1
|
Bordoloi S, Gupta CN, Hazarika SM. Understanding effects of observing affordance-driven action during motor imagery through EEG analysis. Exp Brain Res 2024; 242:2473-2485. [PMID: 39180699 DOI: 10.1007/s00221-024-06912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
The aim of this paper is to investigate the impact of observing affordance-driven action during motor imagery. Affordance-driven action refers to actions that are initiated based on the properties of objects and the possibilities they offer for interaction. Action observation (AO) and motor imagery (MI) are two forms of motor simulation that can influence motor responses. We examined combined AO + MI, where participants simultaneously engaged in AO and MI. Two different kinds of combined AO + MI were employed. Participants imagined and observed the same affordance-driven action during congruent AO + MI, whereas in incongruent AO + MI, participants imagined the actual affordance-driven action while observing a distracting affordance involving the same object. EEG data were analyzed for the N2 component of event-related potential (ERP). Our study found that the N2 ERP became more negative during congruent AO + MI, indicating strong affordance-related activity. The maximum source current density (0.00611 μ A/mm2 ) using Low-Resolution Electromagnetic Tomography (LORETA) was observed during congruent AO + MI in brain areas responsible for planning motoric actions. This is consistent with prefrontal cortex and premotor cortex activity for AO + MI reported in the literature. The stronger neural activity observed during congruent AO + MI suggests that affordance-driven actions hold promise for neurorehabilitation.
Collapse
Affiliation(s)
- Supriya Bordoloi
- Centre for Linguistic Science and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Cota Navin Gupta
- Centre for Linguistic Science and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Neural Engineering Lab, Department of Bio Sciences and Bio Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shyamanta M Hazarika
- Centre for Linguistic Science and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Biomimetic Robotics and Artificial Intelligence Lab, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
2
|
Warlop G, Cracco E, Wiersema JR, Orgs G, Deconinck FJA. An EEG frequency tagging study on biological motion perception in children with DCD. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 153:104810. [PMID: 39111260 DOI: 10.1016/j.ridd.2024.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The perception of biological motion requires accurate prediction of the spatiotemporal dynamics of human movement. Research on Developmental Coordination Disorder (DCD) suggests deficits in accurate motor prediction, raising the question whether not just action execution, but also action perception is perturbed in this disorder. AIMS To examine action perception by comparing the neural response to the observation of apparent biological motion in children with and without DCD. METHODS AND PROCEDURES Thirty-three participants with and 33 without DCD, matched based on age (13.0 ± 2.0), sex and writing hand, observed sequences of static body postures that showed either fluent or non-fluent motion, in which only the fluent condition depicted apparent biological motion. Using a recently validated paradigm combining EEG frequency tagging and apparent biological motion (Cracco et al., 2023), the perception of biological motion was contrasted with the perception of individual body postures. OUTCOMES AND CONCLUSIONS Children with DCD did not show reduced sensitivity to apparent biological motion compared with typically developing children. However, the DCD group did show a reduced brain response to repetitive visual stimuli, suggesting altered predictive processing in the perceptual domain in this group. Suggestions for further research on biological motion perception in DCD are identified.
Collapse
Affiliation(s)
- Griet Warlop
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium.
| | - Emiel Cracco
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent 9000, Belgium; Institute for Management and Organization, Leuphana University, Lüneburg 21335, Germany
| | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent 9000, Belgium
| | - Guido Orgs
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | | |
Collapse
|
3
|
Roberts JW, Wakefield CJ, de Grosbois JP. Examining the Equivalence Between Imagery and Execution-Does Imagery Comprise the Intended Spatial Trajectory? J Mot Behav 2024:1-12. [PMID: 39329343 DOI: 10.1080/00222895.2024.2406925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
The functional equivalence model suggests a common internal representation initiates both imagery and execution. This suggestion is supported by the mental chronometry effect, where there is a positive relation between task difficulty (as defined by the Index of Difficulty; ID) and imagined movement time. The present study extends this logic by examining whether imagery captures the spatial trajectory. Participants were initially tasked with the imagery and execution of a rapid aiming movement under different IDs. These initial attempts were adapted to configure auditory tones at early (25%) and late (75%) intervals for a separate set of imagery trials. If a tone had sounded, participants had to estimate post-trial where their imagined limb would have been located. The findings revealed increases in ID that coincided with increases in imagined and executed movement times. However, participant mean and standard deviation of estimated locations revealed limited differences between the early and late tones. Further inspection revealed some evidence for these estimated locations shifting further along in space following more rapid imagined movements. While equivalence is clearly evident within the temporal domain, there is comparatively little to suggest that this logic extends to the resolution required for simulating the spatial characteristics of movement.
Collapse
Affiliation(s)
- James W Roberts
- Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health and Sport Sciences, Liverpool Hope University, Liverpool, UK
| | - Caroline J Wakefield
- Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health and Sport Sciences, Liverpool Hope University, Liverpool, UK
| | - John P de Grosbois
- Baycrest Health Sciences, Rotman Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Schoenmaker J, Houdijk H, Steenbergen B, Reinders-Messelink HA, Schoemaker MM. OPTIMAL Motor Teaching Strategies Employed in Physiotherapy for Children with Developmental Coordination Disorder: An Observational Study. Phys Occup Ther Pediatr 2024:1-16. [PMID: 39322422 DOI: 10.1080/01942638.2024.2404466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
AIMS To describe the teaching strategies that physiotherapists currently employ in individual therapy sessions for children with DCD using the OPTIMAL theory for motor learning as a framework, focused on (1) autonomy (supporting autonomy vs. therapist-controlled), (2) expectancies (enhancing vs. lowering expectancies), and (3) attention (promoting an internal vs. an external focus of attention). METHODS Eighteen physiotherapy sessions were videotaped and analyzed with Noldus The Observer XT using the OPTIMAL Strategies Observational Tool (OSOT). Relative duration (% of session time) and frequency were extracted for teaching strategies related to autonomy, expectancies, and attention. RESULTS Physiotherapists mostly applied strategies to support autonomy and enhance expectancies in contrast to therapist-controlled strategies, and lowering expectancies. Strategies to promote either an internal or an external focus of attention were used to a similar extent. Furthermore, strategies were frequently combined; physiotherapists often employed more than one teaching strategy at a time. CONCLUSIONS The insight into current physiotherapy teaching practice that this study provides can help inform research and application regarding effective motor teaching for children with DCD. Follow up studies are needed to further investigate how child and task characteristics influence teaching strategy employment and to examine physiotherapists' reasoning behind their choice of strategies.
