1
|
Yan B, Li Y, Li L, Yang X, Li TQ, Yang G, Jiang M. Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer's disease classification. Comput Biol Med 2022; 148:105944. [PMID: 35969934 DOI: 10.1016/j.compbiomed.2022.105944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/23/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022]
Abstract
Brain medical imaging and deep learning are important foundations for diagnosing and predicting Alzheimer's disease. In this study, we explored the impact of different image filtering approaches and Pyramid Squeeze Attention (PSA) mechanism on the image classification of Alzheimer's disease. First, during the image preprocessing, we register MRI images and remove skulls, then apply median filtering, Gaussian blur filtering, and anisotropic diffusion filtering to obtain different experimental images. After that, we add the Squeeze and Excitation (SE) mechanism and Pyramid Squeeze Attention (PSA) mechanism to the Fully Convolutional Network (FCN) model respectively, to obtain each MRI image's corresponding feature information of disease probability map. Besides, we also construct Multi-Layer Perceptron (MLP) model's framework, combining feature information of disease probability map with age, gender, and Mini-Mental State Examination (MMSE) of each sample, to get the final classification performance of model. Among them, the accuracy of the MLP-C model combining anisotropic diffusion filtering with the Pyramid Squeeze Attention mechanism can reach 98.85%. The corresponding quantitative experimental results show that different image filtering approaches and attention mechanisms provide effective assistance for the diagnosis and classification of Alzheimer's disease.
Collapse
Affiliation(s)
- Bin Yan
- School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yang Li
- School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Li
- School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaocheng Yang
- School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW3 6NP, UK; National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
| | - Mingfeng Jiang
- School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Liu K, Li Q, Yao L, Guo X. The Coupled Representation of Hierarchical Features for Mild Cognitive Impairment and Alzheimer's Disease Classification. Front Neurosci 2022; 16:902528. [PMID: 35720713 PMCID: PMC9205193 DOI: 10.3389/fnins.2022.902528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Structural magnetic resonance imaging (MRI) features have played an increasingly crucial role in discriminating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from normal controls (NC). However, the large number of structural MRI studies only extracted low-level neuroimaging features or simply concatenated multitudinous features while ignoring the interregional covariate information. The appropriate representation and integration of multilevel features will be preferable for the precise discrimination in the progression of AD. In this study, we proposed a novel inter-coupled feature representation method and built an integration model considering the two-level (the regions of interest (ROI) level and the network level) coupled features based on structural MRI data. For the intra-coupled interactions about the network-level features, we performed the ROI-level (intra- and inter-) coupled interaction within each network by feature expansion and coupling learning. For the inter-coupled interaction of the network-level features, we measured the coupled relationships among different networks via Canonical correlation analysis. We evaluated the classification performance using coupled feature representations on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results showed that the coupled integration model with hierarchical features achieved the optimal classification performance with an accuracy of 90.44% for AD and NC groups, with an accuracy of 87.72% for the MCI converter (MCI-c) and MCI non-converter (MCI-nc) groups. These findings suggested that our two-level coupled interaction representation of hierarchical features has been the effective means for the precise discrimination of MCI-c from MCI-nc groups and, therefore, helpful in the characterization of different AD courses.
Collapse
Affiliation(s)
- Ke Liu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
- Engineering Research Center of Intelligent Technology and Educational Application, Beijing Normal University, Beijing, China
| | - Qing Li
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
- Engineering Research Center of Intelligent Technology and Educational Application, Beijing Normal University, Beijing, China
| | - Xiaojuan Guo
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
- Engineering Research Center of Intelligent Technology and Educational Application, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Zhu J, Tan Y, Lin R, Miao J, Fan X, Zhu Y, Liang P, Gong J, He H. Efficient self-attention mechanism and structural distilling model for Alzheimer’s disease diagnosis. Comput Biol Med 2022; 147:105737. [DOI: 10.1016/j.compbiomed.2022.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/23/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022]
|
4
|
Feng J, Zhang SW, Chen L. Extracting ROI-Based Contourlet Subband Energy Feature From the sMRI Image for Alzheimer's Disease Classification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1627-1639. [PMID: 33434134 DOI: 10.1109/tcbb.2021.3051177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90 ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image. Code and Sample IDs of this paper can be downloaded at https://github.com/NWPU-903PR/ROICSE.git.
Collapse
|
5
|
Chen L, Qiao H, Zhu F. Alzheimer's Disease Diagnosis With Brain Structural MRI Using Multiview-Slice Attention and 3D Convolution Neural Network. Front Aging Neurosci 2022; 14:871706. [PMID: 35557839 PMCID: PMC9088013 DOI: 10.3389/fnagi.2022.871706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 01/01/2023] Open
Abstract
Numerous artificial intelligence (AI) based approaches have been proposed for automatic Alzheimer's disease (AD) prediction with brain structural magnetic resonance imaging (sMRI). Previous studies extract features from the whole brain or individual slices separately, ignoring the properties of multi-view slices and feature complementarity. For this reason, we present a novel AD diagnosis model based on the multiview-slice attention and 3D convolution neural network (3D-CNN). Specifically, we begin by extracting the local slice-level characteristic in various dimensions using multiple sub-networks. Then we proposed a slice-level attention mechanism to emphasize specific 2D-slices to exclude the redundancy features. After that, a 3D-CNN was employed to capture the global subject-level structural changes. Finally, all these 2D and 3D features were fused to obtain more discriminative representations. We conduct the experiments on 1,451 subjects from ADNI-1 and ADNI-2 datasets. Experimental results showed the superiority of our model over the state-of-the-art approaches regarding dementia classification. Specifically, our model achieves accuracy values of 91.1 and 80.1% on ADNI-1 for AD diagnosis and mild cognitive impairment (MCI) convention prediction, respectively.
Collapse
Affiliation(s)
- Lin Chen
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Hezhe Qiao
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhu
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
6
|
Muhammad U, Hoque MZ, Oussalah M, Keskinarkaus A, Seppänen T, Sarder P. SAM: Self-augmentation mechanism for COVID-19 detection using chest X-ray images. Knowl Based Syst 2022; 241:108207. [PMID: 35068707 PMCID: PMC8762871 DOI: 10.1016/j.knosys.2022.108207] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/20/2022]
Abstract
COVID-19 is a rapidly spreading viral disease and has affected over 100 countries worldwide. The numbers of casualties and cases of infection have escalated particularly in countries with weakened healthcare systems. Recently, reverse transcription-polymerase chain reaction (RT-PCR) is the test of choice for diagnosing COVID-19. However, current evidence suggests that COVID-19 infected patients are mostly stimulated from a lung infection after coming in contact with this virus. Therefore, chest X-ray (i.e., radiography) and chest CT can be a surrogate in some countries where PCR is not readily available. This has forced the scientific community to detect COVID-19 infection from X-ray images and recently proposed machine learning methods offer great promise for fast and accurate detection. Deep learning with convolutional neural networks (CNNs) has been successfully applied to radiological imaging for improving the accuracy of diagnosis. However, the performance remains limited due to the lack of representative X-ray images available in public benchmark datasets. To alleviate this issue, we propose a self-augmentation mechanism for data augmentation in the feature space rather than in the data space using reconstruction independent component analysis (RICA). Specifically, a unified architecture is proposed which contains a deep convolutional neural network (CNN), a feature augmentation mechanism, and a bidirectional LSTM (BiLSTM). The CNN provides the high-level features extracted at the pooling layer where the augmentation mechanism chooses the most relevant features and generates low-dimensional augmented features. Finally, BiLSTM is used to classify the processed sequential information. We conducted experiments on three publicly available databases to show that the proposed approach achieves the state-of-the-art results with accuracy of 97%, 84% and 98%. Explainability analysis has been carried out using feature visualization through PCA projection and t-SNE plots.
