismatch condition evoked lower levels of oxygenated hemoglobin (HbO) activation in the left inferior frontal gyrus Broca's triangle and left superior temporal gyrus. Vowel mismatch condition evoked a higher level of HbO activation in the top of the left inferior frontal gyrus and left middle frontal gyrus. The regions and patterns of brain activation evoked by tone mismatch were the same as those of vowel mismatch. The study indicated that consonant, vowel and tone all play a role in Chinese character production. The sensitive brain areas were all in the left hemisphere. However, the neural mechanism of consonant processing differed from vowel processing in both brain regions and patterns, while tone and vowel processing shared the same regions.
Collapse
Affiliation(s)
- Jianan Yu
- School of Psychology, Northeast Normal University, Changchun, Jilin, China
| | - Yun Zou
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yan Wu
- School of Psychology, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
12
|
Schroën JAM, Gunter TC, Numssen O, Kroczek LOH, Hartwigsen G, Friederici AD. Causal evidence for a coordinated temporal interplay within the language network. Proc Natl Acad Sci U S A 2023; 120:e2306279120. [PMID: 37963247 PMCID: PMC10666120 DOI: 10.1073/pnas.2306279120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Recent neurobiological models on language suggest that auditory sentence comprehension is supported by a coordinated temporal interplay within a left-dominant brain network, including the posterior inferior frontal gyrus (pIFG), posterior superior temporal gyrus and sulcus (pSTG/STS), and angular gyrus (AG). Here, we probed the timing and causal relevance of the interplay between these regions by means of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG). Our TMS-EEG experiments reveal region- and time-specific causal evidence for a bidirectional information flow from left pSTG/STS to left pIFG and back during auditory sentence processing. Adapting a condition-and-perturb approach, our findings further suggest that the left pSTG/STS can be supported by the left AG in a state-dependent manner.
Collapse
Affiliation(s)
- Joëlle A. M. Schroën
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Thomas C. Gunter
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Ole Numssen
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Leon O. H. Kroczek
- Department of Psychology, Clinical Psychology and Psychotherapy, Universität Regensburg, Regensburg93053, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
- Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig04109, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| |
Collapse
|
13
|
Li L, Su YE, Hou W, Zhou M, Xie Y, Zou X, Li M. Expressive Language Profiles in a Clinical Screening Sample of Mandarin-Speaking Preschool Children With Autism Spectrum Disorder. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:4497-4518. [PMID: 37758191 DOI: 10.1044/2023_jslhr-23-00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
PURPOSE This cross-sectional study aimed to depict expressive language profiles and clarify lexical-grammatical interrelationships in Mandarin-speaking preschoolers with autism spectrum disorder (ASD) during the administration of the simplified Chinese Psychoeducational Profile-Third Edition screening. METHOD We collected naturalistic language samples from 81 (74 boys, seven girls) 2- to 7-year-old (Mage = 55.6 months, SD = 15.17) Mandarin-speaking children with ASD in clinician-child interactions. The child participants were divided into five age subgroups with 12-month intervals according to their chronological age. Computer-assisted part-of-speech tagging, constituency analysis, and dependency analysis addressed the developmental trajectories of early lexical and grammatical growth in each age subgroup. RESULTS Significant within-ASD differences were observed in content words, function words, and lexical categories. Nouns and verbs were the predominant lexical categories, while noun types overwhelmed verb types in children over 3 years old. The grammatical development of 5- to 6-year-old Mandarin-speaking children with ASD was better than that of 3- to 4-year-old children. The trends of syntactic structures, grammatical relations, and grammatical complexity in each age group were similar. CONCLUSIONS Mandarin-speaking preschoolers with ASD produce more lexicons with increasing age. They preserve the noun bias as a universal mechanism in early lexical learning. Moreover, their developmental trajectories of grammatical growth were comparable in each age subgroup. In addition, their lexicons and grammar were synchronically developed during early language acquisition.
Collapse
Affiliation(s)
- Li Li
- Child Language Lab, School of Foreign Languages, Central South University, Changsha, China
- Data Science Research Center, Duke Kunshan University, Suzhou, China
| | - Yi Esther Su
- Child Language Lab, School of Foreign Languages, Central South University, Changsha, China
| | - Wenwen Hou
- Child Language Lab, School of Foreign Languages, Central South University, Changsha, China
| | - Muyu Zhou
- Child Language Lab, School of Foreign Languages, Central South University, Changsha, China
| | - Yixiang Xie
- School of Psychology, South China Normal University, Guangzhou, China
| | - Xiaobing Zou
- Child Development and Behavior Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Data Science Research Center, Duke Kunshan University, Suzhou, China
| |
Collapse
|
14
|
Zhang G, Xu Y, Wang X, Li J, Shi W, Bi Y, Lin N. A social-semantic working-memory account for two canonical language areas. Nat Hum Behav 2023; 7:1980-1997. [PMID: 37735521 DOI: 10.1038/s41562-023-01704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Language and social cognition are traditionally studied as separate cognitive domains, yet accumulative studies reveal overlapping neural correlates at the left ventral temporoparietal junction (vTPJ) and the left lateral anterior temporal lobe (lATL), which have been attributed to sentence processing and social concept activation. We propose a common cognitive component underlying both effects: social-semantic working memory. We confirmed two key predictions of our hypothesis using functional MRI. First, the left vTPJ and lATL showed sensitivity to sentences only when the sentences conveyed social meaning; second, these regions showed persistent social-semantic-selective activity after the linguistic stimuli disappeared. We additionally found that both regions were sensitive to the socialness of non-linguistic stimuli and were more tightly connected with the social-semantic-processing areas than with the sentence-processing areas. The converging evidence indicates the social-semantic working-memory function of the left vTPJ and lATL and challenges the general-semantic and/or syntactic accounts for the neural activity of these regions.
Collapse
Affiliation(s)
- Guangyao Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yangwen Xu
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jixing Li
- Department of Linguistics and Translation, City University of Hong Kong, Hong Kong SAR, China
| | - Weiting Shi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Nan Lin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Matchin W, den Ouden DB, Basilakos A, Stark BC, Fridriksson J, Hickok G. Grammatical Parallelism in Aphasia: A Lesion-Symptom Mapping Study. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:550-574. [PMID: 37946730 PMCID: PMC10631800 DOI: 10.1162/nol_a_00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/19/2023] [Indexed: 11/12/2023]
Abstract
Sentence structure, or syntax, is potentially a uniquely creative aspect of the human mind. Neuropsychological experiments in the 1970s suggested parallel syntactic production and comprehension deficits in agrammatic Broca's aphasia, thought to result from damage to syntactic mechanisms in Broca's area in the left frontal lobe. This hypothesis was sometimes termed overarching agrammatism, converging with developments in linguistic theory concerning central syntactic mechanisms supporting language production and comprehension. However, the evidence supporting an association among receptive syntactic deficits, expressive agrammatism, and damage to frontal cortex is equivocal. In addition, the relationship among a distinct grammatical production deficit in aphasia, paragrammatism, and receptive syntax has not been assessed. We used lesion-symptom mapping in three partially overlapping groups of left-hemisphere stroke patients to investigate these issues: grammatical production deficits in a primary group of 53 subjects and syntactic comprehension in larger sample sizes (N = 130, 218) that overlapped with the primary group. Paragrammatic production deficits were significantly associated with multiple analyses of syntactic comprehension, particularly when incorporating lesion volume as a covariate, but agrammatic production deficits were not. The lesion correlates of impaired performance of syntactic comprehension were significantly associated with damage to temporal lobe regions, which were also implicated in paragrammatism, but not with the inferior and middle frontal regions implicated in expressive agrammatism. Our results provide strong evidence against the overarching agrammatism hypothesis. By contrast, our results suggest the possibility of an alternative grammatical parallelism hypothesis rooted in paragrammatism and a central syntactic system in the posterior temporal lobe.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Brielle Caserta Stark
- Department of Speech, Language and Hearing Sciences, Program for Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, Department of Language Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
16
|
Friederici AD. Evolutionary neuroanatomical expansion of Broca's region serving a human-specific function. Trends Neurosci 2023; 46:786-796. [PMID: 37596132 DOI: 10.1016/j.tins.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
The question concerning the evolution of language is directly linked to the debate on whether language and action are dependent or not and to what extent Broca's region serves as a common neural basis. The debate resulted in two opposing views, one arguing for and one against the dependence of language and action mainly based on neuroscientific data. This article presents an evolutionary neuroanatomical framework which may offer a solution to this dispute. It is proposed that in humans, Broca's region houses language and action independently in spatially separated subregions. This became possible due to an evolutionary expansion of Broca's region in the human brain, which was not paralleled by a similar expansion in the chimpanzee's brain, providing additional space needed for the neural representation of language in humans.