Collapse
Affiliation(s)
- Jorine Schoenmaker
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Han Houdijk
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert Steenbergen
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Heleen A Reinders-Messelink
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Rehabilitation Center 'Revalidatie Friesland', Beetsterzwaag, The Netherlands
| | - Marina M Schoemaker
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Eaves DL, Hodges NJ, Buckingham G, Buccino G, Vogt S. Enhancing motor imagery practice using synchronous action observation. PSYCHOLOGICAL RESEARCH 2024; 88:1891-1907. [PMID: 36574019 PMCID: PMC11315722 DOI: 10.1007/s00426-022-01768-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/07/2022] [Indexed: 12/28/2022]
Abstract
In this paper, we discuss a variety of ways in which practising motor actions by means of motor imagery (MI) can be enhanced via synchronous action observation (AO), that is, by AO + MI. We review the available research on the (mostly facilitatory) behavioural effects of AO + MI practice in the early stages of skill acquisition, discuss possible theoretical explanations, and consider several issues related to the choice and presentation schedules of suitable models. We then discuss considerations related to AO + MI practice at advanced skill levels, including expertise effects, practical recommendations such as focussing attention on specific aspects of the observed action, using just-ahead models, and possible effects of the perspective in which the observed action is presented. In section "Coordinative AO + MI", we consider scenarios where the observer imagines performing an action that complements or responds to the observed action, as a promising and yet under-researched application of AO + MI training. In section "The dual action simulation hypothesis of AO + MI", we review the neurocognitive hypothesis that AO + MI practice involves two parallel action simulations, and we consider opportunities for future research based on recent neuroimaging work on parallel motor representations. In section "AO + MI training in motor rehabilitation", we review applications of AO, MI, and AO + MI training in the field of neurorehabilitation. Taken together, this evidence-based, exploratory review opens a variety of avenues for future research and applications of AO + MI practice, highlighting several clear advantages over the approaches of purely AO- or MI-based practice.
Collapse
Affiliation(s)
- Daniel L Eaves
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Nicola J Hodges
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Gavin Buckingham
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Giovanni Buccino
- Division of Neuroscience, IRCCS San Raffaele and Vita Salute San Raffaele University, Milan, Italy
| | - Stefan Vogt
- Department of Psychology, Lancaster University, Lancaster, UK.
| |
Collapse
|
6
|
Mukherjee M, Hyde C, Barhoun P, Bianco KM, Singh M, Waugh J, Silk TJ, Lum JA, Caeyenberghs K, Williams J, Enticott PG, Fuelscher I. White matter organisation of sensorimotor tracts is associated with motor imagery in childhood. Brain Struct Funct 2024; 229:1591-1603. [PMID: 38914896 PMCID: PMC11374871 DOI: 10.1007/s00429-024-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
Despite the important role of motor imagery (MI) in motor development, our understanding of the contribution of white matter fibre properties to MI performance in childhood remains limited. To provide novel insight into the white matter correlates of MI performance, this study examined the association between white matter fibre properties and motor imagery performance in a sample of typically developing children. High angular diffusion weighted imaging data were collected from 22 typically developing children aged 6-14 years (12 female, MAge= 10.56). Implicit motor imagery performance was assessed using a mental hand rotation paradigm. The cerebellar peduncles and the superior longitudinal fasciculus were reconstructed using TractSeg, a semi-automated method. For each tract, white matter microstructure (fibre density, FD) and morphology (fibre bundle cross-section, FC) were estimated using Fixel-Based Analysis. Permutation-based inference testing and partial correlation analyses demonstrated that higher FC in the middle cerebellar peduncles was associated with better MI performance. Tract-based region of interest analyses showed that higher FC in the middle and superior cerebellar peduncles were associated with better MI performance. Results suggest that white matter connectivity along the cerebellar peduncles may facilitate MI performance in childhood. These findings advance our understanding of the neurobiological systems that underlie MI performance in childhood and provide early evidence for the relevance of white matter sensorimotor pathways to internal action representations.
Collapse
Affiliation(s)
- Mugdha Mukherjee
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia.
| | - Christian Hyde
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia
| | - Pamela Barhoun
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia
| | - Kaila M Bianco
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia
| | - Mervyn Singh
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia
| | - Jessica Waugh
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia
| | - Timothy J Silk
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia
| | - Jarrad Ag Lum
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia
| | - Karen Caeyenberghs
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia
| | - Jacqueline Williams
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Peter G Enticott
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia
| | - Ian Fuelscher
- School of Psychology, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Geelong, VIC, Australia
| |
Collapse
|
7
|
Grilc N, Valappil AC, Tillin NA, Mian OS, Wright DJ, Holmes PS, Castelli F, Bruton AM. Motor imagery drives the effects of combined action observation and motor imagery on corticospinal excitability for coordinative lower-limb actions. Sci Rep 2024; 14:13057. [PMID: 38844650 PMCID: PMC11156847 DOI: 10.1038/s41598-024-63758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Combined action observation and motor imagery (AOMI) facilitates corticospinal excitability (CSE) and may potentially induce plastic-like changes in the brain in a similar manner to physical practice. This study used transcranial magnetic stimulation (TMS) to explore changes in CSE for AOMI of coordinative lower-limb actions. Twenty-four healthy adults completed two baseline (BLH, BLNH) and three AOMI conditions, where they observed a knee extension while simultaneously imagining the same action (AOMICONG), plantarflexion (AOMICOOR-FUNC), or dorsiflexion (AOMICOOR-MOVE). Motor evoked potential (MEP) amplitudes were recorded as a marker of CSE for all conditions from two knee extensor, one dorsi flexor, and two plantar flexor muscles following TMS to the right leg representation of the left primary motor cortex. A main effect for experimental condition was reported for all three muscle groups. MEP amplitudes were significantly greater in the AOMICONG condition compared to the BLNH condition (p = .04) for the knee extensors, AOMICOOR-FUNC condition compared to the BLH condition (p = .03) for the plantar flexors, and AOMICOOR-MOVE condition compared to the two baseline conditions for the dorsi flexors (ps ≤ .01). The study findings support the notion that changes in CSE are driven by the imagined actions during coordinative AOMI.
Collapse
Affiliation(s)
- Neza Grilc
- Department of Life Sciences, Brunel University London, HNZW 271, Heinz Wolff Building, Uxbridge, UB8 3PH, UK
- School of Life and Health Sciences, University of Roehampton, London, UK
| | | | - Neale A Tillin
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Omar S Mian
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - David J Wright
- School of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Paul S Holmes
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Federico Castelli
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Adam M Bruton
- Department of Life Sciences, Brunel University London, HNZW 271, Heinz Wolff Building, Uxbridge, UB8 3PH, UK.
- School of Life and Health Sciences, University of Roehampton, London, UK.
| |
Collapse
|
8
|
Gowen E, Edmonds E, Poliakoff E. Motor imagery in autism: a systematic review. Front Integr Neurosci 2024; 18:1335694. [PMID: 38410719 PMCID: PMC10895877 DOI: 10.3389/fnint.2024.1335694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Motor Imagery (MI) is when an individual imagines performing an action without physically executing that action and is thought to involve similar neural processes used for execution of physical movement. As motor coordination difficulties are common in autistic individuals it is possible that these may affect MI ability. The aim of this systematic review was to assess the current knowledge around MI ability in autistic individuals. Methods A systematic search was conducted for articles published before September 2023, following PRISMA guidance. Search engines were PsycINFO, PubMed, Web of Science, Scopus, Wiley Online Library and PsyArXiv. Inclusion criteria included: (a) Original peer-reviewed and pre-print publications; (b) Autistic and a non-autistic group (c) Implicit or explicit imagery tasks (d) Behavioral, neurophysiological or self-rating measures, (e) Written in the English language. Exclusion criteria were (a) Articles only about MI or autism (b) Articles where the autism data is not presented separately (c) Articles on action observation, recognition or imitation only (d) Review articles. A narrative synthesis of the evidence was conducted. Results Sixteen studies across fourteen articles were included. Tasks were divided into implicit (unconscious) or explicit (conscious) MI. The implicit tasks used either hand (6) or body (4) rotation tasks. Explicit tasks consisted of perspective taking tasks (3), a questionnaire (1) and explicit instructions to imagine performing a movement (2). A MI strategy was apparent for the hand rotation task in autistic children, although may have been more challenging. Evidence was mixed and inconclusive for the remaining task types due to the varied range of different tasks and, measures conducted and design limitations. Further limitations included a sex bias toward males and the hand rotation task only being conducted in children. Discussion There is currently an incomplete understanding of MI ability in autistic individuals. The field would benefit from a battery of fully described implicit and explicit MI tasks, conducted across the same groups of autistic children and adults. Improved knowledge around MI in autistic individuals is important for understanding whether MI techniques may benefit motor coordination in some autistic people.
Collapse
Affiliation(s)
- Emma Gowen
- Division of Psychology, Communication and Human Neuroscience, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Eve Edmonds
- Division of Psychology, Communication and Human Neuroscience, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ellen Poliakoff
- Division of Psychology, Communication and Human Neuroscience, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Esselaar M, Parr JVV, Wood G, Hodson-Tole E. Children with developmental coordination disorder have less variable motor unit firing rate characteristics across contractions compared to typically developing children. Front Hum Neurosci 2023; 17:1294931. [PMID: 38144895 PMCID: PMC10740205 DOI: 10.3389/fnhum.2023.1294931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Understanding the nuances of neuromuscular control is crucial in unravelling the complexities of developmental coordination disorder (DCD), which has been associated with differences in skeletal muscle activity, implying that children with DCD employ distinct strategies for muscle control. However, force generation and control are dependent on both recruitment of motor units and their firing rates and these fine details of motor function have yet to be studied in DCD. The purpose of this study was therefore to compare motor unit characteristics in a small muscle of the hand during low level, handgrip contractions in typically developing (TD) children and children with DCD. Methods Eighteen children (9 TD vs. 9 DCD) completed a series of manual handgrip contractions at 10 ± 5% of their maximum voluntary contraction. High density surface electromyography was used to record excitation of the first dorsal interosseus muscle. Recorded signals were subsequently decomposed into individual motor unit action potential trains. Motor unit characteristics (firing rate, inter-pulse interval, and action potential amplitude) were analysed for contractions that had a coefficient variation of <10%. Results and Discussion This study found few differences in average motor unit characteristics (number of motor units: TD 20.24 ± 9.73, DCD 27.32 ± 14.00; firing rate: TD 7.74 ± 2.16 p.p.s., DCD 7.86 ± 2.39 p.p.s.; inter-pulse interval: TD 199.72 ± 84.24 ms, DCD 207.12 ± 103 ms) when force steadiness was controlled for, despite the DCD group being significantly older (10.89 ± 0.78 years) than the TD group (9.44 ± 1.67 years). However, differences were found in the variability of motor unit firing statistics, with the children with DCD surprisingly showing less variability across contractions (standard deviation of coefficient of variation of inter-pulse interval: TD 0.38 ± 0.12, DCD 0.28 ± 0.11). This may suggest a more fixed strategy to stabilise force between contractions used by children with DCD. However, as variability of motor unit firing has not been considered in previous studies of children further work is required to better understand the role of variability in motor unit firing during manual grasping tasks, in all children.
