1
|
Ye H, Dima M, Hall V, Hendee J. Cellular mechanisms underlying carry-over effects after magnetic stimulation. Sci Rep 2024; 14:5167. [PMID: 38431662 PMCID: PMC10908793 DOI: 10.1038/s41598-024-55915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Magnetic fields are widely used for neuromodulation in clinical settings. The intended effect of magnetic stimulation is that neural activity resumes its pre-stimulation state right after stimulation. Many theoretical and experimental works have focused on the cellular and molecular basis of the acute neural response to magnetic field. However, effects of magnetic stimulation can still last after the termination of the magnetic stimulation (named "carry-over effects"), which could generate profound effects to the outcome of the stimulation. However, the cellular and molecular mechanisms of carry-over effects are largely unknown, which renders the neural modulation practice using magnetic stimulation unpredictable. Here, we investigated carry-over effects at the cellular level, using the combination of micro-magnetic stimulation (µMS), electrophysiology, and computation modeling. We found that high frequency magnetic stimulation could lead to immediate neural inhibition in ganglion neurons from Aplysia californica, as well as persistent, carry-over inhibition after withdrawing the magnetic stimulus. Carry-over effects were found in the neurons that fired action potentials under a variety of conditions. The carry-over effects were also observed in the neurons when the magnetic field was applied across the ganglion sheath. The state of the neuron, specifically synaptic input and membrane potential fluctuation, plays a significant role in generating the carry-over effects after magnetic stimulation. To elucidate the cellular mechanisms of such carry-over effects under magnetic stimulation, we simulated a single neuron under magnetic stimulation with multi-compartment modeling. The model successfully replicated the carry-over effects in the neuron, and revealed that the carry-over effect was due to the dysfunction of the ion channel dynamics that were responsible for the initiation and sustaining of membrane excitability. A virtual voltage-clamp experiment revealed a compromised Na conductance and enhanced K conductance post magnetic stimulation, rendering the neurons incapable of generating action potentials and, therefore, leading to the carry over effects. Finally, both simulation and experimental results demonstrated that the carry-over effects could be controlled by disturbing the membrane potential during the post-stimulus inhibition period. Delineating the cellular and ion channel mechanisms underlying carry-over effects could provide insights to the clinical outcomes in brain stimulation using TMS and other modalities. This research incentivizes the development of novel neural engineering or pharmacological approaches to better control the carry-over effects for optimized clinical outcomes.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Maria Dima
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Vincent Hall
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Jenna Hendee
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
2
|
Mancuso V, Stramba-Badiale C, Cavedoni S, Pedroli E, Cipresso P, Riva G. Virtual Reality Meets Non-invasive Brain Stimulation: Integrating Two Methods for Cognitive Rehabilitation of Mild Cognitive Impairment. Front Neurol 2020; 11:566731. [PMID: 33117261 PMCID: PMC7561425 DOI: 10.3389/fneur.2020.566731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Mild cognitive impairment (MCI) refers to a subtle, general cognitive decline with a detrimental impact on elderlies' independent living and quality of life. Without a timely diagnosis, this condition can evolve into dementia over time, hence the crucial need for early detection, prevention, and rehabilitation. For this purpose, current neuropsychological interventions have been integrated with (i) virtual reality, which immerses the user in a controlled, ecological, and safe environment (so far, both virtual reality-based cognitive and motor rehabilitation have revealed promising positive outcomes); and (ii) non-invasive brain stimulation, i.e., transcranial magnetic or electric brain stimulation, which has emerged as a promising cognitive treatment for MCI and Alzheimer's dementia. To date, these two methods have been employed separately; only a few studies (limited to motor rehabilitation) have suggested their integration. The present paper suggests to extend this integration to cognitive rehabilitation as well as to provide a multimodal stimulation that could enhance cognitive training, resulting in a more efficient rehabilitation.
Collapse
Affiliation(s)
- Valentina Mancuso
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Chiara Stramba-Badiale
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Cavedoni
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy.,Department of Psychology, E-Campus University, Novedrate, Italy
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
3
|
Doughty PT, Hossain I, Gong C, Ponder KA, Pati S, Arumugam PU, Murray TA. Novel microwire-based biosensor probe for simultaneous real-time measurement of glutamate and GABA dynamics in vitro and in vivo. Sci Rep 2020; 10:12777. [PMID: 32728074 PMCID: PMC7392771 DOI: 10.1038/s41598-020-69636-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Glutamate (GLU) and γ-aminobutyric acid (GABA) are the major excitatory (E) and inhibitory (I) neurotransmitters in the brain, respectively. Dysregulation of the E/I ratio is associated with numerous neurological disorders. Enzyme-based microelectrode array biosensors present the potential for improved biocompatibility, localized sample volumes, and much faster sampling rates over existing measurement methods. However, enzymes degrade over time. To overcome the time limitation of permanently implanted microbiosensors, we created a microwire-based biosensor that can be periodically inserted into a permanently implanted cannula. Biosensor coatings were based on our previously developed GLU and reagent-free GABA shank-type biosensor. In addition, the microwire biosensors were in the same geometric plane for the improved acquisition of signals in planar tissue including rodent brain slices, cultured cells, and brain regions with laminar structure. We measured real-time dynamics of GLU and GABA in rat hippocampal slices and observed a significant, nonlinear shift in the E/I ratio from excitatory to inhibitory dominance as electrical stimulation frequency increased from 10 to 140 Hz, suggesting that GABA release is a component of a homeostatic mechanism in the hippocampus to prevent excitotoxic damage. Additionally, we recorded from a freely moving rat over fourteen weeks, inserting fresh biosensors each time, thus demonstrating that the microwire biosensor overcomes the time limitation of permanently implanted biosensors and that the biosensors detect relevant changes in GLU and GABA levels that are consistent with various behaviors.
Collapse
Affiliation(s)
- P Timothy Doughty
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Chenggong Gong
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Kayla A Ponder
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Sandipan Pati
- UAB Epilepsy Center/Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prabhu U Arumugam
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA. .,Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA.
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
4
|
Schumacher A, Haegele M, Spyth J, Moser A. Electrical high frequency stimulation of the nucleus accumbens shell does not modulate depressive-like behavior in rats. Behav Brain Res 2020; 378:112277. [DOI: 10.1016/j.bbr.2019.112277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
|
5
|
Markert MS, Fisher RS. Neuromodulation - Science and Practice in Epilepsy: Vagus Nerve Stimulation, Thalamic Deep Brain Stimulation, and Responsive NeuroStimulation. Expert Rev Neurother 2018; 19:17-29. [DOI: 10.1080/14737175.2019.1554433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Matthew S. Markert
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert S. Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Abstract
Presynaptic receptors are sites at which transmitters, locally formed mediators or hormones inhibit or facilitate the release of a given transmitter from its axon terminals. The interest in the identification of presynaptic receptors has faded in recent years and it may therefore be justified to give an overview of their occurrence in the autonomic and central nervous system; this review will focus on presynaptic receptors in human tissues. Autoreceptors are presynaptic receptors at which a given transmitter restrains its further release, though in some instances may also increase its release. Inhibitory autoreceptors represent a typical example of a negative feedback; they are tonically activated by the respective endogenous transmitter and/or are constitutively active. Autoreceptors also play a role under pathophysiological conditions, e.g. by limiting the massive noradrenaline release occurring during congestive heart failure. They can be used for therapeutic purposes; e.g., the α2-adrenoceptor antagonist mirtazapine is used as an antidepressant and the inverse histamine H3 receptor agonist pitolisant has been marketed as a new drug for the treatment of narcolepsy in 2016. Heteroreceptors are presynaptic receptors at which transmitters from adjacent neurons, locally formed mediators (e.g. endocannabinoids) or hormones (e.g. adrenaline) can inhibit or facilitate transmitter release; they may be subject to an endogenous tone. The constipating effect of the sympathetic nervous system or of the antihypertensive drug clonidine is related to the activation of inhibitory α2-adrenoceptors on postganglionic parasympathetic neurons. Part of the stimulating effect of adrenaline on the sympathetic nervous system during stress is related to its facilitatory effect on noradrenaline release via β2-adrenoceptors.
