1
|
A new EEG determinism analysis method based on multiscale dispersion recurrence plot. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Mansoory MS, Allahverdy A, Behboudi M, Khodamoradi M. Local efficiency analysis of restingstate functional brain network in methamphetamine users. Behav Brain Res 2022; 434:114022. [PMID: 35870617 DOI: 10.1016/j.bbr.2022.114022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
This study set out to assess restingstate functional connectivity (rs-FN) and graph theorybased local efficiency within the left and right hemispheres of methamphetamine (MA) abusers. Functional brain networks of 19 MA abusers and 21 control participants were analyzed using restingstate fMRI. Graph edges in functional networks of the brain were defined and recurrence plot was used. We found that MA abuse may be accompanied by alterations of rs-FN within the defaultmode network (DMN), executive control network (ECN), and the salience network (SN) in both hemispheres of the brain. We also observed that such effects of MA may be correlated with duration of MA abuse and abstinence in many components of the DMN and SN. The results would seem to suggest that MAinduced alterations of local efficiency may, in part, account for maladaptive decision making, deficits in executive function and control over drug seeking/taking, and relapse.
Collapse
Affiliation(s)
- Meysam Siyah Mansoory
- Department of Biomedical Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Armin Allahverdy
- Department of Radiology, School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Behboudi
- Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Nonlinear Phase Synchronization Analysis of EEG Signals in Amnesic Mild Cognitive Impairment with Type 2 Diabetes Mellitus. Neuroscience 2021; 472:25-34. [PMID: 34333062 DOI: 10.1016/j.neuroscience.2021.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/21/2023]
Abstract
Studying the nonlinear synchronization of electroencephalogram (EEG) in type 2 diabetic mellitus (T2DM) to find the EEG characteristics related to cognitive impairment is beneficial to the early prevention and diagnosis of mild cognitive impairment. Correlation between probabilities of recurrence (CPR) is a nonlinear phase synchronization method based on recurrence and recurrence probability, which had shown its superiority in detecting epilepsy. In this study, CPR method was used for the first time to analyze the synchronization of eye-closed resting EEG signals with T2DM. The 27 participants were divided into amnesic mild cognitive impairment (aMCI) group (17 case) and control group (10 cases with age and education matched). The CPR values in two groups were statistically analyzed by Mann-Whitney U test, and the correlation between EEG synchronization and cognitive function was studied by Spearman's correlation. The results showed that aMCI group had lower CPR values at each electrode pair than control group, and two groups had decreased CPR values with the increase of the spatial distance of the electrode pair in inter hemispheric. The CPR values were significantly different in frontal, parietal and temporal regions in intra hemispheric between two groups. The CPR values of C3-F7, F4-C4 and FP2-T6 were significantly positively correlated with the MOCA values. This study showed that the synchronization values of EEG signals obtained by the CPR method were significantly different between aMCI and control group, and they were the EEG characteristics associated with cognitive impairment in T2DM.
Collapse
|
4
|
Kottlarz I, Berg S, Toscano-Tejeida D, Steinmann I, Bähr M, Luther S, Wilke M, Parlitz U, Schlemmer A. Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities. Front Physiol 2021; 11:614565. [PMID: 33597891 PMCID: PMC7882607 DOI: 10.3389/fphys.2020.614565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, ordinal pattern analysis and classical frequency-based EEG analysis methods are used to differentiate between EEGs of different age groups as well as individuals. As characteristic features, functional connectivity as well as single-channel measures in both the time and frequency domain are considered. We compare the separation power of each feature set after nonlinear dimensionality reduction using t-distributed stochastic neighbor embedding and demonstrate that ordinal pattern-based measures yield results comparable to frequency-based measures applied to preprocessed data, and outperform them if applied to raw data. Our analysis yields no significant differences in performance between single-channel features and functional connectivity features regarding the question of age group separation.
Collapse
Affiliation(s)
- Inga Kottlarz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Sebastian Berg
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Diana Toscano-Tejeida
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Iris Steinmann
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Melanie Wilke
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany.,German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ulrich Parlitz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Alexander Schlemmer
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|