Collapse
Affiliation(s)
- Maaike Esselaar
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Johnny V. V. Parr
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Greg Wood
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Emma Hodson-Tole
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom,
| |
Collapse
|
10
|
Knaier E, Meier CE, Caflisch JA, Huber R, Kakebeeke TH, Jenni OG. Visuomotor adaptation, internal modelling, and compensatory movements in children with developmental coordination disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 143:104624. [PMID: 37972466 DOI: 10.1016/j.ridd.2023.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Developmental coordination disorder (DCD) is one of the most prevalent developmental disorders in school-aged children. The mechanisms and etiology underlying DCD remain somewhat unclear. Altered visuomotor adaptation and internal model deficits are discussed in the literature. AIMS The study aimed to investigate visuomotor adaptation and internal modelling to determine whether and to what extent visuomotor learning might be impaired in children with DCD compared to typically developing children (TD). Further, possible compensatory movements during visuomotor learning were explored. METHODS AND PROCEDURES Participants were 12 children with DCD (age 12.4 ± 1.8, four female) and 18 age-matched TD (12.3 ± 1.8, five female). Visuomotor learning was measured with the Motor task manager. Compensatory movements were parameterized by spatial and temporal variables. OUTCOMES AND RESULTS Despite no differences in visuomotor adaptation or internal modelling, significant main effects for group were found in parameters representing movement accuracy, motor speed, and movement variability between DCD and TD. CONCLUSIONS AND IMPLICATIONS Children with DCD showed comparable performances in visuomotor adaptation and internal modelling to TD. However, movement variability was increased, whereas movement accuracy and motor speed were reduced, suggesting decreased motor acuity in children with DCD.
Collapse
Affiliation(s)
- Elisa Knaier
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claudia E Meier
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jon A Caflisch
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Tanja H Kakebeeke
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Gmamdya H, Souissi MA, Bougrine H, Baaziz M, Noomen Guelmami, Majdi B, Robin N, Bali N. The Positive Impact of Combining Motor Imagery, Action Observation and Coach's Feedback on Archery Accuracy of Young Athletes. Percept Mot Skills 2023; 130:2226-2248. [PMID: 37656001 DOI: 10.1177/00315125231193218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In recent years, learning and motor control researchers have examined, in diverse ways, the practical strategies that enhance motor skill acquisition in sport. In this study we investigated the impact of combining Motor Imagery (MI), Feedback (F), and Action Observation (AO) on the quality of archery longbow shooting at a 10-meter target. We randomly assigned 60 young athletes to (a) a Control group (Control), (b) a Feedback and Motor Imagery group (F + MI), and (c) a Feedback, Motor Imagery, and Action Observation group (F + MI + AO). Over an 8-week intervention period athletes performed two training sessions per week. During each session, all participants engaged in two blocks of ten effective shots. Performance improvement was significantly greater in the F + MI + AO group than in the two other groups, confirming the beneficial impact of combining all three methods of improving archery accuracy. These findings suggest practical recommendations for athletes and trainers for delivering optimal mental training to improve shooting accuracy for these archers.
Collapse
Affiliation(s)
- Hatem Gmamdya
- Research Laboratory in Disability and Social Maladjustment, University of Mannouba, Tunisia
- High Institute of Sport and Physical Education, Sfax University, Sfax, Tunisia
- High Institute of Sport and Physical Education, Gafsa University, Gafsa, Tunisia
| | - Mohamed Abdelkader Souissi
- High Institute of Sport and Physical Education, Gafsa University, Gafsa, Tunisia
- Physical Activity, Sport and Health, Research Unit, UR18JS01, National Observatory of Sport, Tunis, Tunisia
| | - Houda Bougrine
- Physical Activity, Sport and Health, Research Unit, UR18JS01, National Observatory of Sport, Tunis, Tunisia
- High Institute of Sport and Physical Education Ksar-Said, Manouba University, Manouba, Tunisia
| | - Mohamed Baaziz
- High Institute of Sport and Physical Education Ksar-Said, Manouba University, Manouba, Tunisia
| | - Noomen Guelmami
- Higher Institute of Sport and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia
| | - Bouazizi Majdi
- High Institute of Sport and Physical Education, Gafsa University, Gafsa, Tunisia
| | - Nicolas Robin
- Laboratoire ACTES (3596), UFR STAPS, Université des Antilles, Pointe-à-Pitre, France
| | - Naila Bali
- Research Laboratory in Disability and Social Maladjustment, University of Mannouba, Tunisia
- High Institute of Sport and Physical Education Ksar-Said, Manouba University, Manouba, Tunisia
| |
Collapse
|
12
|
Demers I, Corriveau G, Morneau-Vaillancourt G, Lamontagne ME, Camden C, Moffet H, Maltais DB. A Clinical Practice Guide to Enhance Physical Activity Participation for Children with Developmental Coordination Disorder in Canada. Physiother Can 2023; 75:293-307. [PMID: 37736410 PMCID: PMC10510533 DOI: 10.3138/ptc-2021-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 09/23/2023]
Abstract
Purpose This clinical practice guide (CPG) aims to provide evidence-based recommendations for promoting and enhancing the participation and integration of children with developmental coordination disorder (DCD) into physical activities that take place in the home, school, community, or rehabilitation clinic contexts. Methods A panel of key stakeholders relevant to these contexts (parents, instructors, rehabilitation professionals) developed evidence-based recommendations using a consensus methodology after reviewing results from a recent systematic review of relevant literature. The quality of the evidence on which the recommendations were based was evaluated (2011 Oxford Centre for Evidence-Based Medicine Levels of Evidence scale) as was the strength of the final CPG recommendations (American Society of Plastic Surgeons Grade Recommendation Scale). Results Recommendations (n = 50; 36% supported by robust, empirically derived evidence) for the different stakeholder groups fell into three categories: 1) Choose an appropriate activity for your child, 2) Harmonize the activity with the child's interests and abilities, and 3) Help the child learn new movements prior to the activity. Conclusions This comprehensive CPG provides concrete recommendations, based on the currently available evidence, that can be used by stakeholders to address the physical activity participation and integration needs of children with DCD in a variety of contexts.