Collapse
Affiliation(s)
| | - Thomas Feuerstein
- Sektion Neuroelektronische Systeme, Klinik für Neurochirurgie, Universität Freiburg, Germany
| |
Collapse
|
7
|
Low-frequency electrical stimulation enhances the effectiveness of phenobarbital on GABAergic currents in hippocampal slices of kindled rats. Neuroscience 2016; 330:26-38. [PMID: 27235746 DOI: 10.1016/j.neuroscience.2016.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 01/11/2023]
Abstract
Low frequency stimulation (LFS) has been proposed as a new approach in the treatment of epilepsy. The anticonvulsant mechanism of LFS may be through its effect on GABAA receptors, which are the main target of phenobarbital anticonvulsant action. We supposed that co-application of LFS and phenobarbital may increase the efficacy of phenobarbital. Therefore, the interaction of LFS and phenobarbital on GABAergic inhibitory post-synaptic currents (IPSCs) in kindled and control rats was investigated. Animals were kindled by electrical stimulation of basolateral amygdala in a semi rapid manner (12 stimulations/day). The effect of phenobarbital, LFS and phenobarbital+LFS was investigated on GABAA-mediated evoked and miniature IPSCs in the hippocampal brain slices in control and fully kindled animals. Phenobarbital and LFS had positive interaction on GABAergic currents. In vitro co-application of an ineffective pattern of LFS (100 pulses at afterdischarge threshold intensity) and a sub-threshold dose of phenobarbital (100μM) which had no significant effect on GABAergic currents alone, increased the amplitude and area under curve of GABAergic currents in CA1 pyramidal neurons of hippocampal slices significantly. Interestingly, the sub-threshold dose of phenobarbital potentiated the GABAergic currents when applied on the hippocampal slices of kindled animals which received LFS in vivo. Post-synaptic mechanisms may be involved in observed interactions. Obtained results implied a positive interaction between LFS and phenobarbital through GABAA currents. It may be suggested that a combined therapy of phenobarbital and LFS may be a useful manner for reinforcing the anticonvulsant action of phenobarbital.
Collapse
|
8
|
Varatharajan R, Joseph K, Neto SC, Hofmann UG, Moser A, Tronnier V. Electrical high frequency stimulation modulates GABAergic activity in the nucleus accumbens of freely moving rats. Neurochem Int 2015; 90:255-60. [DOI: 10.1016/j.neuint.2015.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/24/2023]
|
9
|
Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol 2015; 133:27-49. [DOI: 10.1016/j.pneurobio.2015.08.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 08/04/2015] [Accepted: 08/15/2015] [Indexed: 12/19/2022]
|
10
|
Tronnier VM, Domingo A, Moll CK, Rasche D, Mohr C, Rosales R, Capetian P, Jamora RD, Lee LV, Münchau A, Diesta CC, Tadic V, Klein C, Brüggemann N, Moser A. Biochemical mechanisms of pallidal deep brain stimulation in X-linked dystonia parkinsonism. Parkinsonism Relat Disord 2015; 21:954-9. [PMID: 26093890 DOI: 10.1016/j.parkreldis.2015.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/17/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Invasive techniques such as in-vivo microdialysis provide the opportunity to directly assess neurotransmitter levels in subcortical brain areas. METHODS Five male Filipino patients (mean age 42.4, range 34-52 years) with severe X-linked dystonia-parkinsonism underwent bilateral implantation of deep brain leads into the internal part of the globus pallidus (GPi). Intraoperative microdialysis and measurement of gamma aminobutyric acid and glutamate was performed in the GPi in three patients and globus pallidus externus (GPe) in two patients at baseline for 25/30 min and during 25/30 min of high-frequency GPi stimulation. RESULTS While the gamma-aminobutyric acid concentration increased in the GPi during high frequency stimulation (231 ± 102% in comparison to baseline values), a decrease was observed in the GPe (22 ± 10%). Extracellular glutamate levels largely remained unchanged. CONCLUSIONS Pallidal microdialysis is a promising intraoperative monitoring tool to better understand pathophysiological implications in movement disorders and therapeutic mechanisms of high frequency stimulation. The increased inhibitory tone of GPi neurons and the subsequent thalamic inhibition could be one of the key mechanisms of GPi deep brain stimulation in dystonia. Such a mechanism may explain how competing (dystonic) movements can be suppressed in GPi/thalamic circuits in favour of desired motor programs.
Collapse
Affiliation(s)
- V M Tronnier
- Department of Neurosurgery, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - A Domingo
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - C K Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - D Rasche
- Department of Neurosurgery, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - C Mohr
- Department of Neuroradiology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - R Rosales
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines; Department of Neurology and Psychiatry, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - P Capetian
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany; Department of Neurology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - R D Jamora
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines; Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - L V Lee
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - A Münchau
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - C C Diesta
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - V Tadic
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - C Klein
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - N Brüggemann
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany; Department of Neurology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - A Moser
- Department of Neurology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
11
|
Melon C, Chassain C, Bielicki G, Renou JP, Kerkerian-Le Goff L, Salin P, Durif F. Progressive brain metabolic changes under deep brain stimulation of subthalamic nucleus in parkinsonian rats. J Neurochem 2015; 132:703-12. [PMID: 25533782 DOI: 10.1111/jnc.13015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non-invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN-DBS in control and parkinsonian (6-hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN-DBS has duration-dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition. Non-invasive metabolic neuroimaging might be useful to understand the physiological mechanisms of deep brain stimulation (DBS). Here, we demonstrate the feasibility of repeated high-field proton magnetic resonance spectroscopy of basal ganglia structures under subthalamic nucleus DBS in control and parkinsonian rats. Results show that DBS has both rapid and delayed effects either dependent or independent of disease state.
