1
|
Do AD, Portet C, Goutagny R, Jackson J. The claustrum and synchronized brain states. Trends Neurosci 2024:S0166-2236(24)00200-5. [PMID: 39488479 DOI: 10.1016/j.tins.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Cortical activity is constantly fluctuating between distinct spatiotemporal activity patterns denoted by changes in brain state. States of cortical desynchronization arise during motor generation, increased attention, and high cognitive load. Synchronized brain states comprise spatially widespread, coordinated low-frequency neural activity during rest and sleep when disengaged from the external environment or 'offline'. The claustrum is a small subcortical structure with dense reciprocal connections with the cortex suggesting modulation by, or participation in, brain state regulation. Here, we highlight recent work suggesting that neural activity in the claustrum supports cognitive processes associated with synchronized brain states characterized by increased low-frequency network activity. As an example, we outline how claustrum activity could support episodic memory consolidation during sleep.
Collapse
Affiliation(s)
- Alison D Do
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Coline Portet
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Romain Goutagny
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Xiao Q, Lu M, Zhang X, Guan J, Li X, Wen R, Wang N, Qian L, Liao Y, Zhang Z, Liao X, Jiang C, Yue F, Ren S, Xia J, Hu J, Luo F, Hu Z, He C. Isolated theta waves originating from the midline thalamus trigger memory reactivation during NREM sleep in mice. Nat Commun 2024; 15:9231. [PMID: 39455583 PMCID: PMC11511994 DOI: 10.1038/s41467-024-53522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
During non-rapid eye movement (NREM) sleep, neural ensembles in the entorhinal-hippocampal circuit responsible for encoding recent memories undergo reactivation to facilitate the process of memory consolidation. This reactivation is widely acknowledged as pivotal for the formation of stable memory and its impairment is closely associated with memory dysfunction. To date, the neural mechanisms driving the reactivation of neural ensembles during NREM sleep remain poorly understood. Here, we show that the neural ensembles in the medial entorhinal cortex (MEC) that encode spatial experiences exhibit reactivation during NREM sleep. Notably, this reactivation consistently coincides with isolated theta waves. In addition, we found that the nucleus reuniens (RE) in the midline thalamus exhibits typical theta waves during NREM sleep, which are highly synchronized with those occurring in the MEC in male mice. Closed-loop optogenetic inhibition of the RE-MEC pathway specifically suppressed these isolated theta waves, resulting in impaired reactivation and compromised memory consolidation following a spatial memory task in male mice. The findings suggest that theta waves originating from the ventral midline thalamus play a role in initiating memory reactivation and consolidation during sleep.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Minmin Lu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Xiaolong Zhang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jiangheng Guan
- Department of Neurosurgery, General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Xin Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ruyi Wen
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Na Wang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ling Qian
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Yixiang Liao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences of Jilin University, Changchun, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Chenggang Jiang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Shuancheng Ren
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jianxia Xia
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fenlan Luo
- Department of Physiology, Third Military Medical University, Chongqing, China.
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
3
|
Cassel JC, Panzer E, Guimaraes-Olmo I, Cosquer B, de Vasconcelos AP, Stephan A. The ventral midline thalamus and long-term memory: What consolidation, what retrieval, what plasticity in rodents? Neurosci Biobehav Rev 2024; 167:105932. [PMID: 39454977 DOI: 10.1016/j.neubiorev.2024.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The ventral midline thalamus, including the reuniens and rhomboid (ReRh) nuclei, connects bidirectionally with the medial prefrontal cortex (mPFC) and hippocampus (Hip), both essential for memory processes. This review compiles and discusses studies on a role for the ReRh nuclei in the system consolidation of memories, also considering their potentially limited participation in memory retrieval or early phases of consolidation. It also examines scientific literature on short- and long-term plasticity in ReRh-mPFC and ReRh-Hip connections, emphasizing plasticity's importance in understanding these nuclei's role in memory. The idea that the two nuclei are at the crossroads of information exchange between the mPFC and the Hip is not new, but the relationship between this status and the plasticity of their connections remains elusive. Since this perspective is relatively recent, our concluding section suggests conceptual and practical avenues for future research, aiming perhaps to bring more order to the apparently multi-functional implication of the ventral midline thalamus in cognition.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France.
| | - Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Isabella Guimaraes-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| |
Collapse
|
4
|
Panzer E, Guimares-Olmo I, Pereira de Vasconcelos A, Stéphan A, Cassel JC. In relentless pursuit of the white whale: A role for the ventral midline thalamus in behavioral flexibility and adaption? Neurosci Biobehav Rev 2024; 163:105762. [PMID: 38857666 DOI: 10.1016/j.neubiorev.2024.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The reuniens (Re) nucleus is located in the ventral midline thalamus. It has fostered increasing interest, not only for its participation in a variety of cognitive functions (e.g., spatial working memory, systemic consolidation, reconsolidation, extinction of fear or generalization), but also for its neuroanatomical positioning as a bidirectional relay between the prefrontal cortex (PFC) and the hippocampus (HIP). In this review we compile and discuss recent studies having tackled a possible implication of the Re nucleus in behavioral flexibility, a major PFC-dependent executive function controlling goal-directed behaviors. Experiments considered explored a possible role for the Re nucleus in perseveration, reversal learning, fear extinction, and set-shifting. They point to a contribution of this nucleus to behavioral flexibility, mainly by its connections with the PFC, but possibly also by those with the hippocampus, and even with the amygdala, at least for fear-related behavior. As such, the Re nucleus could be a crucial crossroad supporting a PFC-orchestrated ability to cope with new, potentially unpredictable environmental contingencies, and thus behavioral flexibility and adaption.
Collapse
Affiliation(s)
- Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Isabella Guimares-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Aline Stéphan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France.
| |
Collapse
|
5
|
Panzer E, Boch L, Cosquer B, Grgurina I, Boutillier AL, de Vasconcelos AP, Stephan A, Cassel JC. Disconnecting prefrontal cortical neurons from the ventral midline thalamus: Loss of specificity due to progressive neural toxicity of an AAV-Cre in the rat thalamus. J Neurosci Methods 2024; 405:110080. [PMID: 38369027 DOI: 10.1016/j.jneumeth.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The thalamic reuniens (Re) and rhomboid (Rh) nuclei are bidirectionally connected with the medial prefrontal cortex (mPFC) and the hippocampus (Hip). Fiber-sparing N-methyl-D-aspartate lesions of the ReRh disrupt cognitive functions, including persistence of certain memories. Because such lesions irremediably damage neurons interconnecting the ReRh with the mPFC and the Hip, it is impossible to know if one or both pathways contribute to memory persistence. Addressing such an issue requires selective, pathway-restricted and direction-specific disconnections. NEW METHOD A recent method associates a retrograde adeno-associated virus (AAV) expressing Cre recombinase with an anterograde AAV expressing a Cre-dependent caspase, making such disconnection feasible by caspase-triggered apoptosis when both constructs meet intracellularly. We injected an AAVrg-Cre-GFP into the ReRh and an AAV5-taCasp into the mPFC. As expected, part of mPFC neurons died, but massive neurotoxicity of the AAVrg-Cre-GFP was found in ReRh, contrasting with normal density of DAPI staining. Other stainings demonstrated increasing density of reactive astrocytes and microglia in the neurodegeneration site. COMPARISON WITH EXISTING METHODS Reducing the viral titer (by a 4-fold dilution) and injection volume (to half) attenuated toxicity substantially, still with evidence for partial disconnection between mPFC and ReRh. CONCLUSIONS There is an imperative need to verify potential collateral damage inherent in this type of approach, which is likely to distort interpretation of experimental data. Therefore, controls allowing to distinguish collateral phenotypic effects from those linked to the desired disconnection is essential. It is also crucial to know for how long neurons expressing the Cre-GFP protein remain operational post-infection.
Collapse
Affiliation(s)
- Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Laurine Boch
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Iris Grgurina
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France.
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France.
| |
Collapse
|
6
|
Schleifer CH, O'Hora KP, Fung H, Xu J, Robinson TA, Wu AS, Kushan-Wells L, Lin A, Ching CRK, Bearden CE. Effects of gene dosage and development on subcortical nuclei volumes in individuals with 22q11.2 copy number variations. Neuropsychopharmacology 2024; 49:1024-1032. [PMID: 38431758 PMCID: PMC11039652 DOI: 10.1038/s41386-024-01832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
Collapse
Affiliation(s)
- Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer Xu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Taylor-Ann Robinson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Angela S Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Greiner EM, Witt ME, Moran SJ, Petrovich GD. Activation patterns in male and female forebrain circuitries during food consumption under novelty. Brain Struct Funct 2024; 229:403-429. [PMID: 38193917 DOI: 10.1007/s00429-023-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
The influence of novelty on feeding behavior is significant and can override both homeostatic and hedonic drives due to the uncertainty of potential danger. Previous work found that novel food hypophagia is enhanced in a novel environment and that males habituate faster than females. The current study's aim was to identify the neural substrates of separate effects of food and context novelty. Adult male and female rats were tested for consumption of a novel or familiar food in either a familiar or in a novel context. Test-induced Fos expression was measured in the amygdalar, thalamic, striatal, and prefrontal cortex regions that are important for appetitive responding, contextual processing, and reward motivation. Food and context novelty induced strikingly different activation patterns. Novel context induced Fos robustly in almost every region analyzed, including the central (CEA) and basolateral complex nuclei of the amygdala, the thalamic paraventricular (PVT) and reuniens nuclei, the nucleus accumbens (ACB), the medial prefrontal cortex prelimbic and infralimbic areas, and the dorsal agranular insular cortex (AI). Novel food induced Fos in a few select regions: the CEA, anterior basomedial nucleus of the amygdala, anterior PVT, and posterior AI. There were also sex differences in activation patterns. The capsular and lateral CEA had greater activation for male groups and the anterior PVT, ACB ventral core and shell had greater activation for female groups. These activation patterns and correlations between regions, suggest that distinct functional circuitries control feeding behavior when food is novel and when eating occurs in a novel environment.
Collapse
Affiliation(s)
- Eliza M Greiner
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Mary E Witt
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Stephanie J Moran
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
8
|
Chen Z, Han Y, Ma Z, Wang X, Xu S, Tang Y, Vyssotski AL, Si B, Zhan Y. A prefrontal-thalamic circuit encodes social information for social recognition. Nat Commun 2024; 15:1036. [PMID: 38310109 PMCID: PMC10838311 DOI: 10.1038/s41467-024-45376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Social recognition encompasses encoding social information and distinguishing unfamiliar from familiar individuals to form social relationships. Although the medial prefrontal cortex (mPFC) is known to play a role in social behavior, how identity information is processed and by which route it is communicated in the brain remains unclear. Here we report that a ventral midline thalamic area, nucleus reuniens (Re) that has reciprocal connections with the mPFC, is critical for social recognition in male mice. In vivo single-unit recordings and decoding analysis reveal that neural populations in both mPFC and Re represent different social stimuli, however, mPFC coding capacity is stronger. We demonstrate that chemogenetic inhibitions of Re impair the mPFC-Re neural synchronization and the mPFC social coding. Projection pathway-specific inhibitions by optogenetics reveal that the reciprocal connectivity between the mPFC and the Re is necessary for social recognition. These results reveal an mPFC-thalamic circuit for social information processing.