Collapse
Affiliation(s)
- Isabelle Demers
- From the:
Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), CIUSSS de la Capitale Nationale, Québec, Québec, Canada
- Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Geneviève Corriveau
- Medicine and Health Sciences Faculty, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Marie-Eve Lamontagne
- From the:
Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), CIUSSS de la Capitale Nationale, Québec, Québec, Canada
- Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Chantal Camden
- Medicine and Health Sciences Faculty, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Hélène Moffet
- From the:
Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), CIUSSS de la Capitale Nationale, Québec, Québec, Canada
- Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Désirée B. Maltais
- From the:
Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), CIUSSS de la Capitale Nationale, Québec, Québec, Canada
- Faculty of Medicine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
13
|
Scott MW, Wood G, Holmes PS, Marshall B, Williams J, Wright DJ. Combined action observation and motor imagery improves learning of activities of daily living in children with Developmental Coordination Disorder. PLoS One 2023; 18:e0284086. [PMID: 37220154 DOI: 10.1371/journal.pone.0284086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/23/2023] [Indexed: 05/25/2023] Open
Abstract
Developmental coordination disorder (DCD) is characterised by poor motor coordination, which interferes with the ability to execute activities of daily living (ADLs). Combined action observation and motor imagery (AOMI) involves observing movement videos whilst imagining simultaneously the sensations of executing the same movement. Laboratory-based research indicates that AOMI can help improve movement coordination in children with DCD, but no previous research had investigated the efficacy of AOMI interventions for learning ADLs. This study investigated the efficacy of a home-based, parent-led, AOMI intervention for learning ADLs in children with DCD. Children with confirmed (n = 23) or suspected (n = 5) DCD (total sample n = 28), aged 7-12 years, were assigned to either an AOMI intervention or a control intervention (both n = 14). Participants attempted the following ADLs at pre-test (week 1), post-test (week 4), and retention test (week 6): shoelace tying, cutlery use, shirt buttoning, and cup stacking. Task completion times and movement techniques were recorded. The AOMI intervention produced significantly faster task completion times than the control intervention at post-test for shoelace tying, and significantly improved movement techniques for shoelace tying and cup stacking. Importantly, for children who could not tie shoelaces at pre-test (n = 9 per group), 89% of those following the AOMI intervention learnt the skill successfully by the end of the study, compared to only 44% of those following the control intervention. The findings indicate that home-based, parent-led, AOMI interventions can aid the learning of complex ADLs in children with DCD, and may be particularly effective for facilitating the learning of motor skills that do not currently exist within these children's motor repertoire.
Collapse
Affiliation(s)
- Matthew W Scott
- Department of Psychology, Faculty of Health and Education, Manchester Metropolitan University, Manchester, United Kingdom
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Greg Wood
- Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Paul S Holmes
- Department of Psychology, Faculty of Health and Education, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ben Marshall
- Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jacqueline Williams
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia
| | - David J Wright
- Department of Psychology, Faculty of Health and Education, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
14
|
Wang L, Zheng WM, Liang TF, Yang YH, Yang BN, Chen X, Chen Q, Li XJ, Lu J, Li BW, Chen N. Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury. AJNR Am J Neuroradiol 2023; 44:611-617. [PMID: 37080724 PMCID: PMC10171374 DOI: 10.3174/ajnr.a7847] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND PURPOSE Currently, there is no effective treatment for pediatric patients with complete spinal cord injury. Motor imagery has been proposed as an alternative to physical training for patients who are unable to move voluntarily. Our aim was to reveal the potential mechanism of motor imagery in the rehabilitation of pediatric complete spinal cord injury. MATERIALS AND METHODS Twenty-six pediatric patients with complete spinal cord injury and 26 age- and sex-matched healthy children as healthy controls were recruited. All participants underwent the motor imagery task-related fMRI scans, and additional motor execution scans were performed only on healthy controls. First, we compared the brain-activation patterns between motor imagery and motor execution in healthy controls. Then, we compared the brain activation of motor imagery between the 2 groups and compared the brain activation of motor imagery in pediatric patients with complete spinal cord injury and that of motor execution in healthy controls. RESULTS In healthy controls, compared with motor execution, motor imagery showed increased activation in the left inferior parietal lobule and decreased activation in the left supplementary motor area, paracentral lobule, middle cingulate cortex, and right insula. In addition, our results revealed that the 2 groups both activated the bilateral supplementary motor area, middle cingulate cortex and left inferior parietal lobule, and supramarginal gyrus during motor imagery. Compared with healthy controls, higher activation in the bilateral paracentral lobule, supplementary motor area, putamen, and cerebellar lobules III-V was detected in pediatric complete spinal cord injury during motor imagery, and the activation of these regions was even higher than that of healthy controls during motor execution. CONCLUSIONS Our study demonstrated that part of the motor imagery network was functionally preserved in pediatric complete spinal cord injury and could be activated through motor imagery. In addition, higher-level activation in sensorimotor-related regions was also found in pediatric complete spinal cord injury during motor imagery. Our findings may provide a theoretic basis for the application of motor imagery training in pediatric complete spinal cord injury.
Collapse
Affiliation(s)
- L Wang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - W M Zheng
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - T F Liang
- Department of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
| | - Y H Yang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - B N Yang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - X Chen
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - Q Chen
- Department of Radiology (Q.C.), Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - X J Li
- Department of Radiology (X.J.L.), China Rehabilitation Research Center, Beijing, China
| | - J Lu
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - B W Li
- Department of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
| | - N Chen
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| |
Collapse
|
15
|
Martel M, Glover S. TMS over dorsolateral prefrontal cortex affects the timing of motor imagery but not overt action: Further support for the motor-cognitive model. Behav Brain Res 2023; 437:114125. [PMID: 36167217 DOI: 10.1016/j.bbr.2022.114125] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
The Motor-Cognitive model suggests a functional dissociation between motor imagery and overt action, in contrast to the Functional Equivalence view of common processes between the two behaviours. According to the Motor-Cognitive model, motor imagery differs from overt action primarily through the use of executive resources to monitor and elaborate a motor image during execution, which can result in a lack of correspondence between motor imagery and its overt action counterpart. The present study examined the importance of executive resources in motor imagery by using TMS to impair the function of the dorsolateral prefrontal cortex while measuring the time to complete imagined versus overt actions. In two experiments, TMS over the dorsolateral prefrontal cortex slowed motor imagery but did not affect overt actions. TMS over the same region also interfered with performance of a mental calculation task, though it did not reliably affect less demanding cognitive tasks also thought to rely on executive functions. Taken together, these results were consistent with the Motor-Cognitive model but not with the idea of functional equivalence. The implications of these results for the theoretical understanding of motor imagery, and potential applications of the Motor-Cognitive model to the use of motor imagery in training and rehabilitation, are discussed.
