1
|
Cheng C, Liu W, Feng L, Jia Z. Emotion recognition using hierarchical spatial-temporal learning transformer from regional to global brain. Neural Netw 2024; 179:106624. [PMID: 39163821 DOI: 10.1016/j.neunet.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/10/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Emotion recognition is an essential but challenging task in human-computer interaction systems due to the distinctive spatial structures and dynamic temporal dependencies associated with each emotion. However, current approaches fail to accurately capture the intricate effects of electroencephalogram (EEG) signals across different brain regions on emotion recognition. Therefore, this paper designs a transformer-based method, denoted by R2G-STLT, which relies on a spatial-temporal transformer encoder with regional to global hierarchical learning that learns the representative spatiotemporal features from the electrode level to the brain-region level. The regional spatial-temporal transformer (RST-Trans) encoder is designed to obtain spatial information and context dependence at the electrode level aiming to learn the regional spatiotemporal features. Then, the global spatial-temporal transformer (GST-Trans) encoder is utilized to extract reliable global spatiotemporal features, reflecting the impact of various brain regions on emotion recognition tasks. Moreover, the multi-head attention mechanism is placed into the GST-Trans encoder to empower it to capture the long-range spatial-temporal information among the brain regions. Finally, subject-independent experiments are conducted on each frequency band of the DEAP, SEED, and SEED-IV datasets to assess the performance of the proposed model. Results indicate that the R2G-STLT model surpasses several state-of-the-art approaches.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Computer Science and Technology, Dalian University of Technology, Dalian, China
| | - Wenzhe Liu
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Lin Feng
- Department of Computer Science and Technology, Dalian University of Technology, Dalian, China; School of Information and Communication Engineering, Dalian Minzu University, Dlian, China.
| | - Ziyu Jia
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Wu X, Ju X, Dai S, Li X, Li M. Multi-source domain adaptation for EEG emotion recognition based on inter-domain sample hybridization. Front Hum Neurosci 2024; 18:1464431. [PMID: 39545146 PMCID: PMC11560783 DOI: 10.3389/fnhum.2024.1464431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Background Electroencephalogram (EEG) is widely used in emotion recognition due to its precision and reliability. However, the nonstationarity of EEG signals causes significant differences between individuals or sessions, making it challenging to construct a robust model. Recently, domain adaptation (DA) methods have shown excellent results in cross-subject EEG emotion recognition by aligning marginal distributions. Nevertheless, these methods do not consider emotion category labels, which can lead to label confusion during alignment. Our study aims to alleviate this problem by promoting conditional distribution alignment during domain adaptation to improve cross-subject and cross-session emotion recognition performance. Method This study introduces a multi-source domain adaptation common-branch network for EEG emotion recognition and proposes a novel sample hybridization method. This method enables the introduction of target domain data information by directionally hybridizing source and target domain samples without increasing the overall sample size, thereby enhancing the effectiveness of conditional distribution alignment in domain adaptation. Cross-subject and cross-session experiments were conducted on two publicly available datasets, SEED and SEED-IV, to validate the proposed model. Result In cross-subject emotion recognition, our method achieved an average accuracy of 90.27% on the SEED dataset, with eight out of 15 subjects attaining a recognition accuracy higher than 90%. For the SEED-IV dataset, the recognition accuracy also reached 73.21%. Additionally, in the cross-session experiment, we sequentially used two out of the three session data as source domains and the remaining session as the target domain for emotion recognition. The proposed model yielded average accuracies of 94.16 and 75.05% on the two datasets, respectively. Conclusion Our proposed method aims to alleviate the difficulties of emotion recognition from the limited generalization ability of EEG features across subjects and sessions. Though adapting the multi-source domain adaptation and the sample hybridization method, the proposed method can effectively transfer the emotion-related knowledge of known subjects and achieve accurate emotion recognition on unlabeled subjects.
Collapse
Affiliation(s)
| | | | | | | | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| |
Collapse
|
3
|
Zhu X, Liu C, Zhao L, Wang S. EEG Emotion Recognition Network Based on Attention and Spatiotemporal Convolution. SENSORS (BASEL, SWITZERLAND) 2024; 24:3464. [PMID: 38894254 PMCID: PMC11174415 DOI: 10.3390/s24113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Human emotions are complex psychological and physiological responses to external stimuli. Correctly identifying and providing feedback on emotions is an important goal in human-computer interaction research. Compared to facial expressions, speech, or other physiological signals, using electroencephalogram (EEG) signals for the task of emotion recognition has advantages in terms of authenticity, objectivity, and high reliability; thus, it is attracting increasing attention from researchers. However, the current methods have significant room for improvement in terms of the combination of information exchange between different brain regions and time-frequency feature extraction. Therefore, this paper proposes an EEG emotion recognition network, namely, self-organized graph pesudo-3D convolution (SOGPCN), based on attention and spatiotemporal convolution. Unlike previous methods that directly construct graph structures for brain channels, the proposed SOGPCN method considers that the spatial relationships between electrodes in each frequency band differ. First, a self-organizing map is constructed for each channel in each frequency band to obtain the 10 most relevant channels to the current channel, and graph convolution is employed to capture the spatial relationships between all channels in the self-organizing map constructed for each channel in each frequency band. Then, pseudo-three-dimensional convolution combined with partial dot product attention is implemented to extract the temporal features of the EEG sequence. Finally, LSTM is employed to learn the contextual information between adjacent time-series data. Subject-dependent and subject-independent experiments are conducted on the SEED dataset to evaluate the performance of the proposed SOGPCN method, which achieves recognition accuracies of 95.26% and 94.22%, respectively, indicating that the proposed method outperforms several baseline methods.
Collapse
Affiliation(s)
| | | | | | - Shengming Wang
- National Engineering Research Center of Educational Big Data, Central China Normal University, Wuhan 430079, China; (X.Z.); (C.L.); (L.Z.)
| |
Collapse
|
4
|
Avola D, Cinque L, Mambro AD, Fagioli A, Marini MR, Pannone D, Fanini B, Foresti GL. Spatio-Temporal Image-Based Encoded Atlases for EEG Emotion Recognition. Int J Neural Syst 2024; 34:2450024. [PMID: 38533631 DOI: 10.1142/s0129065724500242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Emotion recognition plays an essential role in human-human interaction since it is a key to understanding the emotional states and reactions of human beings when they are subject to events and engagements in everyday life. Moving towards human-computer interaction, the study of emotions becomes fundamental because it is at the basis of the design of advanced systems to support a broad spectrum of application areas, including forensic, rehabilitative, educational, and many others. An effective method for discriminating emotions is based on ElectroEncephaloGraphy (EEG) data analysis, which is used as input for classification systems. Collecting brain signals on several channels and for a wide range of emotions produces cumbersome datasets that are hard to manage, transmit, and use in varied applications. In this context, the paper introduces the Empátheia system, which explores a different EEG representation by encoding EEG signals into images prior to their classification. In particular, the proposed system extracts spatio-temporal image encodings, or atlases, from EEG data through the Processing and transfeR of Interaction States and Mappings through Image-based eNcoding (PRISMIN) framework, thus obtaining a compact representation of the input signals. The atlases are then classified through the Empátheia architecture, which comprises branches based on convolutional, recurrent, and transformer models designed and tuned to capture the spatial and temporal aspects of emotions. Extensive experiments were conducted on the Shanghai Jiao Tong University (SJTU) Emotion EEG Dataset (SEED) public dataset, where the proposed system significantly reduced its size while retaining high performance. The results obtained highlight the effectiveness of the proposed approach and suggest new avenues for data representation in emotion recognition from EEG signals.
