• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4641775)   Today's Articles (2836)   Subscriber (50452)
For: Bidargaddi NP, Chetty M, Kamruzzaman J. Combining segmental semi-Markov models with neural networks for protein secondary structure prediction. Neurocomputing 2009;72:3943-50. [DOI: 10.1016/j.neucom.2009.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Number Cited by Other Article(s)
1
Guo Y, Wu J, Ma H, Wang S, Huang J. Deep Ensemble Learning with Atrous Spatial Pyramid Networks for Protein Secondary Structure Prediction. Biomolecules 2022;12:biom12060774. [PMID: 35740899 PMCID: PMC9221033 DOI: 10.3390/biom12060774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023]  Open
2
Moffat L, Jones DT. Increasing the accuracy of single sequence prediction methods using a deep semi-supervised learning framework. Bioinformatics 2021;37:3744-3751. [PMID: 34213528 PMCID: PMC8570780 DOI: 10.1093/bioinformatics/btab491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 11/14/2022]  Open
3
Chen J, Xu Y, Sun W, Huang L. Joint sparse neural network compression via multi-application multi-objective optimization. APPL INTELL 2021. [DOI: 10.1007/s10489-021-02243-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
4
Visibelli A, Bongini P, Rossi A, Niccolai N, Bianchini M. A deep attention network for predicting amino acid signals in the formation of [Formula: see text]-helices. J Bioinform Comput Biol 2020;18:2050028. [PMID: 32757808 DOI: 10.1142/s0219720020500286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
5
Huang J, Sun W, Huang L. Deep neural networks compression learning based on multiobjective evolutionary algorithms. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
6
An enhanced protein secondary structure prediction using deep learning framework on hybrid profile based features. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2019.105926] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
7
Peyravi F, Latif A, Moshtaghioun SM. Protein tertiary structure prediction using hidden Markov model based on lattice. J Bioinform Comput Biol 2019;17:1950007. [PMID: 31057069 DOI: 10.1142/s0219720019500070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
8
A Composite Approach to Protein Tertiary Structure Prediction: Hidden Markov Model Based on Lattice. Bull Math Biol 2018;81:899-918. [DOI: 10.1007/s11538-018-00542-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/28/2018] [Indexed: 11/25/2022]
9
Heffernan R, Paliwal K, Lyons J, Singh J, Yang Y, Zhou Y. Single-sequence-based prediction of protein secondary structures and solvent accessibility by deep whole-sequence learning. J Comput Chem 2018;39:2210-2216. [PMID: 30368831 DOI: 10.1002/jcc.25534] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023]
10
Protein secondary structure prediction: A survey of the state of the art. J Mol Graph Model 2017;76:379-402. [DOI: 10.1016/j.jmgm.2017.07.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 11/21/2022]
11
GHANTY PRADIP, PAL NIKHILR, MUDI RAJANIK. PREDICTION OF PROTEIN SECONDARY STRUCTURE USING PROBABILITY BASED FEATURES AND A HYBRID SYSTEM. J Bioinform Comput Biol 2013;11:1350012. [DOI: 10.1142/s0219720013500121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA