1
|
Jeung S, Hilton C, Berg T, Gehrke L, Gramann K. Virtual Reality for Spatial Navigation. Curr Top Behav Neurosci 2023; 65:103-129. [PMID: 36512288 DOI: 10.1007/7854_2022_403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immersive virtual reality (VR) allows its users to experience physical space in a non-physical world. It has developed into a powerful research tool to investigate the neural basis of human spatial navigation as an embodied experience. The task of wayfinding can be carried out by using a wide range of strategies, leading to the recruitment of various sensory modalities and brain areas in real-life scenarios. While traditional desktop-based VR setups primarily focus on vision-based navigation, immersive VR setups, especially mobile variants, can efficiently account for motor processes that constitute locomotion in the physical world, such as head-turning and walking. When used in combination with mobile neuroimaging methods, immersive VR affords a natural mode of locomotion and high immersion in experimental settings, designing an embodied spatial experience. This in turn facilitates ecologically valid investigation of the neural underpinnings of spatial navigation.
Collapse
Affiliation(s)
- Sein Jeung
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christopher Hilton
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
| | - Timotheus Berg
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
| | - Lukas Gehrke
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
| | - Klaus Gramann
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany.
- Center for Advanced Neurological Engineering, University of California, San Diego, CA, USA.
| |
Collapse
|
2
|
Ghosh M, Yang FC, Rice SP, Hetrick V, Gonzalez AL, Siu D, Brennan EKW, John TT, Ahrens AM, Ahmed OJ. Running speed and REM sleep control two distinct modes of rapid interhemispheric communication. Cell Rep 2022; 40:111028. [PMID: 35793619 PMCID: PMC9291430 DOI: 10.1016/j.celrep.2022.111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Rhythmic gamma-band communication within and across cortical hemispheres is critical for optimal perception, navigation, and memory. Here, using multisite recordings in both rats and mice, we show that even faster ~140 Hz rhythms are robustly anti-phase across cortical hemispheres, visually resembling splines, the interlocking teeth on mechanical gears. Splines are strongest in superficial granular retrosplenial cortex, a region important for spatial navigation and memory. Spline-frequency interhemispheric communication becomes more coherent and more precisely anti-phase at faster running speeds. Anti-phase splines also demarcate high-activity frames during REM sleep. While splines and associated neuronal spiking are anti-phase across retrosplenial hemispheres during navigation and REM sleep, gamma-rhythmic interhemispheric communication is precisely in-phase. Gamma and splines occur at distinct points of a theta cycle and thus highlight the ability of interhemispheric cortical communication to rapidly switch between in-phase (gamma) and anti-phase (spline) modes within individual theta cycles during both navigation and REM sleep. Gamma-rhythmic communication within and across cortical hemispheres is critical for optimal perception, navigation, and memory. Here, Ghosh et al. identify even faster ~140 Hz rhythms, named splines, that reflect anti-phase neuronal synchrony across hemispheres. The balance of anti-phase spline and in-phase gamma communication is dynamically controlled by behavior and sleep.
Collapse
Affiliation(s)
- Megha Ghosh
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang-Chi Yang
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharena P Rice
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vaughn Hetrick
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alcides Lorenzo Gonzalez
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danny Siu
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ellen K W Brennan
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tibin T John
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison M Ahrens
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar J Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Farrell JS, Lovett-Barron M, Klein PM, Sparks FT, Gschwind T, Ortiz AL, Ahanonu B, Bradbury S, Terada S, Oijala M, Hwaun E, Dudok B, Szabo G, Schnitzer MJ, Deisseroth K, Losonczy A, Soltesz I. Supramammillary regulation of locomotion and hippocampal activity. Science 2021; 374:1492-1496. [PMID: 34914519 PMCID: PMC9154354 DOI: 10.1126/science.abh4272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Locomotor speed is a basic input used to calculate one’s position, but where this signal comes from is unclear. We identified neurons in the supramammillary nucleus (SuM) of the rodent hypothalamus that were highly correlated with future locomotor speed and reliably drove locomotion when activated. Robust locomotion control was specifically identified in Tac1 (substance P)–expressing (SuMTac1+) neurons, the activation of which selectively controlled the activity of speed-modulated hippocampal neurons. By contrast, Tac1-deficient (SuMTac1−) cells weakly regulated locomotion but potently controlled the spike timing of hippocampal neurons and were sufficient to entrain local network oscillations. These findings emphasize that the SuM not only regulates basic locomotor activity but also selectively shapes hippocampal neural activity in a manner that may support spatial navigation.