Collapse
Affiliation(s)
- Danilo Avola
- Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy
| | - Luigi Cinque
- Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy
| | - Angelo Di Mambro
- Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy
| | - Alessio Fagioli
- Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy
| | - Marco Raoul Marini
- Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy
| | - Daniele Pannone
- Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy
| | - Bruno Fanini
- Institute of Heritage Science, National Research Council, Area della Ricerca Roma 1, SP35d, 9, Montelibretti 00010, Italy
| | - Gian Luca Foresti
- Department of Computer Science, Mathematics and Physics, University of Udine, Via delle Scienze 206, Udine 33100, Italy
| |
Collapse
|
5
|
Zhang X, Wang S, Xu K, Zhao R, She Y. Cross-subject EEG-based emotion recognition through dynamic optimization of random forest with sparrow search algorithm. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:4779-4800. [PMID: 38549349 DOI: 10.3934/mbe.2024210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of classification model parameters is a significant factor of low accuracy in cross-subject emotion recognition. We propose a model of a dynamically optimized Random Forest based on the Sparrow Search Algorithm (SSA-RF). The decision trees number (DTN) and the leave minimum number (LMN) of the RF are dynamically optimized by the SSA. 12 features are used to construct feature combinations for selecting the optimal feature combination. DEAP and SEED datasets are employed for testing the performance of SSA-RF. The experimental results show that the accuracy of binary classification is 76.81% on DEAP, and the accuracy of triple classification is 75.96% on SEED based on SSA-RF, which are both higher than that of traditional RF. This study provides new insights for the development of cross-subject emotion recognition, and has significant theoretical value.
Collapse
Affiliation(s)
- Xiaodan Zhang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China
| | - Shuyi Wang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China
| | - Kemeng Xu
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China
| | - Rui Zhao
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China
| | - Yichong She
- School of Life Sciences, Xi Dian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
6
|
Mohammad A, Siddiqui F, Alam MA, Idrees SM. Tri-model classifiers for EEG based mental task classification: hybrid optimization assisted framework. BMC Bioinformatics 2023; 24:406. [PMID: 37904095 PMCID: PMC10614334 DOI: 10.1186/s12859-023-05544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
The commercial adoption of BCI technologies for both clinical and non-clinical applications is drawing scientists to the creation of wearable devices for daily living. Emotions are essential to human existence and have a significant impact on thinking. Emotion is frequently linked to rational decision-making, perception, interpersonal interaction, and even basic human intellect. The requirement for trustworthy and implementable methods for the detection of individual emotional responses is needed with rising attention of the scientific community towards the establishment of some significant emotional connections among people and computers. This work introduces EEG recognition model, where the input signal is pre-processed using band pass filter. Then, the features like discrete wavelet transform (DWT), band power, spectral flatness, and improved Entropy are extracted. Further, for recognition, tri-classifiers like long short term memory (LSTM), improved deep belief network (DBN) and recurrent neural network (RNN) are used. Also to enhance tri-model classifier performance, the weights of LSTM, improved DBN, and RNN are tuned by model named as shark smell updated BES optimization (SSU-BES). Finally, the perfection of SSU-BES is demonstrated over diverse metrics.
Collapse
Affiliation(s)
- Awwab Mohammad
- Department of Computer Science and Engineering, Jamia Hamdard, New Delhi, New Delhi, 110062, India
| | - Farheen Siddiqui
- Department of Computer Science and Engineering, Jamia Hamdard, New Delhi, New Delhi, 110062, India
| | - M Afshar Alam
- Department of Computer Science and Engineering, Jamia Hamdard, New Delhi, New Delhi, 110062, India
| | - Sheikh Mohammad Idrees
- Department of Computer Science (IDI), Norwegian University of Science and Technology, 2815, Gjøvik, Norway.
| |
Collapse
|
7
|
Jafari M, Shoeibi A, Khodatars M, Bagherzadeh S, Shalbaf A, García DL, Gorriz JM, Acharya UR. Emotion recognition in EEG signals using deep learning methods: A review. Comput Biol Med 2023; 165:107450. [PMID: 37708717 DOI: 10.1016/j.compbiomed.2023.107450] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Emotions are a critical aspect of daily life and serve a crucial role in human decision-making, planning, reasoning, and other mental states. As a result, they are considered a significant factor in human interactions. Human emotions can be identified through various sources, such as facial expressions, speech, behavior (gesture/position), or physiological signals. The use of physiological signals can enhance the objectivity and reliability of emotion detection. Compared with peripheral physiological signals, electroencephalogram (EEG) recordings are directly generated by the central nervous system and are closely related to human emotions. EEG signals have the great spatial resolution that facilitates the evaluation of brain functions, making them a popular modality in emotion recognition studies. Emotion recognition using EEG signals presents several challenges, including signal variability due to electrode positioning, individual differences in signal morphology, and lack of a universal standard for EEG signal processing. Moreover, identifying the appropriate features for emotion recognition from EEG data requires further research. Finally, there is a need to develop more robust artificial intelligence (AI) including conventional machine learning (ML) and deep learning (DL) methods to handle the complex and diverse EEG signals associated with emotional states. This paper examines the application of DL techniques in emotion recognition from EEG signals and provides a detailed discussion of relevant articles. The paper explores the significant challenges in emotion recognition using EEG signals, highlights the potential of DL techniques in addressing these challenges, and suggests the scope for future research in emotion recognition using DL techniques. The paper concludes with a summary of its findings.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Afshin Shoeibi
- Data Science and Computational Intelligence Institute, University of Granada, Spain.