Collapse
Affiliation(s)
- Christophe Melon
- Aix Marseille Université, CNRS, IBDM UMR 7288, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Prauss K, Varatharajan R, Joseph K, Moser A. Transmitter self-regulation by extracellular glutamate in fresh human cortical slices. J Neural Transm (Vienna) 2014; 121:1321-7. [PMID: 25008583 DOI: 10.1007/s00702-014-1215-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/06/2014] [Indexed: 11/30/2022]
Abstract
Glutamate is thought to be the most important excitatory neurotransmitter in the CNS, while glutamine predominantly serves as a precursor and metabolite in the glutamate-glutamine cycle. To verify the interaction between intrinsic extracellular glutamate, y-aminobutyric acid (GABA) levels and glial glutamine outflow in human tissue, fresh brain slices from human frontal cortex were incubated in superfusion chambers in vitro. Human neocortical tissue was obtained during surgical treatment of subcortical brain tumors. For superfusion experiments, the white matter was separated and discarded from the gray matter, which finally contained all six neocortical layers. Outflows of endogenous glutamate, GABA and glutamine were established after a 40-min washout period and amounts were simultaneously quantified after two-phase derivatization by high-performance liquid chromatography with electrochemical detection. Under basal conditions, amounts of glutamate could be found 20-fold in comparison to the inhibitory neurotransmitter GABA, whereas this excitatory predominance markedly declined after veratridine-induced activation. The basal glutamate:glutamine ratio of extracellular levels was approximately 1:2. Blockade or activation of the voltage-gated sodium channel by tetrodotoxin or veratridine significantly modulated glutamate levels, but the glutamate:glutamine ratio was nearly constant with 1:2. When the EAAT blocker TBOA was employed, glutamine remained nearly unchanged whereas glutamate significantly enhanced. These results led us to suggest that glutamine release through glial SN1 is related to EAAT activity that can be modulated by intrinsic extracellular glutamate in human cortical slices.
Collapse
Affiliation(s)
- Katharina Prauss
- Department of Neurology, Neurochemical Research Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany,
| | | | | | | |
Collapse
|
13
|
Varatharajan R, Joseph K, Loeffler S, Fuellgraf H, Hofmann UG, Moser A. N-Methyl-D-Aspartate Receptor Activation Interacts with Electrical High Frequency Stimulation in the Rat Caudate Nucleus in vitro and in vivo. ACTA ACUST UNITED AC 2014. [DOI: 10.13055/ojns_4_1_1.140312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Asgari A, Semnanian S, Atapour N, Shojaei A, Moradi H, Mirnajafi-Zadeh J. Combined sub-threshold dosages of phenobarbital and low-frequency stimulation effectively reduce seizures in amygdala-kindled rats. Neurol Sci 2014; 35:1255-60. [DOI: 10.1007/s10072-014-1693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/15/2014] [Indexed: 11/24/2022]
|
15
|
Rocha L. Interaction between electrical modulation of the brain and pharmacotherapy to control pharmacoresistant epilepsy. Pharmacol Ther 2013; 138:211-28. [DOI: 10.1016/j.pharmthera.2013.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 01/07/2013] [Indexed: 12/15/2022]
|
16
|
Transcranial Magnetic and Electric Stimulation in Perception and Cognition Research. ACTA ACUST UNITED AC 2013. [DOI: 10.1201/b14174-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Abstract
Noninvasive brain stimulation (NIBS) is a unique method for studying cognitive function. For the study of cognition, NIBS has gained popularity as a complementary method to functional neuroimaging. By bypassing the correlative approaches of standard imaging techniques, it is possible to establish a putative relationship between brain cognition. In fact, functional neuroimaging data cannot demonstrate the actual role of a particular cortical activation in a specific function because an activated area may simply be correlated with task performance, rather than being responsible for it. NIBS can induce a temporary modification of performance only if the stimulated area is causally engaged in the task. In analogy with lesion studies, NIBS can provide information about where and when a particular process occurs. Based on this assumption, NIBS has been used in many different cognitive domains. However, one of the most interesting questions in neuroscience may not be where and when, but how cognitive activity occurs. Beyond localization approaches, NIBS can be employed to study brain mechanisms. NIBS techniques have the potential to influence behavior transiently by altering neuronal activity, which may have facilitatory or inhibitory behavioral effects. NIBS techniques include transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES). TMS has been shown transiently to modulate neural excitability in a manner that is dependent mainly on the timing and frequency of stimulation (high versus low). The mechanism underlying tES is a change in neuronal membrane potentials that appears to be dependent mainly on the direction of current flow (anodal versus cathodal). Nevertheless, the final effects induced by TMS or tES depend on many technical parameters used during stimulation, such as the intensity of stimulation, coil orientation, site of the reference electrode, and time of application. Moreover, an important factor is the possible interactions between these factors and the physiological and cognitive state of the subject. To use NIBS in cognition, it is important to understand not only how NIBS functions but also the brain mechanisms being studied and the features of the area of interest. To describe better the advanced knowledge provided by NIBS in cognition, we will treat each NIBS technique separately and underline the related hypotheses beyond applications.