Collapse
Affiliation(s)
- Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1A, 04103 Leipzig, Germany.
| |
Collapse
|
17
|
Faroqi-Shah Y. A reconceptualization of sentence production in post-stroke agrammatic aphasia: the synergistic processing bottleneck model. FRONTIERS IN LANGUAGE SCIENCES 2023; 2:1118739. [PMID: 39175803 PMCID: PMC11340809 DOI: 10.3389/flang.2023.1118739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The language production deficit in post-stroke agrammatic aphasia (PSA-G) tends to result from lesions to the left inferior frontal gyrus (LIFG) and is characterized by a triad of symptoms: fragmented sentences, errors in functional morphology, and a dearth of verbs. Despite decades of research, the mechanisms underlying production patterns in PSA-G have been difficult to characterize. Two major impediments to progress may have been the view that it is a purely morphosyntactic disorder and the (sometimes overzealous) application of linguistic theory without interceding psycholinguistic evidence. In this paper, empirical evidence is examined to present an integrated portrait of language production in PSA-G and to evaluate the assumption of a syntax-specific syndrome. In light of extant evidence, it is proposed that agrammatic language production results from a combination of morphosyntactic, phonomotor, and processing capacity limitations that cause a cumulative processing bottleneck at the point of articulatory planning. This proposed Synergistic Processing Bottleneck model of PSA-G presents a testable framework for future research. The paper ends with recommendations for future research on PSA-G.
Collapse
Affiliation(s)
- Yasmeen Faroqi-Shah
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| |
Collapse
|
18
|
Silcox JW, Mickey B, Payne BR. Disruption to left inferior frontal cortex modulates semantic prediction effects in reading and subsequent memory: Evidence from simultaneous TMS-EEG. Psychophysiology 2023; 60:e14312. [PMID: 37203307 DOI: 10.1111/psyp.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
Readers use prior context to predict features of upcoming words. When predictions are accurate, this increases the efficiency of comprehension. However, little is known about the fate of predictable and unpredictable words in memory or the neural systems governing these processes. Several theories suggest that the speech production system, including the left inferior frontal cortex (LIFC), is recruited for prediction but evidence that LIFC plays a causal role is lacking. We first examined the effects of predictability on memory and then tested the role of posterior LIFC using transcranial magnetic stimulation (TMS). In Experiment 1, participants read category cues, followed by a predictable, unpredictable, or incongruent target word for later recall. We observed a predictability benefit to memory, with predictable words remembered better than unpredictable words. In Experiment 2, participants performed the same task with electroencephalography (EEG) while undergoing event-related TMS over posterior LIFC using a protocol known to disrupt speech production, or over the right hemisphere homologue as an active control site. Under control stimulation, predictable words were better recalled than unpredictable words, replicating Experiment 1. This predictability benefit to memory was eliminated under LIFC stimulation. Moreover, while an a priori ROI-based analysis did not yield evidence for a reduction in the N400 predictability effect, mass-univariate analyses did suggest that the N400 predictability effect was reduced in spatial and temporal extent under LIFC stimulation. Collectively, these results provide causal evidence that the LIFC is recruited for prediction during silent reading, consistent with prediction-through-production accounts.
Collapse
Affiliation(s)
- Jack W Silcox
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Brian Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| | - Brennan R Payne
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
19
|
Gallardo G, Eichner C, Sherwood CC, Hopkins WD, Anwander A, Friederici AD. Morphological evolution of language-relevant brain areas. PLoS Biol 2023; 21:e3002266. [PMID: 37656748 PMCID: PMC10501646 DOI: 10.1371/journal.pbio.3002266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/14/2023] [Accepted: 07/21/2023] [Indexed: 09/03/2023] Open
Abstract
Human language is supported by a cortical network involving Broca's area, which comprises Brodmann Areas 44 and 45 (BA44 and BA45). While cytoarchitectonic homolog areas have been identified in nonhuman primates, it remains unknown how these regions evolved to support human language. Here, we use histological data and advanced cortical registration methods to precisely compare the morphology of BA44 and BA45 in humans and chimpanzees. We found a general expansion of Broca's areas in humans, with the left BA44 enlarging the most, growing anteriorly into a region known to process syntax. Together with recent functional and receptorarchitectural studies, our findings support the conclusion that BA44 evolved from an action-related region to a bipartite system, with a posterior portion supporting action and an anterior portion supporting syntactic processes. Our findings add novel insights to the longstanding debate on the relationship between language and action, and the evolution of Broca's area.
Collapse
Affiliation(s)
- Guillermo Gallardo
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, United States of America
| | - William D. Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
20
|
Stanojević M, Brennan JR, Dunagan D, Steedman M, Hale JT. Modeling Structure-Building in the Brain With CCG Parsing and Large Language Models. Cogn Sci 2023; 47:e13312. [PMID: 37417470 DOI: 10.1111/cogs.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
To model behavioral and neural correlates of language comprehension in naturalistic environments, researchers have turned to broad-coverage tools from natural-language processing and machine learning. Where syntactic structure is explicitly modeled, prior work has relied predominantly on context-free grammars (CFGs), yet such formalisms are not sufficiently expressive for human languages. Combinatory categorial grammars (CCGs) are sufficiently expressive directly compositional models of grammar with flexible constituency that affords incremental interpretation. In this work, we evaluate whether a more expressive CCG provides a better model than a CFG for human neural signals collected with functional magnetic resonance imaging (fMRI) while participants listen to an audiobook story. We further test between variants of CCG that differ in how they handle optional adjuncts. These evaluations are carried out against a baseline that includes estimates of next-word predictability from a transformer neural network language model. Such a comparison reveals unique contributions of CCG structure-building predominantly in the left posterior temporal lobe: CCG-derived measures offer a superior fit to neural signals compared to those derived from a CFG. These effects are spatially distinct from bilateral superior temporal effects that are unique to predictability. Neural effects for structure-building are thus separable from predictability during naturalistic listening, and those effects are best characterized by a grammar whose expressive power is motivated on independent linguistic grounds.