| | - Marjane Khodatars
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Sara Bagherzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - David López García
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Juan M Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Spain; Department of Psychiatry, University of Cambridge, UK
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
8
|
Zhang X, Huang D, Li H, Zhang Y, Xia Y, Liu J. Self‐training maximum classifier discrepancy for EEG emotion recognition. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2023. [DOI: 10.1049/cit2.12174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xu Zhang
- School of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing China
- Key Laboratory of Tourism Multisource Data Perception and Decision Ministry of Culture and Tourism Chongqing China
| | - Dengbing Huang
- School of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing China
- Key Laboratory of Tourism Multisource Data Perception and Decision Ministry of Culture and Tourism Chongqing China
| | - Hanyu Li
- School of Electrical and Computer Engineering Inha University Incheon South Korea
| | - Youjia Zhang
- School of Electrical and Computer Engineering Inha University Incheon South Korea
| | - Ying Xia
- School of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing China
- Key Laboratory of Tourism Multisource Data Perception and Decision Ministry of Culture and Tourism Chongqing China
| | - Jinzhuo Liu
- School of Software Yunnan University Yunnan China
| |
Collapse
|
9
|
Zhang X, Li Y, Du J, Zhao R, Xu K, Zhang L, She Y. Feature Pyramid Networks and Long Short-Term Memory for EEG Feature Map-Based Emotion Recognition. SENSORS (BASEL, SWITZERLAND) 2023; 23:1622. [PMID: 36772661 PMCID: PMC9921369 DOI: 10.3390/s23031622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The original EEG data collected are the 1D sequence, which ignores spatial topology information; Feature Pyramid Networks (FPN) is better at small dimension target detection and insufficient feature extraction in the scale transformation than CNN. We propose a method of FPN and Long Short-Term Memory (FPN-LSTM) for EEG feature map-based emotion recognition. According to the spatial arrangement of brain electrodes, the Azimuth Equidistant Projection (AEP) is employed to generate the 2D EEG map, which preserves the spatial topology information; then, the average power, variance power, and standard deviation power of three frequency bands (α, β, and γ) are extracted as the feature data for the EEG feature map. BiCubic interpolation is employed to interpolate the blank pixel among the electrodes; the three frequency bands EEG feature maps are used as the G, R, and B channels to generate EEG feature maps. Then, we put forward the idea of distributing the weight proportion for channels, assign large weight to strong emotion correlation channels (AF3, F3, F7, FC5, and T7), and assign small weight to the others; the proposed FPN-LSTM is used on EEG feature maps for emotion recognition. The experiment results show that the proposed method can achieve Value and Arousal recognition rates of 90.05% and 90.84%, respectively.
Collapse
Affiliation(s)
- Xiaodan Zhang
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Yige Li
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Jinxiang Du
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Rui Zhao
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Kemeng Xu
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Lu Zhang
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Yichong She
- School of Life Sciences, Xidian University, Xi’an 710126, China
| |
Collapse
|
10
|
Liu S, Wang Z, An Y, Zhao J, Zhao Y, Zhang YD. EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Bouazizi S, benmohamed E, Ltifi H. Decision-making based on an improved visual analytics approach for emotion prediction. INTELLIGENT DECISION TECHNOLOGIES 2023. [DOI: 10.3233/idt-220263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Visual Analytics approach allows driving informed and effective decision-making. It assists decision-makers to visually interact with large amount of data and to computationally learn valuable hidden patterns in that data, which improve the decision quality. In this article, we introduce an enhanced visual analytics model combining cognitive-based visual analysis to data mining-based automatic analysis. As emotions are strongly related to human behaviour and society, emotion prediction is widely considered by decision making activities. Unlike speech and facial expressions modalities, EEG (electroencephalogram) has the advantage of being able to record information about the internal emotional state that is not always translated by perceptible external manifestations. For this reason, we applied the proposed cognitive approach on EEG data to demonstrate its efficiency for predicting emotional reaction to films. For automatic analysis, we developed the Echo State Network (ESN) technique considered as an efficient machine learning solution due to its straightforward training procedure and high modelling ability for handling time-series problems. Finally, utility and usability tests were performed to evaluate the developed prototype.