Collapse
Affiliation(s)
- Usman Muhammad
- Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland
| | - Md Ziaul Hoque
- Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland
| | - Mourad Oussalah
- Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland
- Medical Imaging, Physics, and Technology (MIPT), Faculty of Medicine, University of Oulu, Finland
| | - Anja Keskinarkaus
- Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland
| | - Tapio Seppänen
- Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, University at Buffalo, USA
| |
Collapse
|
7
|
Feng J, Zhang SW, Chen L, Zuo C. Detection of Alzheimer’s Disease Using Features of Brain Region-of-Interest-Based Individual Network Constructed with the sMRI Image. Comput Med Imaging Graph 2022; 98:102057. [DOI: 10.1016/j.compmedimag.2022.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
8
|
Wu J, Zhao K, Li Z, Wang D, Ding Y, Wei Y, Zhang H, Liu Y. A systematic analysis of diagnostic performance for Alzheimer's disease using structural MRI. PSYCHORADIOLOGY 2022; 2:287-295. [PMID: 38665142 PMCID: PMC10939341 DOI: 10.1093/psyrad/kkac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 04/28/2024]
Abstract
Background Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in the elderly. Although numerous structural magnetic resonance imaging (sMRI) studies have reported diagnostic models that could distinguish AD from normal controls (NCs) with 80-95% accuracy, limited efforts have been made regarding the clinically practical computer-aided diagnosis (CAD) system for AD. Objective To explore the potential factors that hinder the clinical translation of the AD-related diagnostic models based on sMRI. Methods To systematically review the diagnostic models for AD based on sMRI, we identified relevant studies published in the past 15 years on PubMed, Web of Science, Scopus, and Ovid. To evaluate the heterogeneity and publication bias among those studies, we performed subgroup analysis, meta-regression, Begg's test, and Egger's test. Results According to our screening criterion, 101 studies were included. Our results demonstrated that high diagnostic accuracy for distinguishing AD from NC was obtained in recently published studies, accompanied by significant heterogeneity. Meta-analysis showed that many factors contributed to the heterogeneity of high diagnostic accuracy of AD using sMRI, which included but was not limited to the following aspects: (i) different datasets; (ii) different machine learning models, e.g. traditional machine learning or deep learning model; (iii) different cross-validation methods, e.g. k-fold cross-validation leads to higher accuracies than leave-one-out cross-validation, but both overestimate the accuracy when compared to validation in independent samples; (iv) different sample sizes; and (v) the publication times. We speculate that these complicated variables might be the adverse factor for developing a clinically applicable system for the early diagnosis of AD. Conclusions Our findings proved that previous studies reported promising results for classifying AD from NC with different models using sMRI. However, considering the many factors hindering clinical radiology practice, there would still be a long way to go to improve.
Collapse
Affiliation(s)
- Jiangping Wu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Kun Zhao
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhuangzhuang Li
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Dong Wang
- School of Information Science and Engineering, Shandong Normal University, Ji'nan, 250014, China
| | - Yanhui Ding
- School of Information Science and Engineering, Shandong Normal University, Ji'nan, 250014, China
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Han Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
- Center for Artificial Intelligence in Medical Imaging, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| |
Collapse
|
9
|
Liu Z, Lu H, Pan X, Xu M, Lan R, Luo X. Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2021.107942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Kaplan E, Dogan S, Tuncer T, Baygin M, Altunisik E. Feed-forward LPQNet based Automatic Alzheimer's Disease Detection Model. Comput Biol Med 2021; 137:104828. [PMID: 34507154 DOI: 10.1016/j.compbiomed.2021.104828] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most commonly seen brain ailments worldwide. Therefore, many researches have been presented about AD detection and cure. In addition, machine learning models have also been proposed to detect AD promptly. MATERIALS AND METHOD In this work, a new brain image dataset was collected. This dataset contains two categories, and these categories are healthy and AD. This dataset was collected from 1070 subjects. This work presents an automatic AD detection model to detect AD using brain images automatically. The presented model is called a feed-forward local phase quantization network (LPQNet). LPQNet consists of (i) multilevel feature generation based on LPQ and average pooling, (ii) feature selection using neighborhood component analysis (NCA), and (iii) classification phases. The prime objective of the presented LPQNet is to reach high accuracy with low computational complexity. LPQNet generates features on six levels. Therefore, 256 × 6 = 1536 features are generated from an image, and the most important 256 out 1536 features are selected. The selected 256 features are classified on the conventional classifiers to denote the classification capability of the generated and selected features by LPQNet. RESULTS The presented LPQNet was tested on three image datasets to demonstrate the universal classification ability of the LPQNet. The proposed LPQNet attained 99.68%, 100%, and 99.64% classification accuracy on the collected AD image dataset, the Harvard Brain Atlas AD dataset, and the Kaggle AD dataset. Moreover, LPQNet attained 99.62% accuracy on the Kaggle AD dataset using four classes. CONCLUSIONS Moreover, the calculated results from LPQNet are compared to other automatic AD detection models. Comparisons, results, and findings clearly denote the superiority of the presented model. In addition, a new intelligent AD detector application can be developed for use in magnetic resonance (MR) and computed tomography (CT) devices. By using the developed automated AD detector, new generation intelligence MR and CT devices can be developed.
Collapse
Affiliation(s)
- Ela Kaplan
- Department of Radiology, Adiyaman Training and Research Hospital, Adiyaman, Turkey.
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey.
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey.
| | - Mehmet Baygin
- Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey.
| | - Erman Altunisik
- Department of Neurology, Adiyaman University Medicine Faculty, Adiyaman, Turkey.
| |
Collapse
|