Collapse
Affiliation(s)
- Carlo Miniussi
- Department of Clinical and Experimental Sciences, National Institute of Neuroscience, University of Brescia, Brescia, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | | |
Collapse
|
18
|
Njap F, Claussen JC, Moser A, Hofmann UG. Modeling effect of GABAergic current in a basal ganglia computational model. Cogn Neurodyn 2012; 6:333-41. [PMID: 24995049 PMCID: PMC4079849 DOI: 10.1007/s11571-012-9203-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 03/13/2012] [Accepted: 04/16/2012] [Indexed: 12/30/2022] Open
Abstract
Electrical high frequency stimulation (HFS) of deep brain regions is a method shown to be clinically effective in different types of movement and neurological disorders. In order to shed light on its mode of action a computational model of the basal ganglia network coupled the HFS as injection current into the cells of the subthalamic nucleus (STN). Its overall increased activity rendered a faithful transmission of sensorimotor input through thalamo-cortical relay cells possible. Our contribution uses this model by Rubin and Terman (J Comput Neurosci, 16, 211-223, 2004) as a starting point and integrates recent findings on the importance of the extracellular concentrations of the inhibiting neurotransmitter GABA. We are able to show in this computational study that besides electrical stimulation a high concentration of GABA and its resulting conductivity in STN cells is able to re-establish faithful thalamocortical relaying, which otherwise broke down in the simulated parkinsonian state.
Collapse
Affiliation(s)
- Felix Njap
- />Institute for Signal Processing, University of Lübeck, 23538 Lübeck, Germany
- />Graduate School for Computing Medicine and Life Sciences, University of Lübeck, Lübeck, Germany
| | - Jens Christian Claussen
- />Graduate School for Computing Medicine and Life Sciences, University of Lübeck, Lübeck, Germany
- />Institute for Neuro-and Bioinformatics, University of Lübeck, 23538 Lübeck, Germany
| | - Andreas Moser
- />Department of Neurology, University of Lübeck, 23538 Lübeck, Germany
| | - Ulrich G. Hofmann
- />Institute for Signal Processing, University of Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
19
|
Valero-Cabre A, Wattiez N, Monfort M, François C, Rivaud-Péchoux S, Gaymard B, Pouget P. Frontal non-invasive neurostimulation modulates antisaccade preparation in non-human primates. PLoS One 2012; 7:e38674. [PMID: 22701691 PMCID: PMC3368878 DOI: 10.1371/journal.pone.0038674] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/10/2012] [Indexed: 11/29/2022] Open
Abstract
A combination of oculometric measurements, invasive electrophysiological recordings and microstimulation have proven instrumental to study the role of the Frontal Eye Field (FEF) in saccadic activity. We hereby gauged the ability of a non-invasive neurostimulation technology, Transcranial Magnetic Stimulation (TMS), to causally interfere with frontal activity in two macaque rhesus monkeys trained to perform a saccadic antisaccade task. We show that online single pulse TMS significantly modulated antisaccade latencies. Such effects proved dependent on TMS site (effects on FEF but not on an actively stimulated control site), TMS modality (present under active but not sham TMS on the FEF area), TMS intensity (intensities of at least 40% of the TMS machine maximal output required), TMS timing (more robust for pulses delivered at 150 ms than at 100 post target onset) and visual hemifield (relative latency decreases mainly for ipsilateral AS). Our results demonstrate the feasibility of using TMS to causally modulate antisaccade-associated computations in the non-human primate brain and support the use of this approach in monkeys to study brain function and its non-invasive neuromodulation for exploratory and therapeutic purposes.