Collapse
Affiliation(s)
| | | | | | | | - John T Hale
- Google DeepMind
- Department of Linguistics, University of Georgia
| |
Collapse
|
21
|
Liu Y, Gao C, Wang P, Friederici AD, Zaccarella E, Chen L. Exploring the neurobiology of Merge at a basic level: insights from a novel artificial grammar paradigm. Front Psychol 2023; 14:1151518. [PMID: 37287773 PMCID: PMC10242141 DOI: 10.3389/fpsyg.2023.1151518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Human language allows us to generate an infinite number of linguistic expressions. It's proposed that this competence is based on a binary syntactic operation, Merge, combining two elements to form a new constituent. An increasing number of recent studies have shifted from complex syntactic structures to two-word constructions to investigate the neural representation of this operation at the most basic level. Methods This fMRI study aimed to develop a highly flexible artificial grammar paradigm for testing the neurobiology of human syntax at a basic level. During scanning, participants had to apply abstract syntactic rules to assess whether a given two-word artificial phrase could be further merged with a third word. To control for lower-level template-matching and working memory strategies, an additional non-mergeable word-list task was set up. Results Behavioral data indicated that participants complied with the experiment. Whole brain and region of interest (ROI) analyses were performed under the contrast of "structure > word-list." Whole brain analysis confirmed significant involvement of the posterior inferior frontal gyrus [pIFG, corresponding to Brodmann area (BA) 44]. Furthermore, both the signal intensity in Broca's area and the behavioral performance showed significant correlations with natural language performance in the same participants. ROI analysis within the language atlas and anatomically defined Broca's area revealed that only the pIFG was reliably activated. Discussion Taken together, these results support the notion that Broca's area, particularly BA 44, works as a combinatorial engine where words are merged together according to syntactic information. Furthermore, this study suggests that the present artificial grammar may serve as promising material for investigating the neurobiological basis of syntax, fostering future cross-species studies.
Collapse
Affiliation(s)
- Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Chenyang Gao
- School of Global Education and Development, University of Chinese Academy of Social Sciences, Beijing, China
| | - Peng Wang
- Method and Development Group (MEG and Cortical Networks), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
22
|
Gallardo G, Eichner C, Sherwood CC, Hopkins WD, Anwander A, Friederici AD. Uncovering the Morphological Evolution of Language-Relevant Brain Areas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533103. [PMID: 36993711 PMCID: PMC10055248 DOI: 10.1101/2023.03.17.533103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Human language is supported by a cortical network involving Broca's area which comprises Brodmann Areas 44 and 45 (BA44, BA45). While cytoarchitectonic homolog areas have been identified in nonhuman primates, it remains unknown how these regions evolved to support human language. Here, we use histological data and advanced cortical registration methods to precisely compare the morphology of BA44 and 45 between humans and chimpanzees. We found a general expansion of Broca's areas in humans, with the left BA44 enlarging the most, growing anteriorly into a region known to process syntax. Together with recent functional studies, our findings show that BA44 evolved from a purely action-related region to a more expanded region in humans, with a posterior portion supporting action and an anterior portion supporting syntactic processes. Furthermore, our findings provide a solution for the longstanding debate concerning the structural and functional evolution of Broca's area and its role in action and language.
Collapse
Affiliation(s)
- Guillermo Gallardo
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington DC, USA
| | - William D. Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
23
|
Zhang J, Yao Y, Wu JS, Rolls ET, Sun CC, Bu LH, Lu JF, Lin CP, Feng JF, Mao Y, Zhou LF. The cortical regions and white matter tracts underlying auditory comprehension in patients with primary brain tumor. Hum Brain Mapp 2023; 44:1603-1616. [PMID: 36515634 PMCID: PMC9921237 DOI: 10.1002/hbm.26161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
The comprehension of spoken language is one of the most essential language functions in humans. However, the neurological underpinnings of auditory comprehension remain under debate. Here we used multi-modal neuroimaging analyses on a group of patients with low-grade gliomas to localize cortical regions and white matter tracts responsible for auditory language comprehension. Region-of-interests and voxel-level whole-brain analyses showed that cortical areas in the posterior temporal lobe are crucial for language comprehension. The fiber integrity assessed with diffusion tensor imaging of the arcuate fasciculus and the inferior longitudinal fasciculus was strongly correlated with both auditory comprehension and the grey matter volume of the inferior temporal and middle temporal gyri. Together, our findings provide direct evidence for an integrated network of auditory comprehension whereby the superior temporal gyrus and sulcus, the posterior parts of the middle and inferior temporal gyri serve as auditory comprehension cortex, and the arcuate fasciculus and the inferior longitudinal fasciculus subserve as crucial structural connectivity. These findings provide critical evidence on the neural underpinnings of language comprehension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Ye Yao
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China.,National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Jin-Song Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Edmund T Rolls
- Department of Computer Science, University of Warwick, Coventry, UK.,Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.,Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Ce-Chen Sun
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Ling-Hao Bu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jun-Feng Lu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Ching-Po Lin
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Department of Computer Science, University of Warwick, Coventry, UK.,Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Liang-Fu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
24
|
Chen L, Yang M, Gao F, Fang Z, Wang P, Feng L. Mandarin Chinese L1 and L2 complex sentence reading reveals a consistent electrophysiological pattern of highly interactive syntactic and semantic processing: An ERP study. Front Psychol 2023; 14:1143062. [PMID: 37151349 PMCID: PMC10155869 DOI: 10.3389/fpsyg.2023.1143062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction A hallmark of the human language faculty is processing complex hierarchical syntactic structures across languages. However, for Mandarin Chinese, a language typically dependent on semantic combinations and free of morphosyntactic information, the relationship between syntactic and semantic processing during Chinese complex sentence reading is unclear. From the neuropsychological perspective of bilingual studies, whether second language (L2) learners can develop a consistent pattern of target language (i.e., L2) comprehension regarding the interplay of syntactic and semantic processing, especially when their first language (L1) and L2 are typologically distinct, remains to be determined. In this study, Chinese complex sentences with center-embedded relative clauses were generated. By utilizing the high-time-resolution technique of event-related potentials (ERPs), this study aimed to investigate the processing relationships between syntactic and semantic information during Chinese complex sentence reading in both Chinese L1 speakers and highly proficient L2 learners from South Korea. Methods Normal, semantically violated (SEM), and double-violated (containing both semantic and syntactic violations, SEM + SYN) conditions were set with regard to the nonadjacent dependencies of the Chinese complex sentence, and participants were required to judge whether the sentences they read were acceptable. Results The ERP results showed that sentences with "SEM + SYN" did not elicit early left anterior negativity (ELAN), a component assumed to signal initial syntactic processing, but evoked larger components in the N400 and P600 windows than those of the "SEM" condition, thus exhibiting a biphasic waveform pattern consistent for both groups and in line with previous studies using simpler Chinese syntactic structures. The only difference between the L1 and L2 groups was that L2 learners presented later latencies of the corresponding ERP components. Discussion Taken together, these results do not support the temporal and functional priorities of syntactic processing as identified in morphologically rich languages (e.g., German) and converge on the notion that even for Chinese complex sentence reading, syntactic and semantic processing are highly interactive. This is consistent across L1 speakers and high-proficiency L2 learners with typologically different language backgrounds.
Collapse
Affiliation(s)
- Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- *Correspondence: Luyao Chen,
| | - Mingchuan Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Fei Gao
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macao, Macao SAR, China
| | - Zhengyuan Fang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Peng Wang
- Methods and Development Group (MEG and Cortical Networks), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Liping Feng,
| |
Collapse
|
25
|
Schell M, Friederici AD, Zaccarella E. Neural classification maps for distinct word combinations in Broca's area. Front Hum Neurosci 2022; 16:930849. [PMID: 36405085 PMCID: PMC9671167 DOI: 10.3389/fnhum.2022.930849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2023] Open
Abstract
Humans are equipped with the remarkable ability to comprehend an infinite number of utterances. Relations between grammatical categories restrict the way words combine into phrases and sentences. How the brain recognizes different word combinations remains largely unknown, although this is a necessary condition for combinatorial unboundedness in language. Here, we used functional magnetic resonance imaging and multivariate pattern analysis to explore whether distinct neural populations of a known language network hub-Broca's area-are specialized for recognizing distinct simple word combinations. The phrases consisted of a noun (flag) occurring either with a content word, an adjective (green flag), or with a function word, a determiner (that flag). The key result is that the distribution of neural populations classifying word combination in Broca's area seems sensitive to neuroanatomical subdivisions within this area, irrespective of task. The information patterns for adjective + noun were localized in its anterior part (BA45) whereas those for determiner + noun were localized in its posterior part (BA44). Our findings provide preliminary answers to the fundamental question of how lexical and grammatical category information interact during simple word combination, with the observation that Broca's area is sensitive to the recognition of categorical relationships during combinatory processing, based on different demands placed on syntactic and semantic information. This supports the hypothesis that the combinatorial power of language consists of some neural computation capturing phrasal differences when processing linguistic input.
Collapse
Affiliation(s)
- Marianne Schell
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
26
|
Syntax through the looking glass: A review on two-word linguistic processing across behavioral, neuroimaging and neurostimulation studies. Neurosci Biobehav Rev 2022; 142:104881. [DOI: 10.1016/j.neubiorev.2022.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
|
27
|
Maran M, Numssen O, Hartwigsen G, Zaccarella E. Online neurostimulation of Broca's area does not interfere with syntactic predictions: A combined TMS-EEG approach to basic linguistic combination. Front Psychol 2022; 13:968836. [PMID: 36619118 PMCID: PMC9815778 DOI: 10.3389/fpsyg.2022.968836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Categorical predictions have been proposed as the key mechanism supporting the fast pace of syntactic composition in language. Accordingly, grammar-based expectations are formed-e.g., the determiner "a" triggers the prediction for a noun-and facilitate the analysis of incoming syntactic information, which is then checked against a single or few other word categories. Previous functional neuroimaging studies point towards Broca's area in the left inferior frontal gyrus (IFG) as one fundamental cortical region involved in categorical prediction during incremental language processing. Causal evidence for this hypothesis is however still missing. In this study, we combined Electroencephalography (EEG) and Transcranial Magnetic Stimulation (TMS) to test whether Broca's area is functionally relevant in predictive mechanisms for language. We transiently perturbed Broca's area during the first word in a two-word construction, while simultaneously measuring the Event-Related Potential (ERP) correlates of syntactic composition. We reasoned that if Broca's area is involved in predictive mechanisms for syntax, disruptive TMS during the first word would mitigate the difference in the ERP responses for predicted and unpredicted categories in basic two-word constructions. Contrary to this hypothesis, perturbation of Broca's area at the predictive stage did not affect the ERP correlates of basic composition. The correlation strength between the electrical field induced by TMS and the ERP responses further confirmed this pattern. We discuss the present results considering an alternative account of the role of Broca's area in syntactic composition, namely the bottom-up integration of words into constituents, and of compensatory mechanisms within the language predictive network.
Collapse
Affiliation(s)
- Matteo Maran
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany,*Correspondence: Matteo Maran,
| | - Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
28
|
Bulut T. Meta-analytic connectivity modeling of the left and right inferior frontal gyri. Cortex 2022; 155:107-131. [DOI: 10.1016/j.cortex.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/21/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
|
29
|
Matchin W, den Ouden DB, Hickok G, Hillis AE, Bonilha L, Fridriksson J. The Wernicke conundrum revisited: evidence from connectome-based lesion-symptom mapping. Brain 2022; 145:3916-3930. [PMID: 35727949 DOI: 10.1093/brain/awac219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Wernicke's area has been assumed since the 1800s to be the primary region supporting word and sentence comprehension. However, in 2015 and 2019, Mesulam and colleagues raised what they termed the 'Wernicke conundrum', noting widespread variability in the anatomical definition of this area and presenting data from primary progressive aphasia that challenged this classical assumption. To resolve the conundrum, they posited a 'double disconnection' hypothesis: that word and sentence comprehension deficits in stroke-based aphasia result from disconnection of anterior temporal and inferior frontal regions from other parts of the brain due to white matter damage, rather than dysfunction of Wernicke's area itself. To test this hypothesis, we performed lesion-deficit correlations, including connectome-based lesion-symptom mapping, in four large, partially overlapping groups of English-speaking chronic left hemisphere stroke survivors. After removing variance due to object recognition and associative semantic processing, the same middle and posterior temporal lobe regions were implicated in both word comprehension deficits and complex noncanonical sentence comprehension deficits. Connectome lesion-symptom mapping revealed similar temporal-occipital white matter disconnections for impaired word and noncanonical sentence comprehension, including the temporal pole. We found an additional significant temporal-parietal disconnection for noncanonical sentence comprehension deficits, which may indicate a role for phonological working memory in processing complex syntax, but no significant frontal disconnections. Moreover, damage to these middle-posterior temporal lobe regions was associated with both word and noncanonical sentence comprehension deficits even when accounting for variance due to the strongest anterior temporal and inferior frontal white matter disconnections, respectively. Our results largely agree with the classical notion that Wernicke's area, defined here as middle superior temporal gyrus and middle-posterior superior temporal sulcus, supports both word and sentence comprehension, suggest a supporting role for temporal pole in both word and sentence comprehension, and speak against the hypothesis that comprehension deficits in Wernicke's aphasia result from double disconnection.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Department of Language Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
30
|
Marini A. The beauty of diversity in cognitive neuroscience: The case of sex-related effects in language production networks. J Neurosci Res 2022; 101:633-642. [PMID: 35692091 DOI: 10.1002/jnr.25096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
Over the past few decades, several studies have focused on potential sex-related differences in the trajectories of language development and functioning. From a behavioral point of view, the available literature shows controversial results: differences between males and females in language production tasks may not always be detectable and, even when they are, are potentially biased by sociological and educational confounding factors. The problem regarding potential sex-related differences in language production has also been investigated at the neural level, again with controversial results. The current minireview focuses on studies assessing sex-related differences in the neural networks of language production. After providing a theoretical framework of language production, it is shown that the few available investigations have provided mixed results. The major reasons for discrepant findings are discussed with theoretical and methodological implications for future studies.
Collapse
Affiliation(s)
- Andrea Marini
- Department of Language and Literatures, Communication, Education and Society, University of Udine, Udine, Italy.,Claudiana - Landesfachhochschule für Gesundheitsberufe, Bolzano, Italy
| |
Collapse
|
31
|
Kruchinina OV, Stankova EP, Guillemard DM, Galperina EI. The Level of Passive Voice Comprehension in the 4–5 Years Old Russian Children Reflects in the ERP’s. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Acunzo DJ, Low DM, Fairhall SL. Deep neural networks reveal topic-level representations of sentences in medial prefrontal cortex, lateral anterior temporal lobe, precuneus, and angular gyrus. Neuroimage 2022; 251:119005. [PMID: 35176493 PMCID: PMC10184870 DOI: 10.1016/j.neuroimage.2022.119005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/17/2022] Open
Abstract
When reading a sentence, individual words can be combined to create more complex meaning. In this study, we sought to uncover brain regions that reflect the representation of the meaning of sentences at the topic level, as opposed to the meaning of their individual constituent words when considered irrespective of their context. Using fMRI, we recorded the neural activity of participants while reading sentences. We constructed a topic-level sentence representations using the final layer of a convolutional neural network (CNN) trained to classify Wikipedia sentences into broad semantic categories. This model was contrasted with word-level sentence representations constructed using the average of the word embeddings constituting the sentence. Using representational similarity analysis, we found that the medial prefrontal cortex, lateral anterior temporal lobe, precuneus, and angular gyrus more strongly represent sentence topic-level, compared to word-level, meaning, uncovering the important role of these semantic system regions in the representation of topic-level meaning. Results were comparable when sentence meaning was modelled with a multilayer perceptron that was not sensitive to word order within a sentence, suggesting that the learning objective, in the terms of the topic being modelled, is the critical factor in capturing these neural representational spaces.
Collapse
Affiliation(s)
- David J Acunzo
- CIMeC/University of Trento, Corso Bettini 31, Rovereto 38068, Italy
| | - Daniel M Low
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, United States; Brain and Cognitive Sciences Department, MIT, United States
| | - Scott L Fairhall
- CIMeC/University of Trento, Corso Bettini 31, Rovereto 38068, Italy.
| |
Collapse
|
33
|
Riccardi N, Rorden C, Fridriksson J, Desai RH. Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection? NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:318-344. [PMID: 37215558 PMCID: PMC10158581 DOI: 10.1162/nol_a_00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/21/2022] [Indexed: 05/24/2023]
Abstract
The role of left inferior frontal cortex (LIFC) in canonical sentence comprehension is controversial. Many studies have found involvement of LIFC in sentence production or complex sentence comprehension, but negative or mixed results are often found in comprehension of simple or canonical sentences. We used voxel-, region-, and connectivity-based lesion symptom mapping (VLSM, RLSM, CLSM) in left-hemisphere chronic stroke survivors to investigate canonical sentence comprehension while controlling for lexical-semantic, executive, and phonological processes. We investigated how damage and disrupted white matter connectivity of LIFC and two other language-related regions, the left anterior temporal lobe (LATL) and posterior temporal-inferior parietal area (LpT-iP), affected sentence comprehension. VLSM and RLSM revealed that LIFC damage was not associated with canonical sentence comprehension measured by a sensibility judgment task. LIFC damage was associated instead with impairments in a lexical semantic similarity judgment task with high semantic/executive demands. Damage to the LpT-iP, specifically posterior middle temporal gyrus (pMTG), predicted worse sentence comprehension after controlling for visual lexical access, semantic knowledge, and auditory-verbal short-term memory (STM), but not auditory single-word comprehension, suggesting pMTG is vital for auditory language comprehension. CLSM revealed that disruption of left-lateralized white-matter connections from LIFC to LATL and LpT-iP was associated with worse sentence comprehension, controlling for performance in tasks related to lexical access, auditory word comprehension, and auditory-verbal STM. However, the LIFC connections were accounted for by the lexical semantic similarity judgment task, which had high semantic/executive demands. This suggests that LIFC connectivity is relevant to canonical sentence comprehension when task-related semantic/executive demands are high.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
| | - Julius Fridriksson
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Rutvik H. Desai
- Department of Psychology, University of South Carolina, Columbia, SC
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
| |
Collapse
|
34
|
Neural segregation in left inferior frontal gyrus of semantic processes at different levels of syntactic hierarchy. Neuropsychologia 2022; 171:108254. [DOI: 10.1016/j.neuropsychologia.2022.108254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/07/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
|
35
|
Bulut T. Neural correlates of morphological processing: An activation likelihood estimation meta-analysis. Cortex 2022; 151:49-69. [DOI: 10.1016/j.cortex.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/02/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
|
36
|
Wang J, Wagley N, Rice ML, Booth JR. Semantic and syntactic specialization during auditory sentence processing in 7-8-year-old children. Cortex 2021; 145:169-186. [PMID: 34731687 PMCID: PMC8633078 DOI: 10.1016/j.cortex.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023]
Abstract
Previous studies indicate that adults show specialized syntactic and semantic processes in both the temporal and frontal lobes during language comprehension. Neuro-cognitive models of language development argue that this specialization appears earlier in the temporal than the frontal lobe. However, there is little evidence supporting this proposed progression. Our recently published study (Wang, Rice, & Booth, 2020), using multivoxel pattern analyses, detected that children as young as 5 to 6 years old exhibit specialization and integration in the temporal lobe, but not the frontal lobe. In the current study, we used the same approach to examine semantic and syntactic specialization in children ages 7 to 8 years old. We found support for semantic specialization in the left middle temporal gyrus (MTG) for correct sentences and in the triangular part of the left inferior frontal gyrus (IFG) for incorrect sentences. We also found that the left superior temporal gyrus (STG) played an integration role and was sensitive to both semantic and syntactic processing during both correct and incorrect sentence processing. However, there was no support for syntactic specialization in 7- to 8-year-old children. As compared to our previous study on 5- to 6-year-old children, which only showed semantic specialization in the temporal lobe, the current study suggests a developmental progression to semantic specialization in the frontal lobe. This project represents an important step forward in testing neuro-cognitive models of language processing in children.
Collapse
Affiliation(s)
- Jin Wang
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA.
| | - Neelima Wagley
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Mabel L Rice
- Child Language Doctoral Program, University of Kansas, Lawrence, KS, USA
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
37
|
Giglio L, Ostarek M, Weber K, Hagoort P. Commonalities and Asymmetries in the Neurobiological Infrastructure for Language Production and Comprehension. Cereb Cortex 2021; 32:1405-1418. [PMID: 34491301 PMCID: PMC8971077 DOI: 10.1093/cercor/bhab287] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/30/2023] Open
Abstract
The neurobiology of sentence production has been largely understudied compared to the neurobiology of sentence comprehension, due to difficulties with experimental control and motion-related artifacts in neuroimaging. We studied the neural response to constituents of increasing size and specifically focused on the similarities and differences in the production and comprehension of the same stimuli. Participants had to either produce or listen to stimuli in a gradient of constituent size based on a visual prompt. Larger constituent sizes engaged the left inferior frontal gyrus (LIFG) and middle temporal gyrus (LMTG) extending to inferior parietal areas in both production and comprehension, confirming that the neural resources for syntactic encoding and decoding are largely overlapping. An ROI analysis in LIFG and LMTG also showed that production elicited larger responses to constituent size than comprehension and that the LMTG was more engaged in comprehension than production, while the LIFG was more engaged in production than comprehension. Finally, increasing constituent size was characterized by later BOLD peaks in comprehension but earlier peaks in production. These results show that syntactic encoding and parsing engage overlapping areas, but there are asymmetries in the engagement of the language network due to the specific requirements of production and comprehension.
Collapse
Affiliation(s)
- Laura Giglio
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Markus Ostarek
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Kirsten Weber
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
38
|
Asano R, Boeckx C, Seifert U. Hierarchical control as a shared neurocognitive mechanism for language and music. Cognition 2021; 216:104847. [PMID: 34311153 DOI: 10.1016/j.cognition.2021.104847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 05/14/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022]
Abstract
Although comparative research has made substantial progress in clarifying the relationship between language and music as neurocognitive systems from both a theoretical and empirical perspective, there is still no consensus about which mechanisms, if any, are shared and how they bring about different neurocognitive systems. In this paper, we tackle these two questions by focusing on hierarchical control as a neurocognitive mechanism underlying syntax in language and music. We put forward the Coordinated Hierarchical Control (CHC) hypothesis: linguistic and musical syntax rely on hierarchical control, but engage this shared mechanism differently depending on the current control demand. While linguistic syntax preferably engages the abstract rule-based control circuit, musical syntax rather employs the coordination of the abstract rule-based and the more concrete motor-based control circuits. We provide evidence for our hypothesis by reviewing neuroimaging as well as neuropsychological studies on linguistic and musical syntax. The CHC hypothesis makes a set of novel testable predictions to guide future work on the relationship between language and music.