Collapse
Affiliation(s)
| | - Matthew Lovett-Barron
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Peter M. Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Fraser T. Sparks
- Department of Neuroscience, Columbia University, New York, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Tilo Gschwind
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Anna L. Ortiz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Biafra Ahanonu
- Departments of Biology and Applied Physics, Stanford University, Stanford, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Susanna Bradbury
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Mikko Oijala
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ernie Hwaun
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Gergely Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Mark J. Schnitzer
- Departments of Biology and Applied Physics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Abstract
A number of notions in the fields of motor control and kinesthetic perception have been used without clear definitions. In this review, we consider definitions for efference copy, percept, and sense of effort based on recent studies within the physical approach, which assumes that the neural control of movement is based on principles of parametric control and involves defining time-varying profiles of spatial referent coordinates for the effectors. The apparent redundancy in both motor and perceptual processes is reconsidered based on the principle of abundance. Abundance of efferent and afferent signals is viewed as the means of stabilizing both salient action characteristics and salient percepts formalized as stable manifolds in high-dimensional spaces of relevant elemental variables. This theoretical scheme has led recently to a number of novel predictions and findings. These include, in particular, lower accuracy in perception of variables produced by elements involved in a multielement task compared with the same elements in single-element tasks, dissociation between motor and perceptual effects of muscle coactivation, force illusions induced by muscle vibration, and errors in perception of unintentional drifts in performance. Taken together, these results suggest that participation of efferent signals in perception frequently involves distorted copies of actual neural commands, particularly those to antagonist muscles. Sense of effort is associated with such distorted efferent signals. Distortions in efference copy happen spontaneously and can also be caused by changes in sensory signals, e.g., those produced by muscle vibration.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
5
|
Cuadra C, Corey J, Latash ML. Distortions of the Efferent Copy during Force Perception: A Study of Force Drifts and Effects of Muscle Vibration. Neuroscience 2021; 457:139-154. [PMID: 33465409 DOI: 10.1016/j.neuroscience.2021.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023]
Abstract
We used a finger force matching task to explore the role of efferent signals in force perception. Healthy, young participants performed accurate force production tasks at different force levels with the index and middle fingers of one hand (task-hand). They received visual feedback during an early part of each trial only. After the feedback was turned off, the force drifted toward lower magnitudes. After 5 s of the drift, the participants matched the force with the same finger pair of the other hand (match-hand). The match-hand consistently overshot the task-hand force by a magnitude invariant over the initial force levels. During force matching, both hands were lifted and lowered smoothly to estimate their referent coordinate (RC) and apparent stiffness values. These trials were performed without muscle vibration and under vibration applied to the finger/hand flexors or extensors of the task-hand or match-hand. Effects of vibration were seen in the match-hand only; they were the same during vibration of flexors and extensors. We interpret the vibration-induced effects as consequences of using distorted copies of the central commands to the task-hand during force matching. In particular, using distorted copies of the RC for the antagonist muscle group could account for the differences between the task-hand and match-hand. We conclude that efferent signals may be distorted before their participation in the perceptual process. Such distortions emerge spontaneously and may be amplified by the response of sensory endings to muscle vibration combined over both agonist and antagonist muscle groups.
Collapse
Affiliation(s)
- Cristian Cuadra
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA; Escuela Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello, Calle Quillota 980, Viña del Mar, Chile
| | - Jacob Corey
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|