Collapse
Affiliation(s)
- Marie Martel
- Department of Psychology, Royal Holloway University of London, UK.
| | - Scott Glover
- Department of Psychology, Royal Holloway University of London, UK
| |
Collapse
|
16
|
Zhang L, Chen L, Wang Z, Zhang X, Liu X, Ming D. Enhancing Visual-Guided Motor Imagery Performance via Sensory Threshold Somatosensory Electrical Stimulation Training. IEEE Trans Biomed Eng 2023; 70:756-765. [PMID: 36037456 DOI: 10.1109/tbme.2022.3202189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Motor imagery (MI) based brain- computer interface (BCI) has been widely studied as an effective way to enhance motor learning and promote motor recovery. However, the accuracy of MI-BCI heavily depends on whether subjects can perform MI tasks correctly, which largely limits the general application of MI-BCI. To overcome this limitation, a training strategy based on the combination of MI and sensory threshold somatosensory electrical stimulation (MI+st-SES) is proposed in this study. METHODS Thirty healthy subjects were recruited and randomly divided into SES group and control group. Both groups performed left-hand and right-hand MI tasks in three consecutive blocks. The main difference between two groups lies in the second block, where subjects in SES group received the st-SES during MI tasks whereas the control group performed MI tasks only. RESULTS The results showed that the SES group had a significant improvement in event-related desynchronization (ERD) of alpha rhythm after the training session of MI+st-SES (left-hand: F(2,27) = 9.98, p<0.01; right-hand: F(2, 27) = 10.43, p<0.01). The classification accuracy between left- and right-hand MI in the SES group was also significantly improved following MI+st-SES training (F(2,27) = 6.46, p<0.01). In contrary, there was no significant difference between the first and third blocks in the control group (F(2,27) = 0.18, p = 0.84). The functional connectivity based on weighted pairwise phase consistency (wPPC) over the sensorimotor area also showed an increase after the MI+st-SES training. CONCLUSION AND SIGNIFICANCE Our findings indicate that training based on MI+st-SES is a promising way to foster MI performance and assist subjects in achieving efficient BCI control.
Collapse
|
17
|
Li M, Zuo H, Zhou H, Xu G, Qi E. A study of action difference on motor imagery based on delayed matching posture task. J Neural Eng 2023; 20. [PMID: 36645915 DOI: 10.1088/1741-2552/acb386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Objective. Motor imagery (MI)-based brain-computer interfaces (BCIs) provide an additional control pathway for people by decoding the intention of action imagination. The way people imagine greatly affects MI-BCI performance. Action itself is one of the factors that influence the way people imagine. Whether the different actions cause a difference in the MI performance is unknown. What is more important is how to manifest this action difference in the process of imagery, which has the potential to guide people to use their individualized actions to imagine more effectively.Approach.To explore action differences, this study proposes a novel paradigm named as action observation based delayed matching posture task. Ten subjects are required to observe, memorize, match, and imagine three types of actions (cutting, grasping and writing) given by visual images or videos, to accomplish the phases of encoding, retrieval and reinforcement of MI. Event-related potential (ERP), MI features, and classification accuracy of the left or the right hand are used to evaluate the effect of the action difference on the MI difference.Main results.Action differences cause different feature distributions, resulting in that the accuracy with high event-related (de)synchronization (ERD/ERS) is 27.75% higher than the ones with low ERD/ERS (p< 0.05), which indicates that the action difference has impact on the MI difference and the BCI performance. In addition, significant differences in the ERP amplitudes exists among the three actions: the amplitude of P300-N200 potential reaches 9.28μV of grasping, 5.64μV and 5.25μV higher than the cutting and the writing, respectively (p< 0.05).Significance.The ERP amplitudes derived from the supplementary motor area shows positive correlation to the MI classification accuracy, implying that the ERP might be an index of the MI performance when the people is faced with action selection. This study demonstrates that the MI difference is related to the action difference, and can be manifested by the ERP, which is important for improving MI training by selecting suitable action; the relationship between the ERP and the MI provides a novel index to find the suitable action to set up an individualized BCI and improve the performance further.
Collapse
Affiliation(s)
- Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| | - Haoxin Zuo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| | - Huihui Zhou
- Peng Cheng Laboratory, 518000 Guangdong, People's Republic of China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| | - Enming Qi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| |
Collapse
|
18
|
Meachon EJ. Perspective: Acknowledging complexity to advance the understanding of developmental coordination disorder. Front Hum Neurosci 2023; 16:1082209. [PMID: 36684831 PMCID: PMC9859625 DOI: 10.3389/fnhum.2022.1082209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Developmental Coordination Disorder (DCD) is a heterogeneous neurodevelopmental disorder known for primary symptoms of motor learning and execution difficulties. Recent research has consistently suggested DCD symptoms span broadly beyond motor difficulties, yet a majority of research and practice approaches the investigation, diagnosis, and treatment of DCD with a reductionist framework. Therefore, this paper suggests the paradigm of complexity theory as a means for better conceptualization, assessment, and treatment of DCD. First, the perspective of complexity theory and its relevance to DCD is described. Then, examples from recent research which attempt to acknowledge and capture the complex nature of DCD are highlighted. Finally, suggestions for considering and measuring complexity of DCD in future research and practice are provided. Overall, the perspective of complexity can propel the research forward and improve the understanding of DCD relevant to assessment and treatment. The complexity paradigm is highly relevant to describing the evolving and multidimensional picture of DCD, understanding heterogeneous symptom profiles, making connections to interconnected secondary symptoms, and beyond.