Collapse
Affiliation(s)
- Rie Asano
- Systematic Musicology, Institute of Musicology, University of Cologne, Germany.
| | - Cedric Boeckx
- Section of General Linguistics, University of Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), Spain; Catalan Institute for Advanced Studies and Research (ICREA), Spain
| | - Uwe Seifert
- Systematic Musicology, Institute of Musicology, University of Cologne, Germany
| |
Collapse
|
39
|
Grodzinsky Y, Pieperhoff P, Thompson C. Stable brain loci for the processing of complex syntax: A review of the current neuroimaging evidence. Cortex 2021; 142:252-271. [PMID: 34303116 DOI: 10.1016/j.cortex.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/10/2021] [Accepted: 06/13/2021] [Indexed: 11/26/2022]
Abstract
We conducted a retrospective review of fMRI studies of complex syntax, in order to study the stability of the neural bases of mechanisms engaged in syntactic processing. Our review set out rigorous selection criteria of studies which we discuss, including transparency and minimality of the contrasts between stimuli, and the presence of whole brain analyses corrected for multiple comparisons. Seventeen studies with 316 participants survived our sieve. We mapped the 65 resulting maxima onto JuBrain, a state-of-the-art cytoarchitectonic brain atlas (Amunts et al., 2020), and a sharp picture emerged: syntactic displacement operations (a k a MOVE) produce highly consistent results, activating left Broca's region across-the-board and unambiguously; to a somewhat lesser extent, maxima clustered in left posterior brain regions, including the STS/STG. The few studies of syntactic tree-building operations (a k a MERGE) produce a murkier picture regarding the involvement of the left IFG. We conclude that the extant data decisively point to the JuBrain-defined Broca's region as the main locus of complex receptive syntax in healthy people; the STS/STG also are involved, but to a lesser extent.
Collapse
Affiliation(s)
- Yosef Grodzinsky
- Neurolinguistics Lab, Edmond & Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Cynthia Thompson
- Aphasia and Neurolinguistics Research Laboratory, Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA; Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
40
|
Zaleznik E, Park J. The neural basis of counting sequences. Neuroimage 2021; 237:118146. [PMID: 33965527 DOI: 10.1016/j.neuroimage.2021.118146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022] Open
Abstract
Sequence processing is critical for complex behavior, and counting sequences hold a unique place underlying human numerical development. Despite this, the neural bases of counting sequences remain unstudied. We hypothesized that counting sequences in adults would involve representations in sensory, order, magnitude, and linguistic codes that implicate regions in auditory, supplementary motor, posterior parietal, and inferior frontal areas, respectively. In an fMRI scanner, participants heard four-number sequences in a 2 × 2 × 2 design. The sequences were adjacent or not (e.g., 5, 6, 7, 8 vs. 5, 6, 7, 9), ordered or not (e.g., 5, 6, 7, 8 vs. 8, 5, 7, 6), and were spoken by a voice of consistent or variable identity. Then, neural substrates of counting sequences were identified by testing for the effect of consecutiveness (ordered nonadjacent versus ordered adjacent, e.g., 5, 6, 7, 9 > 5, 6, 7, 8) in the hypothesized brain regions. Violations to consecutiveness elicited brain activity in the right inferior frontal gyrus (IFG) and the supplementary motor area (SMA). In contrast, no such activation was observed in the auditory cortex, despite violations in voice identity recruiting strong activity in that region. Also, no activation was observed in the inferior parietal lobule, despite a robust effect of orderedness observed in that brain region. These findings indicate that listening to counting sequences do not automatically elicit sensory or magnitude codes but suggest that the precise increments in the sequence are tracked by the mechanism for processing ordered associations in the SMA and by the mechanism for binding individual lexical items into a cohesive whole in the IFG.
Collapse
Affiliation(s)
- Eli Zaleznik
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, United States
| | - Joonkoo Park
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, United States; Commonwealth Honors College, University of Massachusetts Amherst, 135 Hicks Way, Amherst MA 01003, United States.
| |
Collapse
|
41
|
Wang P, Knösche TR, Chen L, Brauer J, Friederici AD, Maess B. Functional brain plasticity during L1 training on complex sentences: Changes in gamma-band oscillatory activity. Hum Brain Mapp 2021; 42:3858-3870. [PMID: 33942956 PMCID: PMC8288093 DOI: 10.1002/hbm.25470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The adult human brain remains plastic even after puberty. However, whether first language (L1) training in adults can alter the language network is yet largely unknown. Thus, we conducted a longitudinal training experiment on syntactically complex German sentence comprehension. Sentence complexity was varied by the depth of the center embedded relative clauses (i.e., single or double embedded). Comprehension was tested after each sentence with a question on the thematic role assignment. Thirty adult, native German speakers were recruited for 4 days of training. Magnetoencephalography (MEG) data were recorded and subjected to spectral power analysis covering the classical frequency bands (i.e., theta, alpha, beta, low gamma, and gamma). Normalized spectral power, time‐locked to the final closure of the relative clause, was subjected to a two‐factor analysis (“sentence complexity” and “training days”). Results showed that for the more complex sentences, the interaction of sentence complexity and training days was observed in Brodmann area 44 (BA 44) as a decrease of gamma power with training. Moreover, in the gamma band (55–95 Hz) functional connectivity between BA 44 and other brain regions such as the inferior frontal sulcus and the inferior parietal cortex were correlated with behavioral performance increase due to training. These results show that even for native speakers, complex L1 sentence training improves language performance and alters neural activities of the left hemispheric language network. Training strengthens the use of the dorsal processing stream with working‐memory‐related brain regions for syntactically complex sentences, thereby demonstrating the brain's functional plasticity for L1 training.
Collapse
Affiliation(s)
- Peng Wang
- Max Planck Institute for Human Cognitive and Brain SciencesBrain Networks GroupLeipzigGermany
| | - Thomas R. Knösche
- Max Planck Institute for Human Cognitive and Brain SciencesBrain Networks GroupLeipzigGermany
| | - Luyao Chen
- Beijing Normal UniversityCollege of Chinese Language and CultureBeijing
- Max Planck Institute for Human Cognitive and Brain SciencesDepartment of NeuropsychologyLeipzigGermany
| | - Jens Brauer
- Max Planck Institute for Human Cognitive and Brain SciencesDepartment of NeuropsychologyLeipzigGermany
- Friedrich Schiller UniversityOffice of the Vice‐President for Young ResearchersJenaGermany
| | - Angela D. Friederici
- Max Planck Institute for Human Cognitive and Brain SciencesDepartment of NeuropsychologyLeipzigGermany
| | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain SciencesBrain Networks GroupLeipzigGermany
| |
Collapse
|
42
|
Chen L, Goucha T, Männel C, Friederici AD, Zaccarella E. Hierarchical syntactic processing is beyond mere associating: Functional magnetic resonance imaging evidence from a novel artificial grammar. Hum Brain Mapp 2021; 42:3253-3268. [PMID: 33822433 PMCID: PMC8193521 DOI: 10.1002/hbm.25432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 01/31/2023] Open
Abstract
Grammar is central to any natural language. In the past decades, the artificial grammar of the AnBn type in which a pair of associated elements can be nested in the other pair was considered as a desirable model to mimic human language syntax without semantic interference. However, such a grammar relies on mere associating mechanisms, thus insufficient to reflect the hierarchical nature of human syntax. Here, we test how the brain imposes syntactic hierarchies according to the category relations on linearized sequences by designing a novel artificial “Hierarchical syntactic structure‐building Grammar” (HG), and compare this to the AnBn grammar as a “Nested associating Grammar” (NG) based on multilevel associations. Thirty‐six healthy German native speakers were randomly assigned to one of the two grammars. Both groups performed a grammaticality judgment task on auditorily presented word sequences generated by the corresponding grammar in the scanner after a successful explicit behavioral learning session. Compared to the NG group, we found that the HG group showed a (a) significantly higher involvement of Brodmann area (BA) 44 in Broca's area and the posterior superior temporal gyrus (pSTG); and (b) qualitatively distinct connectivity between the two regions. Thus, the present study demonstrates that the build‐up process of syntactic hierarchies on the basis of category relations critically relies on a distinctive left‐hemispheric syntactic network involving BA 44 and pSTG. This indicates that our novel artificial grammar can constitute a suitable experimental tool to investigate syntax‐specific processes in the human brain.