Collapse
Affiliation(s)
- Samar Bouazizi
- Research Groups in Intelligent Machines, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
- Computer Sciences and Mathematics Department, Faculty of sciences and technology of Sidi Bouzid, University of Kairouan, Kairouan, Tunisia
| | - Emna benmohamed
- Research Groups in Intelligent Machines, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Hela Ltifi
- Research Groups in Intelligent Machines, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
- Computer Sciences and Mathematics Department, Faculty of sciences and technology of Sidi Bouzid, University of Kairouan, Kairouan, Tunisia
| |
Collapse
|
12
|
Xu D, Qin X, Dong X, Cui X. Emotion recognition of EEG signals based on variational mode decomposition and weighted cascade forest. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:2566-2587. [PMID: 36899547 DOI: 10.3934/mbe.2023120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Emotion recognition is of a great significance in intelligent medical treatment and intelligent transportation. With the development of human-computer interaction technology, emotion recognition based on Electroencephalogram (EEG) signals has been widely concerned by scholars. In this study, an EEG emotion recognition framework is proposed. Firstly, variational mode decomposition (VMD) is used to decompose the nonlinear and non-stationary EEG signals to obtain intrinsic mode functions (IMFs) at different frequencies. Then sliding window tactic is used to extract the characteristics of EEG signals under different frequency. Aiming at the issue of feature redundancy, a new variable selection method is proposed to improve the adaptive elastic net (AEN) by the minimum common redundancy maximum relevance criterion. Weighted cascade forest (CF) classifier is constructed for emotion recognition. The experimental results on the public dataset DEAP show that the valence classification accuracy of the proposed method reaches 80.94%, and the classification accuracy of arousal is 74.77%. Compared with some existing methods, it effectively improves the accuracy of EEG emotion recognition.
Collapse
Affiliation(s)
- Dingxin Xu
- School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
| | - Xiwen Qin
- School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
| | - Xiaogang Dong
- School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
| | - Xueteng Cui
- School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
- Academic Affairs Office, Changchun University, Changchun 130022, China
| |
Collapse
|
13
|
Sun X, Zheng X, Li T, Li Y, Cui L. Multimodal Emotion Classification Method and Analysis of Brain Functional Connectivity Networks. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2022-2031. [PMID: 35857726 DOI: 10.1109/tnsre.2022.3192533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since multimodal emotion classification in different human states has rarely been studied, this paper explores the emotional mechanisms of the brain functional connectivity networks after emotional stimulation. We devise a multimodal emotion classification method fusing a brain functional connectivity network based on electroencephalography (EEG) and eye gaze (ECFCEG) to study emotional mechanisms. First, the nonlinear phase lag index (PLI) and phase-locked value (PLV) are calculated to construct the multiband brain functional connectivity networks, which are then converted into binary brain networks, and the seven features of the binary brain networks are extracted. At the same time, the features of the eye gaze signals are extracted. Then, a fusion algorithm called kernel canonical correlation analysis, based on feature level and randomization (FRKCCA), is executed for feature-level fusion (FLF) of brain functional connectivity networks and eye gaze. Finally, support vector machines (SVMs) are utilized to classify positive and negative emotions in multiple frequency bands with single modal features and multimodal features. The experimental results demonstrate that multimodal complementary representation properties can effectively improve the accuracy of emotion classification, achieving a classification accuracy of 91.32±1.81%. The classification accuracy of pupil diameter in the valence dimension is higher than that of additional features. In addition, the average emotion classification effect of the valence dimension is preferable to that of arousal. Our findings demonstrate that the brain functional connectivity networks of the right brain exhibit a deficiency. In particular, the information processing ability of the right temporal (RT) and right posterior (RP) regions is weak in the low frequency after emotional stimulation; Conversely, phase synchronization of the brain functional connectivity networks based on PLI is stronger than that of PLV.
Collapse
|
14
|
Zhu X, Rong W, Zhao L, He Z, Yang Q, Sun J, Liu G. EEG Emotion Classification Network Based on Attention Fusion of Multi-Channel Band Features. SENSORS (BASEL, SWITZERLAND) 2022; 22:5252. [PMID: 35890933 PMCID: PMC9318779 DOI: 10.3390/s22145252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023]
Abstract
Understanding learners' emotions can help optimize instruction sand further conduct effective learning interventions. Most existing studies on student emotion recognition are based on multiple manifestations of external behavior, which do not fully use physiological signals. In this context, on the one hand, a learning emotion EEG dataset (LE-EEG) is constructed, which captures physiological signals reflecting the emotions of boredom, neutrality, and engagement during learning; on the other hand, an EEG emotion classification network based on attention fusion (ECN-AF) is proposed. To be specific, on the basis of key frequency bands and channels selection, multi-channel band features are first extracted (using a multi-channel backbone network) and then fused (using attention units). In order to verify the performance, the proposed model is tested on an open-access dataset SEED (N = 15) and the self-collected dataset LE-EEG (N = 45), respectively. The experimental results using five-fold cross validation show the following: (i) on the SEED dataset, the highest accuracy of 96.45% is achieved by the proposed model, demonstrating a slight increase of 1.37% compared to the baseline models; and (ii) on the LE-EEG dataset, the highest accuracy of 95.87% is achieved, demonstrating a 21.49% increase compared to the baseline models.
Collapse
Affiliation(s)
| | | | - Liang Zhao
- National Engineering Research Center of Educational Big Data, Central China Normal University, Wuhan 430079, China; (X.Z.); (W.R.); (Z.H.); (Q.Y.); (J.S.); (G.L.)
| | | | | | | | | |
Collapse
|
15
|
Zhang Y, Dai B, Zhong Y. The Establishment and Optimization of Public Emotion Network Communication Model Using Deep Learning. INT J HUM ROBOT 2022. [DOI: 10.1142/s0219843622400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Guo W, Xu G, Wang Y. Horizontal and vertical features fusion network based on different brain regions for emotion recognition. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Maithri M, Raghavendra U, Gudigar A, Samanth J, Murugappan M, Chakole Y, Acharya UR. Automated emotion recognition: Current trends and future perspectives. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106646. [PMID: 35093645 DOI: 10.1016/j.cmpb.2022.106646] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/25/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Human emotions greatly affect the actions of a person. The automated emotion recognition has applications in multiple domains such as health care, e-learning, surveillance, etc. The development of computer-aided diagnosis (CAD) tools has led to the automated recognition of human emotions. OBJECTIVE This review paper provides an insight into various methods employed using electroencephalogram (EEG), facial, and speech signals coupled with multi-modal emotion recognition techniques. In this work, we have reviewed most of the state-of-the-art papers published on this topic. METHOD This study was carried out by considering the various emotion recognition (ER) models proposed between 2016 and 2021. The papers were analysed based on methods employed, classifier used and performance obtained. RESULTS There is a significant rise in the application of deep learning techniques for ER. They have been widely applied for EEG, speech, facial expression, and multimodal features to develop an accurate ER model. CONCLUSION Our study reveals that most of the proposed machine and deep learning-based systems have yielded good performances for automated ER in a controlled environment. However, there is a need to obtain high performance for ER even in an uncontrolled environment.