Collapse
|
19
|
Parr JVV, Hodson-Tole E, Wood G. Short report presenting preliminary evidence of impaired corticomuscular coherence in an individual with Developmental Coordination Disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 131:104355. [PMID: 36191396 DOI: 10.1016/j.ridd.2022.104355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND It has been suggested that developmental coordination disorder (DCD) could be caused by a 'dysconnection' in brain and skeletal muscle communication. To date no previous work has examined the integrity of this neuromuscular process in individuals with DCD. AIMS To conduct a feasibility study for measuring functional connectivity of the brain and muscle in an individual with DCD using corticomuscular coherence (CMC). METHODS AND PROCEDURES An individual with DCD and a typically developing (TD) participant completed a series of sustained 5-second voluntary isometric hand contractions (15 ± 5 % MVC) on a handheld dynamometer under both single and dual task (i.e., counting backwards) conditions. EEG, EMG and force data were collected. OUTCOMES AND RESULTS The participant with DCD displayed poorer force steadiness and higher mental demand compared to the TD participant and in dual task conditions. The TD participant displayed a commonly observed pattern of CMC that was highly localised over the contralateral hand area, the DCD participant displayed a less localised CMC across cortical regions. CONCLUSIONS AND IMPLICATIONS These findings support the feasibility of measuring CMC in DCD populations and offer some, albeit preliminary, evidence of impaired communication between the brain and muscles in these individuals.
Collapse
Affiliation(s)
- J V V Parr
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - E Hodson-Tole
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - G Wood
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
20
|
Chye S, Valappil AC, Wright DJ, Frank C, Shearer DA, Tyler CJ, Diss CE, Mian OS, Tillin NA, Bruton AM. The effects of combined action observation and motor imagery on corticospinal excitability and movement outcomes: Two meta-analyses. Neurosci Biobehav Rev 2022; 143:104911. [DOI: 10.1016/j.neubiorev.2022.104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
|
21
|
O’Shea H. Mapping relational links between motor imagery, action observation, action-related language, and action execution. Front Hum Neurosci 2022; 16:984053. [DOI: 10.3389/fnhum.2022.984053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Actions can be physically executed, observed, imagined, or simply thought about. Unifying mental processes, such as simulation, emulation, or predictive processing, are thought to underlie different action types, whether they are mental states, as in the case of motor imagery and action observation, or involve physical execution. While overlapping brain activity is typically observed across different actions which indicates commonalities, research interest is also concerned with investigating the distinct functional components of these action types. Unfortunately, untangling subtleties associated with the neurocognitive bases of different action types is a complex endeavour due to the high dimensional nature of their neural substrate (e.g., any action process is likely to activate multiple brain regions thereby having multiple dimensions to consider when comparing across them). This has impeded progress in action-related theorising and application. The present study addresses this challenge by using the novel approach of multidimensional modeling to reduce the high-dimensional neural substrate of four action-related behaviours (motor imagery, action observation, action-related language, and action execution), find the least number of dimensions that distinguish or relate these action types, and characterise their neurocognitive relational links. Data for the model comprised brain activations for action types from whole-brain analyses reported in 53 published articles. Eighty-two dimensions (i.e., 82 brain regions) for the action types were reduced to a three-dimensional model, that mapped action types in ordination space where the greater the distance between the action types, the more dissimilar they are. A series of one-way ANOVAs and post-hoc comparisons performed on the mean coordinates for each action type in the model showed that across all action types, action execution and concurrent action observation (AO)-motor imagery (MI) were most neurocognitively similar, while action execution and AO were most dissimilar. Most action types were similar on at least one neurocognitive dimension, the exception to this being action-related language. The import of the findings are discussed in terms of future research and implications for application.
Collapse
|
22
|
Xiong H, Chen JJ, Gikaro JM, Wang CG, Lin F. Activation Patterns of Functional Brain Network in Response to Action Observation-Induced and Non-Induced Motor Imagery of Swallowing: A Pilot Study. Brain Sci 2022; 12:brainsci12101420. [PMID: 36291353 PMCID: PMC9599111 DOI: 10.3390/brainsci12101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
Abstract
Action observation (AO) combined with motor imagery (MI) was verified as more effective in improving limb function than AO or MI alone, while the underlying mechanism of swallowing was ambiguous. The study aimed at exploring the efficacy of AO combined with MI in swallowing. In this study, twelve subjects performed the motor imagery of swallowing (MI-SW) during magnetoencephalography (MEG) scanning, and trials were divided into three groups: the non-induced group (control group, CG), male AO-induced group (M-AIG), and female AO-induced group (F-AIG). We used event-related spectral perturbations (ERSPs) and phase locking value (PLV) to assess the degree of activation and connectivity of the brain regions during MI-SW in the three groups. The results showed that compared to CG, F-AIG and M-AIG significantly activated more brain regions in the frontoparietal, attention, visual, and cinguloopercular systems. In addition, M-AIG significantly activated the sensorimotor cortex compared to CG and F-AIG. For the brain network, F-AIG and M-AIG increased the diffusion of non-hub hot spots and cold hubs to the bilateral hemispheres which enhanced interhemispheric functional connectivity and information transmission efficiency in the MI-SW task. This study provided supporting evidence that AO induction could enhance the effect of MI-SW and supported the application of AO-induced MI-SW in clinical rehabilitation.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Rehabilitation Medicine, Sir Run Run Hospital Nanjing Medical University, Nanjing 211100, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jin-Jin Chen
- Department of Rehabilitation Medicine, Sir Run Run Hospital Nanjing Medical University, Nanjing 211100, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing 210029, China
| | - John M. Gikaro
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Chen-Guang Wang
- Department of Rehabilitation Medicine, Sir Run Run Hospital Nanjing Medical University, Nanjing 211100, China
| | - Feng Lin
- Department of Rehabilitation Medicine, Sir Run Run Hospital Nanjing Medical University, Nanjing 211100, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: ; Tel.: +86-025-87115719
| |
Collapse
|
23
|