Collapse
Affiliation(s)
- Zihao Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yechao Han
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zheng Ma
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xinnian Wang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Surui Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yong Tang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Bailu Si
- School of Systems Science, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Yang Zhan
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
9
|
Casagrande MA, Porto RR, Haubrich J, Kautzmann A, de Oliveira Álvares L. Emotional Value of Fear Memory and the Role of the Ventral Hippocampus in Systems Consolidation. Neuroscience 2023; 535:184-193. [PMID: 37944583 DOI: 10.1016/j.neuroscience.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Recent studies have explored the circuitry involving the ventral hippocampus (vHPC), the amygdala, and the prefrontal cortex, a pathway mainly activated to store contextual information efficiently. Lesions in the vHPC impair remote memory, but not in the short term. However, how the vHPC is affected by distinct memory strength or its role in systems consolidation has not yet been elucidated. Here, we investigated how distinct training intensities, with strong or weak contextual fear conditioning, affect activation of the dorsal hippocampus (dHPC) and the vHPC. We found that the time course of memory consolidation differs in fear memories of different training intensities in both the dHPC and vHPC. Our results also indicate that memory generalization happens alongside greater activation of the vHPC, and these processes occur faster with stronger fear memories. The vHPC is required for the expression of remote fear memory and may control contextual fear generalization, a view corroborated by the fact that inactivation of the vHPC suppresses generalized fear expression, making memory more precise again. Systems consolidation occurs concomitantly with greater activation of the vHPC, which is accelerated in stronger fear memories. These findings lead us to propose that greater activation of the vHPC could be used as a marker for memory generalization.
Collapse
Affiliation(s)
- M A Casagrande
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216, CEP 91.501-970 Porto Alegre, Rio Grande do Sul, Brasil
| | - R R Porto
- Behavioural Neuroscience Laboratory, Western Sydney University, School of Medicine, Cnr David Pilgrim Ave & Goldsmith Ave, Building 30, Campbelltown, NSW 2560, Australia
| | - J Haubrich
- Dept. of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße, 150 MA 4/150, 44780 Bochum, Germany
| | - A Kautzmann
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216, CEP 91.501-970 Porto Alegre, Rio Grande do Sul, Brasil
| | - L de Oliveira Álvares
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216, CEP 91.501-970 Porto Alegre, Rio Grande do Sul, Brasil.
| |
Collapse
|
10
|
Schleifer CH, O’Hora KP, Fung H, Xu J, Robinson TA, Wu AS, Kushan-Wells L, Lin A, Ching CRK, Bearden CE. Effects of Gene Dosage and Development on Subcortical Nuclei Volumes in Individuals with 22q11.2 Copy Number Variations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564553. [PMID: 37961662 PMCID: PMC10635019 DOI: 10.1101/2023.10.31.564553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in 22qDel (n=96, 53.1% female), 22qDup (n=37, 45.9% female), and TD controls (n=80, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the effect of 22q11.2 gene dosage was examined using linear mixed models. Age-related changes were characterized with general additive mixed models (GAMMs). Positive gene dosage effects (22qDel < TD < 22qDup) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
Collapse
Affiliation(s)
- Charles H. Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kathleen P. O’Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer Xu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Taylor-Ann Robinson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Angela S. Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Greiner EM, Witt ME, Moran SJ, Petrovich GD. Activation patterns in male and female forebrain circuitries during food consumption under novelty. RESEARCH SQUARE 2023:rs.3.rs-3328570. [PMID: 37790415 PMCID: PMC10543437 DOI: 10.21203/rs.3.rs-3328570/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The influence of novelty on feeding behavior is significant and can override both homeostatic and hedonic drives due to the uncertainty of potential danger. Previous work found that novel food hypophagia is enhanced in a novel environment and that males habituate faster than females. The current study's aim was to identify the neural substrates of separate effects of food and context novelty. Adult male and female rats were tested for consumption of a novel or family food in either a familiar or in a novel context. Test-induced Fos expression was measured in the amygdalar, thalamic, striatal, and prefrontal cortex regions that are important for appetitive responding, contextual processing, and reward motivation. Food and context novelty induced strikingly different activation patterns. Novel context induced Fos robustly in almost every region analyzed, including the central (CEA) and basolateral complex nuclei of the amygdala, the thalamic paraventricular (PVT) and reuniens nuclei, the nucleus accumbens (ACB), the medial prefrontal cortex prelimbic and infralimbic areas, and the dorsal agranular insular cortex (AI). Novel food induced Fos in a few select regions: the CEA, anterior basomedial nucleus of the amygdala, anterior PVT, and posterior AI. There were also sex differences in activation patterns. The capsular and lateral CEA had greater activation for male groups and the anterior PVT, ACB ventral core and shell had greater activation for female groups. These activation patterns and correlations between regions, suggest that distinct functional circuitries control feeding behavior when food is novel and when eating occurs in a novel environment.
Collapse
|
12
|
Hamilton JJ, Dalrymple-Alford JC. The thalamic reuniens is associated with consolidation of non-spatial memory too. Front Behav Neurosci 2023; 17:1215625. [PMID: 37600760 PMCID: PMC10433182 DOI: 10.3389/fnbeh.2023.1215625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The nucleus reuniens (RE) is situated in the midline thalamus and provides a key link between the hippocampus and prefrontal cortex. This anatomical relationship positions the Re as an ideal candidate to facilitate memory consolidation. However, there is no evidence that this role extends beyond spatial memory and contextual fear memory, which are both strongly associated with hippocampal function. We, therefore, trained intact male Long-Evans rats on an odor-trace-object paired-associate task where the explicit 10-s delay between paired items renders the task sensitive to hippocampal function. Neurons in the RE showed significantly increased activation of the immediate early gene (Zif268) when rats were re-tested for previous non-spatial memory 25 days after acquisition training, compared to a group tested at 5-days post-acquisition, as well as a control group tested 25 days after acquisition but with a new pair of non-spatial stimuli, and home cage controls. The remote recall group also showed relatively augmented IEG expression in the superficial layers of the medial PFC (anterior cingulate cortex and prelimbic cortex). These findings support the conclusion that the RE is preferentially engaged during remote recall in this non-spatial task and thus has a role beyond spatial memory and contextual fear memory.