Collapse
Affiliation(s)
- Luyao Chen
- College of Chinese Language and Culture, Beijing Normal University, Beijing.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tomás Goucha
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Audiology and Phoniatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
43
|
Matar S, Dirani J, Marantz A, Pylkkänen L. Left posterior temporal cortex is sensitive to syntax within conceptually matched Arabic expressions. Sci Rep 2021; 11:7181. [PMID: 33785801 PMCID: PMC8010046 DOI: 10.1038/s41598-021-86474-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
During language comprehension, the brain processes not only word meanings, but also the grammatical structure-the "syntax"-that strings words into phrases and sentences. Yet the neural basis of syntax remains contentious, partly due to the elusiveness of experimental designs that vary structure independently of meaning-related variables. Here, we exploit Arabic's grammatical properties, which enable such a design. We collected magnetoencephalography (MEG) data while participants read the same noun-adjective expressions with zero, one, or two contiguously-written definite articles (e.g., 'chair purple'; 'the-chair purple'; 'the-chair the-purple'), representing equivalent concepts, but with different levels of syntactic complexity (respectively, indefinite phrases: 'a purple chair'; sentences: 'The chair is purple.'; definite phrases: 'the purple chair'). We expected regions processing syntax to respond differently to simple versus complex structures. Single-word controls ('chair'/'purple') addressed definiteness-based accounts. In noun-adjective expressions, syntactic complexity only modulated activity in the left posterior temporal lobe (LPTL), ~ 300 ms after each word's onset: indefinite phrases induced more MEG-measured positive activity. The effects disappeared in single-word tokens, ruling out non-syntactic interpretations. In contrast, left anterior temporal lobe (LATL) activation was driven by meaning. Overall, the results support models implicating the LPTL in structure building and the LATL in early stages of conceptual combination.
Collapse
Affiliation(s)
- Suhail Matar
- Department of Psychology, New York University, New York, NY, USA.
| | - Julien Dirani
- Department of Psychology, New York University, New York, NY, USA
- NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Alec Marantz
- Department of Psychology, New York University, New York, NY, USA
- Department of Linguistics, New York University, New York, NY, USA
- NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Liina Pylkkänen
- Department of Psychology, New York University, New York, NY, USA
- Department of Linguistics, New York University, New York, NY, USA
- NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
44
|
The Neural Bases of Drawing. A Meta-analysis and a Systematic Literature Review of Neurofunctional Studies in Healthy Individuals. Neuropsychol Rev 2021; 31:689-702. [PMID: 33728526 PMCID: PMC8593049 DOI: 10.1007/s11065-021-09494-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Drawing is a multi-component process requiring a wide range of cognitive abilities. Several studies on patients with focal brain lesions and functional neuroimaging studies on healthy individuals demonstrated that drawing is associated with a wide brain network. However, the neural structures specifically related to drawing remain to be better comprehended. We conducted a systematic review complemented by a meta-analytic approach to identify the core neural underpinnings related to drawing in healthy individuals. In analysing the selected studies, we took into account the type of the control task employed (i.e. motor or non-motor) and the type of drawn stimulus (i.e. geometric, figurative, or nonsense). The results showed that a fronto-parietal network, particularly on the left side of the brain, was involved in drawing when compared with other motor activities. Drawing figurative images additionally activated the inferior frontal gyrus and the inferior temporal cortex, brain areas involved in selection of semantic features of objects and in visual semantic processing. Moreover, copying more than drawing from memory was associated with the activation of extrastriate cortex (BA 18, 19). The activation likelihood estimation coordinate-based meta-analysis revealed a core neural network specifically associated with drawing which included the premotor area (BA 6) and the inferior parietal lobe (BA 40) bilaterally, and the left precuneus (BA 7). These results showed that a fronto-parietal network is specifically involved in drawing and suggested that a crucial role is played by the (left) inferior parietal lobe, consistent with classical literature on constructional apraxia.
Collapse
|
45
|
Law R, Pylkkänen L. Lists with and without Syntax: A New Approach to Measuring the Neural Processing of Syntax. J Neurosci 2021; 41:2186-2196. [PMID: 33500276 PMCID: PMC8018759 DOI: 10.1523/jneurosci.1179-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/06/2023] Open
Abstract
In the neurobiology of syntax, a methodological challenge is to vary syntax while holding semantics constant. Changes in syntactic structure usually correlate with changes in meaning. We approached this challenge from a new angle. We deployed word lists-typically, the unstructured control in studies of syntax-as both test and control stimuli. Three-noun lists ("lamps, dolls, guitars") were embedded in sentences ("The eccentric man hoarded lamps, dolls, guitars…") and in longer lists ("forks, pen, toilet, rodeo, lamps, dolls, guitars…"). This allowed us to minimize contributions from lexical semantics and local phrasal combinatorics: the same words occurred in both conditions, and in neither case did the list items locally compose into phrases (e.g., "lamps" and "dolls" do not form a phrase). Crucially, the list partakes in a syntactic tree in one case but not the other. Lists-in-sentences increased source-localized MEG activity at ∼250-300 ms from each of the list item onsets in the left inferior frontal cortex, at ∼300-350 ms in the left anterior temporal lobe and, most reliably, at ∼330-400 ms in left posterior temporal cortex. In contrast, the main effects of semantic association strength, which we also varied, localized in the left temporoparietal cortex, with high associations increasing activity at ∼400 ms. This dissociation offers a novel characterization of the structure versus word meaning contrast in the brain: the frontotemporal network that is familiar from studies of sentence processing can be driven by the sheer presence of global sentence structure, while associative semantics has a more posterior neural signature.SIGNIFICANCE STATEMENT Human languages all have a syntax, which both enables the infinitude of linguistic creativity and determines what is grammatical in a language. The neurobiology of syntactic processing has, however, been challenging to characterize despite decades of study. One reason is pure manipulations of syntax are difficult to design. The approach here offers a novel control of two variables that are notoriously hard to keep constant when syntax is manipulated: word meaning and phrasal combinatorics. The same noun lists occurred inside longer lists and sentences, while semantic associations also varied. Our MEG results show that classic frontotemporal language regions can be driven by sentence structure even when local semantic contributions are absent. In contrast, the left temporoparietal junction tracks associative relationships.