Grazia A, Wimmer M, Müller-Putz GR, Wriessnegger SC. Neural Suppression Elicited During Motor Imagery Following the Observation of Biological Motion From Point-Light Walker Stimuli. Front Hum Neurosci 2022; 15:788036. [PMID: 35069155 PMCID: PMC8779203 DOI: 10.3389/fnhum.2021.788036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction: Advantageous effects of biological motion (BM) detection, a low-perceptual mechanism that allows the rapid recognition and understanding of spatiotemporal characteristics of movement via salient kinematics information, can be amplified when combined with motor imagery (MI), i.e., the mental simulation of motor acts. According to Jeannerod's neurostimulation theory, asynchronous firing and reduction of mu and beta rhythm oscillations, referred to as suppression over the sensorimotor area, are sensitive to both MI and action observation (AO) of BM. Yet, not many studies investigated the use of BM stimuli using combined AO-MI tasks. In this study, we assessed the neural response in the form of event-related synchronization and desynchronization (ERD/S) patterns following the observation of point-light-walkers and concordant MI, as compared to MI alone. Methods: Twenty right-handed healthy participants accomplished the experimental task by observing BM stimuli and subsequently performing the same movement using kinesthetic MI (walking, cycling, and jumping conditions). We recorded an electroencephalogram (EEG) with 32 channels and performed time-frequency analysis on alpha (8-13 Hz) and beta (18-24 Hz) frequency bands during the MI task. A two-way repeated-measures ANOVA was performed to test statistical significance among conditions and electrodes of interest. Results: The results revealed significant ERD/S patterns in the alpha frequency band between conditions and electrode positions. Post hoc comparisons showed significant differences between condition 1 (walking) and condition 3 (jumping) over the left primary motor cortex. For the beta band, a significantly less difference in ERD patterns (p < 0.01) was detected only between condition 3 (jumping) and condition 4 (reference). Discussion: Our results confirmed that the observation of BM combined with MI elicits a neural suppression, although just in the case of jumping. This is in line with previous findings of AO and MI (AOMI) eliciting a neural suppression for simulated whole-body movements. In the last years, increasing evidence started to support the integration of AOMI training as an adjuvant neurorehabilitation tool in Parkinson's disease (PD). Conclusion: We concluded that using BM stimuli in AOMI training could be promising, as it promotes attention to kinematic features and imitative motor learning.
Collapse
Affiliation(s)
- Alice Grazia
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Rostock-Greifswald, Rostock, Germany
- Department of General Psychology, University of Padova, Padua, Italy
| | - Michael Wimmer
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Gernot R. Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Selina C. Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
24
|
Rossi F, Savi F, Prestia A, Mongardi A, Demarchi D, Buccino G. Combining Action Observation Treatment with a Brain-Computer Interface System: Perspectives on Neurorehabilitation. SENSORS 2021; 21:s21248504. [PMID: 34960597 PMCID: PMC8707407 DOI: 10.3390/s21248504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022]
Abstract
Action observation treatment (AOT) exploits a neurophysiological mechanism, matching an observed action on the neural substrates where that action is motorically represented. This mechanism is also known as mirror mechanism. In a typical AOT session, one can distinguish an observation phase and an execution phase. During the observation phase, the patient observes a daily action and soon after, during the execution phase, he/she is asked to perform the observed action at the best of his/her ability. Indeed, the execution phase may sometimes be difficult for those patients where motor impairment is severe. Although, in the current practice, the physiotherapist does not intervene on the quality of the execution phase, here, we propose a stimulation system based on neurophysiological parameters. This perspective article focuses on the possibility to combine AOT with a brain–computer interface system (BCI) that stimulates upper limb muscles, thus facilitating the execution of actions during a rehabilitation session. Combining a rehabilitation tool that is well-grounded in neurophysiology with a stimulation system, such as the one proposed, may improve the efficacy of AOT in the treatment of severe neurological patients, including stroke patients, Parkinson’s disease patients, and children with cerebral palsy.
Collapse
Affiliation(s)
- Fabio Rossi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Federica Savi
- Fondazione Don Carlo Gnocchi, Piazzale dei Servi 3, 43100 Parma, Italy;
| | - Andrea Prestia
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Andrea Mongardi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (F.R.); (A.P.); (A.M.); (D.D.)
| | - Giovanni Buccino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, University San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-02-91751596
| |
Collapse
|
25
|
Sakaguchi Y, Yamasaki S. The effects of physical training versus combined action observation and motor imagery in conjunction with physical training on upper-extremity performance. Somatosens Mot Res 2021; 38:366-372. [PMID: 34645365 DOI: 10.1080/08990220.2021.1986380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Combined action observation and motor imagery training (AO+MI training), which involves motor imagery during action observation and physical training, has been attracting attention as an effective strategy for learning motor skills. However, little has been reported on the effects of AO+MI training. In the present study, we compared the effects of AO+MI training to the effects of physical training on upper-extremity performance. MATERIALS AND METHODS Ninety-six healthy participants were randomly assigned to either the control group or the experimental group. Sport stacking, which is often used to evaluate upper-extremity performance, was adopted for the task. The experiment was scheduled for three days. The training was 20 min per day. The control group performed only physical training, while the experimental group performed four 5-min AO+MI training sessions. Time taken to complete a sport stacking try (task completion time) was defined as the index of speed of upper-extremity performance and number of fallen cups as the index of its accuracy. The outcomes within each group and between the two groups were compared. RESULTS Both AO+MI training and physical training showed reduced task completion time and increased number of fallen cups. There were no significant differences in the degree of changes between the groups. CONCLUSION Results from the present study showed that AO+MI training and physical training had almost the same influence on upper-extremity performance in the early stages of learning sport stacking. This result suggests that AO+MI training may be an effective and low-burden training method for participants.
Collapse
Affiliation(s)
- Yuya Sakaguchi
- School of Rehabilitation, Hyogo University of Health Sciences, Kobe-shi, Japan
| | | |
Collapse
|