Collapse
Affiliation(s)
- Jennifer J. Hamilton
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- Brain Research New Zealand – Rangahau Roro Aotearoa, a National Centre of Research Excellence, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand – Rangahau Roro Aotearoa, a National Centre of Research Excellence, University of Otago, Dunedin, New Zealand
| | - John C. Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- Brain Research New Zealand – Rangahau Roro Aotearoa, a National Centre of Research Excellence, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand – Rangahau Roro Aotearoa, a National Centre of Research Excellence, University of Otago, Dunedin, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| |
Collapse
|
13
|
Jayachandran M, Viena TD, Garcia A, Veliz AV, Leyva S, Roldan V, Vertes RP, Allen TA. Nucleus reuniens transiently synchronizes memory networks at beta frequencies. Nat Commun 2023; 14:4326. [PMID: 37468487 PMCID: PMC10356781 DOI: 10.1038/s41467-023-40044-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Episodic memory-based decision-making requires top-down medial prefrontal cortex and hippocampal interactions. This integrated prefrontal-hippocampal memory state is thought to be organized by synchronized network oscillations and mediated by connectivity with the thalamic nucleus reuniens (RE). Whether and how the RE synchronizes prefrontal-hippocampal networks in memory, however, remains unknown. Here, we recorded local field potentials from the prefrontal-RE-hippocampal network while rats engaged in a nonspatial sequence memory task, thereby isolating memory-related activity from running-related oscillations. We found that synchronous prefrontal-hippocampal beta bursts (15-30 Hz) dominated during memory trials, whereas synchronous theta activity (6-12 Hz) dominated during non-memory-related running. Moreover, RE beta activity appeared first, followed by prefrontal and hippocampal synchronized beta, suggesting that prefrontal-hippocampal beta could be driven by the RE. To test whether the RE is capable of driving prefrontal-hippocampal beta synchrony, we used an optogenetic approach (retroAAV-ChR2). RE activation induced prefrontal-hippocampal beta coherence and reduced theta coherence, matching the observed memory-driven network state in the sequence task. These findings are the first to demonstrate that the RE contributes to memory by driving transient synchronized beta in the prefrontal-hippocampal system, thereby facilitating interactions that underlie memory-based decision-making.
Collapse
Affiliation(s)
- Maanasa Jayachandran
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Tatiana D Viena
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Andy Garcia
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Abdiel Vasallo Veliz
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Sofia Leyva
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Valentina Roldan
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA.
- Department of Environmental & Occupational Health, Robert Stempel College of Public Health, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
14
|
Fukuyama K, Motomura E, Okada M. A Candidate Gliotransmitter, L-β-Aminoisobutyrate, Contributes to Weight Gain and Metabolic Complication Induced by Atypical Antipsychotics. Nutrients 2023; 15:nu15071621. [PMID: 37049464 PMCID: PMC10097171 DOI: 10.3390/nu15071621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Lurasidone and quetiapine are effective atypical mood-stabilizing antipsychotics, but lurasidone and quetiapine are listed as lower-risk and high-risk for weight gain/metabolic complications, respectively. The pathophysiology of the discrepancy of metabolic adverse reactions between these antipsychotics remains to be clarified. The GABA isomer, β-aminoisobutyric acid (BAIBA) enantiomer, was recently re-discovered as myokine via an AMP-activated protein kinase activator (AMPK) enhancer and inhibitory gliotransmitter. Notably, activation of AMPK in peripheral organs improves, but in the hypothalamus, it aggravates metabolic disturbances. Therefore, we determined effects of chronic administration of lurasidone and quetiapine on intracellular and extracellular levels of the BAIBA enantiomer. L-BAIBA is a major BAIBA enantiomer in the hypothalamus and astrocytes, whereas L-BAIBA only accounted for about 5% of total plasma BAIBA enantiomers. Chronic lurasidone administration did not affect body weight but decreased the L-BAIBA level in hypothalamus and cultured astrocytes, whereas chronic quetiapine administration increased body weight and the L-BAIBA level in hypothalamus and astrocytes. Contrary, neither lurasidone nor quetiapine affected total plasma levels of the BAIBA enantiomer since D-BAIBA levels were not affected by these antipsychotics. These results suggest that activation of intracellular L-BAIBA signaling is, at least partially, involved in the pathophysiology of metabolic adverse reaction of quetiapine. Furthermore, this study also demonstrated that lurasidone and quetiapine suppressed and enhanced astroglial L-BAIBA release induced by ripple-burst stimulation (which physiologically contributes to cognitive memory integration during sleep), respectively. Therefore, L-BAIBA probably contributes to the pathophysiology of not only metabolic adverse reactions, but also a part of clinical action of lurasidone or quetiapine.