Collapse
Affiliation(s)
- M Maithri
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Murugappan Murugappan
- Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, 13133, Kuwait
| | - Yashas Chakole
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - U Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Clementi 599489, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore
| |
Collapse
|
18
|
Bao G, Yang K, Tong L, Shu J, Zhang R, Wang L, Yan B, Zeng Y. Linking Multi-Layer Dynamical GCN With Style-Based Recalibration CNN for EEG-Based Emotion Recognition. Front Neurorobot 2022; 16:834952. [PMID: 35280845 PMCID: PMC8907537 DOI: 10.3389/fnbot.2022.834952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Electroencephalography (EEG)-based emotion computing has become one of the research hotspots of human-computer interaction (HCI). However, it is difficult to effectively learn the interactions between brain regions in emotional states by using traditional convolutional neural networks because there is information transmission between neurons, which constitutes the brain network structure. In this paper, we proposed a novel model combining graph convolutional network and convolutional neural network, namely MDGCN-SRCNN, aiming to fully extract features of channel connectivity in different receptive fields and deep layer abstract features to distinguish different emotions. Particularly, we add style-based recalibration module to CNN to extract deep layer features, which can better select features that are highly related to emotion. We conducted two individual experiments on SEED data set and SEED-IV data set, respectively, and the experiments proved the effectiveness of MDGCN-SRCNN model. The recognition accuracy on SEED and SEED-IV is 95.08 and 85.52%, respectively. Our model has better performance than other state-of-art methods. In addition, by visualizing the distribution of different layers features, we prove that the combination of shallow layer and deep layer features can effectively improve the recognition performance. Finally, we verified the important brain regions and the connection relationships between channels for emotion generation by analyzing the connection weights between channels after model learning.
Collapse
Affiliation(s)
- Guangcheng Bao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Kai Yang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Jun Shu
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Rongkai Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Ying Zeng
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Ying Zeng
| |
Collapse
|
19
|
Bao G, Yan B, Tong L, Shu J, Wang L, Yang K, Zeng Y. Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks. Front Comput Neurosci 2021; 15:723843. [PMID: 34955797 PMCID: PMC8700963 DOI: 10.3389/fncom.2021.723843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
One of the greatest limitations in the field of EEG-based emotion recognition is the lack of training samples, which makes it difficult to establish effective models for emotion recognition. Inspired by the excellent achievements of generative models in image processing, we propose a data augmentation model named VAE-D2GAN for EEG-based emotion recognition using a generative adversarial network. EEG features representing different emotions are extracted as topological maps of differential entropy (DE) under five classical frequency bands. The proposed model is designed to learn the distributions of these features for real EEG signals and generate artificial samples for training. The variational auto-encoder (VAE) architecture can learn the spatial distribution of the actual data through a latent vector, and is introduced into the dual discriminator GAN to improve the diversity of the generated artificial samples. To evaluate the performance of this model, we conduct a systematic test on two public emotion EEG datasets, the SEED and the SEED-IV. The obtained recognition accuracy of the method using data augmentation shows as 92.5 and 82.3%, respectively, on the SEED and SEED-IV datasets, which is 1.5 and 3.5% higher than that of methods without using data augmentation. The experimental results show that the artificial samples generated by our model can effectively enhance the performance of the EEG-based emotion recognition.
Collapse
Affiliation(s)
- Guangcheng Bao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Jun Shu
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Kai Yang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Ying Zeng
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Liu H, Zhang Y, Li Y, Kong X. Review on Emotion Recognition Based on Electroencephalography. Front Comput Neurosci 2021; 15:758212. [PMID: 34658828 PMCID: PMC8518715 DOI: 10.3389/fncom.2021.758212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Emotions are closely related to human behavior, family, and society. Changes in emotions can cause differences in electroencephalography (EEG) signals, which show different emotional states and are not easy to disguise. EEG-based emotion recognition has been widely used in human-computer interaction, medical diagnosis, military, and other fields. In this paper, we describe the common steps of an emotion recognition algorithm based on EEG from data acquisition, preprocessing, feature extraction, feature selection to classifier. Then, we review the existing EEG-based emotional recognition methods, as well as assess their classification effect. This paper will help researchers quickly understand the basic theory of emotion recognition and provide references for the future development of EEG. Moreover, emotion is an important representation of safety psychology.
Collapse
Affiliation(s)
- Haoran Liu
- The Boiler and Pressure Vessel Safety Inspection Institute of Henan Province, Zhengzhou, China
| | - Ying Zhang
- Patent Examination Cooperation (Henan) Center of the Patent Office, CNIPA, Zhengzhou, China
| | - Yujun Li
- The Boiler and Pressure Vessel Safety Inspection Institute of Henan Province, Zhengzhou, China
| | - Xiangyi Kong
- The Boiler and Pressure Vessel Safety Inspection Institute of Henan Province, Zhengzhou, China
| |
Collapse
|