Collapse
Affiliation(s)
- Ryan Law
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Liina Pylkkänen
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Psychology, New York University, New York, New York 10003
- Department of Linguistics, New York University, New York, New York 10003
| |
Collapse
|
46
|
Beier EJ, Chantavarin S, Rehrig G, Ferreira F, Miller LM. Cortical Tracking of Speech: Toward Collaboration between the Fields of Signal and Sentence Processing. J Cogn Neurosci 2021; 33:574-593. [PMID: 33475452 DOI: 10.1162/jocn_a_01676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In recent years, a growing number of studies have used cortical tracking methods to investigate auditory language processing. Although most studies that employ cortical tracking stem from the field of auditory signal processing, this approach should also be of interest to psycholinguistics-particularly the subfield of sentence processing-given its potential to provide insight into dynamic language comprehension processes. However, there has been limited collaboration between these fields, which we suggest is partly because of differences in theoretical background and methodological constraints, some mutually exclusive. In this paper, we first review the theories and methodological constraints that have historically been prioritized in each field and provide concrete examples of how some of these constraints may be reconciled. We then elaborate on how further collaboration between the two fields could be mutually beneficial. Specifically, we argue that the use of cortical tracking methods may help resolve long-standing debates in the field of sentence processing that commonly used behavioral and neural measures (e.g., ERPs) have failed to adjudicate. Similarly, signal processing researchers who use cortical tracking may be able to reduce noise in the neural data and broaden the impact of their results by controlling for linguistic features of their stimuli and by using simple comprehension tasks. Overall, we argue that a balance between the methodological constraints of the two fields will lead to an overall improved understanding of language processing as well as greater clarity on what mechanisms cortical tracking of speech reflects. Increased collaboration will help resolve debates in both fields and will lead to new and exciting avenues for research.
Collapse
|
47
|
Zaccarella E, Papitto G, Friederici AD. Language and action in Broca's area: Computational differentiation and cortical segregation. Brain Cogn 2020; 147:105651. [PMID: 33254030 DOI: 10.1016/j.bandc.2020.105651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 10/22/2022]
Abstract
Actions have been proposed to follow hierarchical principles similar to those hypothesized for language syntax. These structural similarities are claimed to be reflected in the common involvement of certain neural populations of Broca's area, in the Inferior Frontal Gyrus (IFG). In this position paper, we follow an influential hypothesis in linguistic theory to introduce the syntactic operation Merge and the corresponding motor/conceptual interfaces. We argue that actions hierarchies do not follow the same principles ruling language syntax. We propose that hierarchy in the action domain lies in predictive processing mechanisms mapping sensory inputs and statistical regularities of action-goal relationships. At the cortical level, distinct Broca's subregions appear to support different types of computations across the two domains. We argue that anterior BA44 is a major hub for the implementation of the syntactic operation Merge. On the other hand, posterior BA44 is recruited in selecting premotor mental representations based on the information provided by contextual signals. This functional distinction is corroborated by a recent meta-analysis (Papitto, Friederici, & Zaccarella, 2020). We conclude by suggesting that action and language can meet only where the interfaces transfer abstract computations either to the external world or to the internal mental world.
Collapse
Affiliation(s)
- Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany.
| | - Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| |
Collapse
|
48
|
Trettenbrein PC, Papitto G, Friederici AD, Zaccarella E. Functional neuroanatomy of language without speech: An ALE meta-analysis of sign language. Hum Brain Mapp 2020; 42:699-712. [PMID: 33118302 PMCID: PMC7814757 DOI: 10.1002/hbm.25254] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Sign language (SL) conveys linguistic information using gestures instead of sounds. Here, we apply a meta‐analytic estimation approach to neuroimaging studies (N = 23; subjects = 316) and ask whether SL comprehension in deaf signers relies on the same primarily left‐hemispheric cortical network implicated in spoken and written language (SWL) comprehension in hearing speakers. We show that: (a) SL recruits bilateral fronto‐temporo‐occipital regions with strong left‐lateralization in the posterior inferior frontal gyrus known as Broca's area, mirroring functional asymmetries observed for SWL. (b) Within this SL network, Broca's area constitutes a hub which attributes abstract linguistic information to gestures. (c) SL‐specific voxels in Broca's area are also crucially involved in SWL, as confirmed by meta‐analytic connectivity modeling using an independent large‐scale neuroimaging database. This strongly suggests that the human brain evolved a lateralized language network with a supramodal hub in Broca's area which computes linguistic information independent of speech.
Collapse
Affiliation(s)
- Patrick C Trettenbrein
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,International Max Planck Research School on Neuroscience of Communication: Structure, Function, and Plasticity (IMPRS NeuroCom), Leipzig, Germany
| | - Giorgio Papitto
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,International Max Planck Research School on Neuroscience of Communication: Structure, Function, and Plasticity (IMPRS NeuroCom), Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
49
|
Iwabuchi T, Makuuchi M. When a sentence loses semantics: Selective involvement of a left anterior temporal subregion in semantic processing. Eur J Neurosci 2020; 53:929-942. [PMID: 33103315 DOI: 10.1111/ejn.15022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
Abstract
Although the left anterior temporal lobe (ATL) has been associated with semantic processing, the role of this region in syntactic structure building of sentences remains a subject of debate. Functional neuroimaging studies contrasting well-formed sentences with word lists lacking syntactic structure have produced mixed results. The current functional magnetic resonance imaging study examined whether the left ATL is selectively involved in semantic processing or also plays a role in syntactic structure building by manipulating syntactic complexity and meaningfulness in a novel way. To deprive semantic/pragmatic information from a sentence, we replaced all content words with pronounceable meaningless placeholders. We conducted an experiment with a 2 × 2 factorial design with factors of SEMANTICS (natural sentences [NAT]; sentences with placeholders [SPH]) and SYNTAX (the basic Japanese Subject-Object-Verb [SOV] word order; a changed Object-Subject-Verb [OSV] word order). A main effect of SEMANTICS (NAT > SPH) was found in the left ATL, as well as in the ventral occipitotemporal regions. The opposite contrast (SPH > NAT) revealed activation in the dorsal regions encompassing Brodmann area 44, the premotor area, and the parietal cortex in the left hemisphere. We found no main effect of SYNTAX (OSV > SOV) in a subregion of the left ATL that was more responsive to natural sentences than meaningless sentences. These results indicate selective involvement of a subregion of the left ATL in semantic/pragmatic processing.
Collapse
Affiliation(s)
- Toshiki Iwabuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Michiru Makuuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
50
|
Liu L, Yan X, Li H, Gao D, Ding G. Identifying a supramodal language network in human brain with individual fingerprint. Neuroimage 2020; 220:117131. [PMID: 32622983 DOI: 10.1016/j.neuroimage.2020.117131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022] Open
Abstract
Where is human language processed in the brain independent of its form? We addressed this issue by analyzing the cortical responses to spoken, written and signed sentences at the level of individual subjects. By applying a novel fingerprinting method based on the distributed pattern of brain activity, we identified a left-lateralized network composed by the superior temporal gyrus/sulcus (STG/STS), inferior frontal gyrus (IFG), precentral gyrus/sulcus (PCG/PCS), and supplementary motor area (SMA). In these regions, the local distributed activity pattern induced by any of the three language modalities can predict the activity pattern induced by the other two modalities, and such cross-modal prediction is individual-specific. The prediction is successful for speech-sign bilinguals across all possible modality pairs, but fails for monolinguals across sign-involved pairs. In comparison, conventional group-mean focused analysis detects shared cortical activations across modalities only in the STG, PCG/PCS and SMA, and the shared activations were found in both groups. This study reveals the core language system in the brain that is shared by spoken, written and signed language, and demonstrates that it is possible and desirable to utilize the information of individual differences for functional brain mapping.
Collapse
Affiliation(s)
- Lanfang Liu
- Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University & IDG/McGovern Institute for Brain Research, Beijing, 100875, China
| | - Xin Yan
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, 48823, United States; Mental Health Center, Wenhua College, Wuhan, 430000, China
| | - Hehui Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University & IDG/McGovern Institute for Brain Research, Beijing, 100875, China
| | - Dingguo Gao
- Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University & IDG/McGovern Institute for Brain Research, Beijing, 100875, China.
| |
Collapse
|