Collapse
|
15
|
Leprince E, Dard RF, Mortet S, Filippi C, Giorgi-Kurz M, Bourboulou R, Lenck-Santini PP, Picardo MA, Bocchio M, Baude A, Cossart R. Extrinsic control of the early postnatal CA1 hippocampal circuits. Neuron 2023; 111:888-902.e8. [PMID: 36608692 DOI: 10.1016/j.neuron.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
The adult CA1 region of the hippocampus produces coordinated neuronal dynamics with minimal reliance on its extrinsic inputs. By contrast, neonatal CA1 is tightly linked to externally generated sensorimotor activity, but the circuit mechanisms underlying early synchronous activity in CA1 remain unclear. Here, using a combination of in vivo and ex vivo circuit mapping, calcium imaging, and electrophysiological recordings in mouse pups, we show that early dynamics in the ventro-intermediate CA1 are under the mixed influence of entorhinal (EC) and thalamic (VMT) inputs. Both VMT and EC can drive internally generated synchronous events ex vivo. However, movement-related population bursts detected in vivo are exclusively driven by the EC. These differential effects on synchrony reflect the different intrahippocampal targets of these inputs. Hence, cortical and subcortical pathways act differently on the neonatal CA1, implying distinct contributions to the development of the hippocampal microcircuit and related cognitive maps.
Collapse
Affiliation(s)
- Erwan Leprince
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Robin F Dard
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Salomé Mortet
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Caroline Filippi
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Marie Giorgi-Kurz
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Romain Bourboulou
- Department of Cell and Developmental Biology, University College London, London, UK
| | | | - Michel A Picardo
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Marco Bocchio
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France; Department of Psychology, Durham University, Durham, UK
| | - Agnès Baude
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Rosa Cossart
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France.
| |
Collapse
|
16
|
Yanakieva S, Mathiasen ML, Amin E, Nelson AJD, O'Mara SM, Aggleton JP. Collateral rostral thalamic projections to prelimbic, infralimbic, anterior cingulate and retrosplenial cortices in the rat brain. Eur J Neurosci 2022; 56:5869-5887. [PMID: 36089888 PMCID: PMC9826051 DOI: 10.1111/ejn.15819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
As the functional properties of a cortical area partly reflect its thalamic inputs, the present study compared collateral projections arising from various rostral thalamic nuclei that terminate across prefrontal (including anterior cingulate) and retrosplenial areas in the rat brain. Two retrograde tracers, fast blue and cholera toxin B, were injected in pairs to different combinations of cortical areas. The research focused on the individual anterior thalamic nuclei, including the interanteromedial nucleus, nucleus reuniens and the laterodorsal nucleus. Of the principal anterior thalamic nuclei, only the anteromedial nucleus contained neurons reaching both the anterior cingulate cortex and adjacent cortical areas (prefrontal or retrosplenial), though the numbers were modest. For these same cortical pairings (medial prefrontal/anterior cingulate and anterior cingulate/retrosplenial), the interanteromedial nucleus and nucleus reuniens contained slightly higher proportions of bifurcating neurons (up to 11% of labelled cells). A contrasting picture was seen for collaterals reaching different areas within retrosplenial cortex. Here, the anterodorsal nucleus, typically provided the greatest proportion of bifurcating neurons (up to 15% of labelled cells). While individual neurons that terminate in different retrosplenial areas were also found in the other thalamic nuclei, they were infrequent. Consequently, these thalamo-cortical projections predominantly arise from separate populations of neurons with discrete cortical termination zones, consistent with the transmission of segregated information and influence. Overall, two contrasting medial-lateral patterns of collateral projections emerged, with more midline nuclei, for example, nucleus reuniens and the interoanteromedial nucleus innervating prefrontal areas, while more dorsal and lateral anterior thalamic collaterals innervated retrosplenial cortex.
Collapse
Affiliation(s)
| | - Mathias L. Mathiasen
- School of PsychologyCardiff UniversityWalesUK
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Eman Amin
- School of PsychologyCardiff UniversityWalesUK
| | | | | | | |
Collapse
|
17
|
Vertes RP, Linley SB, Rojas AKP. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front Behav Neurosci 2022; 16:964644. [PMID: 36082310 PMCID: PMC9445584 DOI: 10.3389/fnbeh.2022.964644] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
The midline and intralaminar nuclei of the thalamus form a major part of the "limbic thalamus;" that is, thalamic structures anatomically and functionally linked with the limbic forebrain. The midline nuclei consist of the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei. We presently concentrate on RE, PV, CM and CL nuclei of the thalamus. The nucleus reuniens receives a diverse array of input from limbic-related sites, and predominantly projects to the hippocampus and to "limbic" cortices. The RE participates in various cognitive functions including spatial working memory, executive functions (attention, behavioral flexibility) and affect/fear behavior. The PV receives significant limbic-related afferents, particularly the hypothalamus, and mainly distributes to "affective" structures of the forebrain including the bed nucleus of stria terminalis, nucleus accumbens and the amygdala. Accordingly, PV serves a critical role in "motivated behaviors" such as arousal, feeding/consummatory behavior and drug addiction. The rostral ILt receives both limbic and sensorimotor-related input and distributes widely over limbic and motor regions of the frontal cortex-and throughout the dorsal striatum. The intralaminar thalamus is critical for maintaining consciousness and directly participates in various sensorimotor functions (visuospatial or reaction time tasks) and cognitive tasks involving striatal-cortical interactions. As discussed herein, while each of the midline and intralaminar nuclei are anatomically and functionally distinct, they collectively serve a vital role in several affective, cognitive and executive behaviors - as major components of a brainstem-diencephalic-thalamocortical circuitry.
Collapse
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States
| | - Amanda K. P. Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
18
|
Jhuang YC, Chang CH. Differential roles of nucleus reuniens and perirhinal cortex in Pavlovian trace fear conditioning in rats. Cereb Cortex 2022; 33:3498-3510. [PMID: 35952337 DOI: 10.1093/cercor/bhac287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
The nucleus reuniens (RE) and the perirhinal cortex (PRC) are two major relay stations that interconnect the hippocampus (HPC) and the medial prefrontal cortex (mPFC). Previous studies have shown that both the RE and the PRC are involved in the acquisition of trace fear conditioning. However, the respective contribution of the two regions is unclear. In this study, we used pharmacological approach to compare their roles. Our data suggested that inactivation of the RE or the PRC during conditioning partially impaired, whereas inactivation of both areas totally abolished, the encoding of trace fear. We next examined whether the impaired encoding of trace fear under RE inactivation can be rescued with enhanced cholinergic tone in the PRC, and vice versa. Against our hypothesis, regardless of whether the RE was on-line or not, animals failed to encode trace fear when further engaging cholinergic activities in the PRC. Conversely, depending on PRC activation level during conditioning, further recruiting cholinergic activities in the RE led to a down-shift of fear response during retrieval. Our results revealed that the RE and the PRC were necessary for the encoding of trace fear. Moreover, there was differential importance of cholinergic modulation during the process.
Collapse
Affiliation(s)
- Yi-Ci Jhuang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
19
|
Cassel JC, de Vasconcelos AP. The thalamus: A long journey through successive translations (Editorial to the special issue entitled 'The Cognitive Thalamus'). Neurosci Biobehav Rev 2022; 140:104779. [PMID: 35868523 DOI: 10.1016/j.neubiorev.2022.104779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| |
Collapse
|
20
|
Yu X, Jembere F, Takehara-Nishiuchi K. Prefrontal projections to the nucleus reuniens signal behavioral relevance of stimuli during associative learning. Sci Rep 2022; 12:11995. [PMID: 35835794 PMCID: PMC9283438 DOI: 10.1038/s41598-022-15886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The nucleus reuniens (RE) is necessary for memories dependent on the interaction between the medial prefrontal cortex (mPFC) and hippocampus (HPC). One example is trace eyeblink conditioning, in which the mPFC exhibits differential activity to neutral conditioned stimuli (CS) depending on their contingency with an aversive unconditioned stimulus (US). To test if this relevancy signal is routed to the RE, we photometrically recorded mPFC axon terminals within the RE and tracked their changes with learning. As a comparison, we measured prefrontal terminal activity in the mediodorsal thalamus (MD), which lacks connectivity with the HPC. In naïve male rats, prefrontal terminals within the RE were not strongly activated by tone or light. As the rats associated one of the stimuli (CS+) with the US, terminals gradually increased their response to the CS+ but not the other stimulus (CS-). In contrast, stimulus-evoked responses of prefrontal terminals within the MD were strong even before conditioning. They also became augmented only to the CS+ in the first conditioning session; however, the degree of activity differentiation did not improve with learning. These findings suggest that associative learning selectively increased mPFC output to the RE, signaling the behavioral relevance of sensory stimuli.
Collapse
Affiliation(s)
- Xiaotian Yu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada
| | - Fasika Jembere
- Human Biology Program, University of Toronto, Toronto, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada.
| |
Collapse
|
21
|
Mair RG, Francoeur MJ, Krell EM, Gibson BM. Where Actions Meet Outcomes: Medial Prefrontal Cortex, Central Thalamus, and the Basal Ganglia. Front Behav Neurosci 2022; 16:928610. [PMID: 35864847 PMCID: PMC9294389 DOI: 10.3389/fnbeh.2022.928610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Medial prefrontal cortex (mPFC) interacts with distributed networks that give rise to goal-directed behavior through afferent and efferent connections with multiple thalamic nuclei and recurrent basal ganglia-thalamocortical circuits. Recent studies have revealed individual roles for different thalamic nuclei: mediodorsal (MD) regulation of signaling properties in mPFC neurons, intralaminar control of cortico-basal ganglia networks, ventral medial facilitation of integrative motor function, and hippocampal functions supported by ventral midline and anterior nuclei. Large scale mapping studies have identified functionally distinct cortico-basal ganglia-thalamocortical subnetworks that provide a structural basis for understanding information processing and functional heterogeneity within the basal ganglia. Behavioral analyses comparing functional deficits produced by lesions or inactivation of specific thalamic nuclei or subregions of mPFC or the basal ganglia have elucidated the interdependent roles of these areas in adaptive goal-directed behavior. Electrophysiological recordings of mPFC neurons in rats performing delayed non-matching-to position (DNMTP) and other complex decision making tasks have revealed populations of neurons with activity related to actions and outcomes that underlie these behaviors. These include responses related to motor preparation, instrumental actions, movement, anticipation and delivery of action outcomes, memory delay, and spatial context. Comparison of results for mPFC, MD, and ventral pallidum (VP) suggest critical roles for mPFC in prospective processes that precede actions, MD for reinforcing task-relevant responses in mPFC, and VP for providing feedback about action outcomes. Synthesis of electrophysiological and behavioral results indicates that different networks connecting mPFC with thalamus and the basal ganglia are organized to support distinct functions that allow organisms to act efficiently to obtain intended outcomes.
Collapse
Affiliation(s)
- Robert G. Mair
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| | - Miranda J. Francoeur
- Neural Engineering and Translation Labs, University of California, San Diego, San Diego, CA, United States
| | - Erin M. Krell
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| | - Brett M. Gibson
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| |
Collapse
|
22
|
Boch L, Morvan T, Neige T, Kobakhidze N, Panzer E, Cosquer B, de Vasconcelos AP, Stephan A, Cassel JC. Inhibition of the ventral midline thalamus does not alter encoding, short-term holding or retrieval of spatial information in rats performing a water-escape working memory task. Behav Brain Res 2022; 432:113979. [PMID: 35760217 DOI: 10.1016/j.bbr.2022.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
Working memory (WM) is a function operating in three successive phases: encoding (sample trial), holding (delay), and retrieval (test trial) of information. Studies point to a possible implication of the thalamic reuniens nucleus (Re) in spatial WM (SWM). In which of the aforementioned 3 phases the Re has a function is largely unknown. Recently, in a delayed SWM water-escape task, we found that performance during the retrieval trial correlated positively with c-Fos expression in the Re nucleus, suggesting participation in retrieval. Here, we used the same task and muscimol (Musc) inhibition or DREADD(hM4Di)-mediated inhibition of the Re during information encoding, right thereafter (thereby affecting the holding phase), or during the retrieval trial. A 6-hour delay separated encoding from retrieval. Concerning SWM, Musc in the Re nucleus did not alter performance, be it during or after encoding, or during evaluation. CNO administered before encoding in DREADD-expressing rats was also ineffective, although CNO-induced inhibition disrupted set shifting performance, as found previously (Quet et al., Brain Struct Function 225, 2020), thereby validating DREADD efficiency. These findings are the first that do not support an implication of the Re nucleus in SWM. As most previous studies used T-maze alternation tasks, which carry high proactive interference risks, an important question to resolve now is whether these nuclei are required in (T-maze alternation) tasks using very short information-holding delays (seconds to minutes), and less so in other short-term spatial memory tasks with longer information holding intervals (hours) and therefore reduced interference risks.
Collapse
Affiliation(s)
- Laurine Boch
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Thomas Morvan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Thibaut Neige
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Nina Kobakhidze
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| |
Collapse
|
23
|
Hauer BE, Pagliardini S, Dickson CT. Tonic excitation of nucleus reuniens decreases prefrontal-hippocampal coordination during slow-wave states. Hippocampus 2022; 32:466-477. [PMID: 35522233 DOI: 10.1002/hipo.23420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022]
Abstract
The nucleus reuniens of the thalamus (RE) is an important node between the medial prefrontal cortex (mPFC) and the hippocampus (HPC). Previously, we have shown that its mode of activity and its influence in mPFC-HPC communication is dependent upon brain state. During slow-wave states, RE units are closely and rhythmically coupled to the ongoing mPFC-slow oscillation (SO), while during activated (theta) states, RE neurons fire in an arrhythmic and tonically active manner. Inactivating the RE selectively impoverishes coordination of the SO between mPFC and HPC and interestingly, both mPFC and RE stimulation during the SO cause larger responses in the HPC than during theta. It is unclear if the activity patterns within the RE across states may play a role in both phenomena. Here, we optogenetically excited RE neurons in a tonic fashion to assess the impact on mPFC-HPC coupling. This stimulation decreased the influence of mPFC stimulation in the HPC during SO states, in a manner similar to what is observed across state changes into theta. Importantly, this type of stimulation had no effect on evoked responses during theta. Perhaps more interestingly, tonic optogenetic excitation of the RE also decreased mPFC-HPC SO coherence. Thus, it may not be the integrity of the RE per se that is responsible for efficient communication between mPFC and HPC, but rather the particular state in which RE neurons find themselves. Our results have direct implications for how distant brain regions can communicate most effectively, an issue that is ultimately important for activity-dependent processes occurring during slow-wave sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- Brandon E Hauer
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Clayton T Dickson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.,Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Fukuyama K, Okada M. Brivaracetam and Levetiracetam Suppress Astroglial L-Glutamate Release through Hemichannel via Inhibition of Synaptic Vesicle Protein. Int J Mol Sci 2022; 23:ijms23094473. [PMID: 35562864 PMCID: PMC9101419 DOI: 10.3390/ijms23094473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
To explore the pathophysiological mechanisms of antiseizure and adverse behavioural/psychiatric effects of brivaracetam and levetiracetam, in the present study, we determined the effects of brivaracetam and levetiracetam on astroglial L-glutamate release induced by artificial high-frequency oscillation (HFO) bursts using ultra-high-performance liquid chromatography. Additionally, the effects of brivaracetam and levetiracetam on protein expressions of connexin43 (Cx43) and synaptic vesicle protein 2A (SV2A) in the plasma membrane of primary cultured rat astrocytes were determined using a capillary immunoblotting system. Acutely artificial fast-ripple HFO (500 Hz) burst stimulation use-dependently increased L-glutamate release through Cx43-containing hemichannels without affecting the expression of Cx43 or SV2A in the plasma membrane, whereas acute physiological ripple HFO (200 Hz) stimulation did not affect astroglial L-glutamate release or expression of Cx43 or SV2A. Contrarily, subchronic ripple HFO and acute pathological fast-ripple HFO (500 Hz) stimulations use-dependently increased L-glutamate release through Cx43-containing hemichannels and Cx43 expression in the plasma membrane. Subchronic fast-ripple HFO-evoked stimulation produced ectopic expression of SV2A in the plasma membrane, but subchronic ripple HFO stimulation did not generate ectopic SV2A. Subchronic administration of brivaracetam and levetiracetam concentration-dependently suppressed fast-ripple HFO-induced astroglial L-glutamate release and expression of Cx43 and SV2A in the plasma membrane. In contrast, subchronic ripple HFO-evoked stimulation induced astroglial L-glutamate release, and Cx43 expression in the plasma membrane was inhibited by subchronic levetiracetam administration, but was not affected by brivaracetam. These results suggest that brivaracetam and levetiracetam inhibit epileptogenic fast-ripple HFO-induced activated astroglial transmission associated with hemichannels. In contrast, the inhibitory effect of therapeutic-relevant concentrations of levetiracetam on physiological ripple HFO-induced astroglial responses probably contributes to the adverse behavioural/psychiatric effects of levetiracetam.
Collapse
|
25
|
Ventral midline thalamus activation is correlated with memory performance in a delayed spatial matching-to-sample task: A c-Fos imaging approach in the rat. Behav Brain Res 2022; 418:113670. [PMID: 34798168 DOI: 10.1016/j.bbr.2021.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
The reuniens (Re) and rhomboid (Rh) nuclei of the ventral midline thalamus are bi-directionally connected with the hippocampus and the medial prefrontal cortex. They participate in a variety of cognitive functions, including information holding for seconds to minutes in working memory tasks. What about longer delays? To address this question, we used a spatial working memory task in which rats had to reach a platform submerged in water. The platform location was changed every 2-trial session and rats had to use allothetic cues to find it. Control rats received training in a typical response-memory task. We interposed a 6 h interval between instruction (locate platform) and evaluation (return to platform) trials in both tasks. After the last session, rats were killed for c-Fos imaging. A home-cage group was used as additional control of baseline levels of c-Fos expression. C-Fos expression was increased to comparable levels in the Re (not Rh) of both spatial memory and response-memory rats as compared to their home cage counterparts. However, in spatial memory rats, not in their response-memory controls, task performance was correlated with c-Fos expression in the Re: the higher this expression, the better the performance. Furthermore, we noticed an activation of hippocampal region CA1 and of the anteroventral nucleus of the rostral thalamus. This activation was specific to spatial memory. The data point to a possible performance-determinant participation of the Re nucleus in the delayed engagement of spatial information encoded in a temporary memory.
Collapse
|
26
|
Brown TI, He Q, Aselcioglu I, Stern CE. Evidence for a gradient within the medial temporal lobes for flexible retrieval under hierarchical task rules. Hippocampus 2021; 31:1003-1019. [PMID: 34038011 DOI: 10.1002/hipo.23365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 11/07/2022]
Abstract
A fundamental question in memory research is how the hippocampus processes contextual cues to retrieve distinct mnemonic associations. Prior research has emphasized the importance of hippocampal-prefrontal interactions for context-dependent memory. Our fMRI study examined the human medial temporal lobes (MTL) and their prefrontal interactions when retrieving memories associated with hierarchically organized task contexts. Participants learned virtual object-location associations governed by subordinate and superordinate task rules, which could be independently cued to change. On each fMRI trial, participants retrieved the correct object for convergent rule and location contextual information. Results demonstrated that hippocampal activity and hippocampal-prefrontal functional interconnectivity distinguished retrieval under different levels of hierarchically organized task rules. In explicit contrast to the hippocampal tail, anterior (body and head) regions were recruited specifically for superordinate changes in the contextual hierarchy. The hippocampal body also differed in its functional connectivity with the prefrontal cortex for superordinate versus subordinate changes. Our findings demonstrate a gradient in MTL for associative retrieval under changing task rules, and advance understanding of hippocampal-prefrontal interactions that support flexible contextual memory.
Collapse
Affiliation(s)
- Thackery I Brown
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Qiliang He
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Irem Aselcioglu
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, and Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| | - Chantal E Stern
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, and Center for Memory and Brain, Boston University, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
27
|
Cassel JC, Ferraris M, Quilichini P, Cholvin T, Boch L, Stephan A, Pereira de Vasconcelos A. The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing? Neurosci Biobehav Rev 2021; 126:338-360. [PMID: 33766671 DOI: 10.1016/j.neubiorev.2021.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 01/29/2023]
Abstract
Over the past twenty years, the reuniens and rhomboid (ReRh) nuclei, which constitute the ventral midline thalamus, have received constantly growing attention. Since our first review article about the functional contributions of ReRh nuclei (Cassel et al., 2013), numerous (>80) important papers have extended anatomical knowledge, including at a developmental level, introduced new and very original electrophysiological insights on ReRh functions, and brought novel results on cognitive and non-cognitive implications of the ReRh. The current review will cover these recent articles, more on Re than on Rh, and their contribution will be approached according to their affiliation with work before 2013. These neuroanatomical, electrophysiological or behavioral findings appear coherent and point to the ReRh nuclei as two major components of a multistructural system supporting numerous cognitive (and non-cognitive) functions. They gate the flow of information, perhaps especially from the medial prefrontal cortex to the hippocampus and back, and coordinate activity and processing across these two (and possibly other) brain regions of major cognitive relevance.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| | - Maëva Ferraris
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Pascale Quilichini
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Thibault Cholvin
- Institute for Physiology I, University Clinics Freiburg, 79104 Freiburg, Germany
| | - Laurine Boch
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| |
Collapse
|
28
|
Cassel JC, Pereira de Vasconcelos A. Routes of the thalamus through the history of neuroanatomy. Neurosci Biobehav Rev 2021; 125:442-465. [PMID: 33676963 DOI: 10.1016/j.neubiorev.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
The most distant roots of neuroanatomy trace back to antiquity, with the first human dissections, but no document which would identify the thalamus as a brain structure has reached us. Claudius Galenus (Galen) gave to the thalamus the name 'thalamus nervorum opticorum', but later on, other names were used (e.g., anchae, or buttocks-like). In 1543, Andreas Vesalius provided the first quality illustrations of the thalamus. During the 19th century, tissue staining techniques and ablative studies contributed to the breakdown of the thalamus into subregions and nuclei. The next step was taken using radiomarkers to identify connections in the absence of lesions. Anterograde and retrograde tracing methods arose in the late 1960s, supporting extension, revision, or confirmation of previously established knowledge. The use of the first viral tracers introduced a new methodological breakthrough in the mid-1970s. Another important step was supported by advances in neuroimaging of the thalamus in the 21th century. The current review follows the history of the thalamus through these technical revolutions from Antiquity to the present day.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| |
Collapse
|