Collapse
Affiliation(s)
- Antoni Valero-Cabre
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
- Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
- * E-mail: (PP); (AVC)
| | - Nicolas Wattiez
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
| | - Morgane Monfort
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
| | - Chantal François
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
| | - Sophie Rivaud-Péchoux
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
| | - Bertrand Gaymard
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
| | - Pierre Pouget
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
- * E-mail: (PP); (AVC)
| |
Collapse
|
20
|
Moliadze V, Antal A, Paulus W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol 2011; 588:4891-904. [PMID: 20962008 DOI: 10.1113/jphysiol.2010.196998] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Alleviating the symptoms of neurological diseases by increasing cortical excitability through transcranial stimulation is an ongoing scientific challenge. Here, we tackle this issue by interfering with high frequency oscillations (80–250 Hz) via external application of transcranial alternating current stimulation (tACS) over the human motor cortex (M1). Twenty-one subjects participated in three different experimental studies and they received on separate days tACS at three frequencies (80 Hz, 140 Hz and 250 Hz) and sham stimulation in a randomized order. tACS with 140 Hz frequency increased M1 excitability as measured by transcranial magnetic stimulation-generated motor evoked potentials (MEPs) during and for up to 1 h after stimulation. Control experiments with sham and 80 Hz stimulation were without any effect, and 250 Hz stimulation was less efficient with a delayed excitability induction and reduced duration. After-effects elicited by 140 Hz stimulation were robust against inversion of test MEP amplitudes seen normally under activation. Stimulation at 140 Hz reduced short interval intracortical inhibition, but left intracortical facilitation, long interval cortical inhibition and cortical silent period unchanged. Implicit motor learning was not facilitated by 140 Hz stimulation. High frequency stimulation in the ripple range is a new promising non-invasive brain stimulation protocol to increase human cortical excitability during and after the end of stimulation.
Collapse
Affiliation(s)
- Vera Moliadze
- Department of Clinical Neurophysiology, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | | | | |
Collapse
|
21
|
Feuerstein TJ, Kammerer M, Lücking CH, Moser A. Selective GABA release as a mechanistic basis of high-frequency stimulation used for the treatment of neuropsychiatric diseases. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:1-20. [PMID: 21533988 DOI: 10.1007/s00210-011-0644-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 02/23/2011] [Indexed: 11/28/2022]
Abstract
Electrical high-frequency stimulation (HFS) is applied in many brain areas to treat various clinical syndromes. The nearly identical constellation of stimulation parameters raises the question of a unique mechanism of action of this therapeutic option. The identification of a single HFS mechanism may help to optimize the HFS technology by targeting this single mechanism. Experimentally, only axonal membranes are targets of HFS, but not other membranes of neurons or glial cells. Within all HFS target regions, axons of excitatory glutamatergic and inhibitory GABAergic neurons are present and play roles in all clinical syndromes treated successfully with HFS. Therefore, glutamatergic or GABAergic fibres are likely candidates as mediators of a unique HFS mode of action. The selective involvement of another neuronal fibre type (e.g. monoaminergic, cholinergic, etc.) in the HFS mode of action is highly unlikely since the regional and syndromal dissimilarity of the clinical HFS applications precludes the assumption of such a fibre type as primary HFS site of action. Our recent experimental finding that HFS of human neocortical slices induces the action potential-mediated release of GABA, but not of glutamate, simplifies the possibilities to explain the HFS mode of action, as the explanation now may concentrate on GABAergic axons only. Thus, we are analysing, on the basis of the pathophysiological grounds of the various syndromes treated with deep brain stimulation, whether a selective GABA release is a collective explanation of the mode of action of HFS. We suggest that selective GABA release indeed may needfully and sufficiently explain efficacy and side effects of HFS.
Collapse
Affiliation(s)
- Thomas J Feuerstein
- Section of Clinical Neuropharmacology, Department of Neurosurgery, University Hospital, Freiburg, Germany.
| | | | | | | |
Collapse
|
22
|
The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci Biobehav Rev 2010; 35:516-36. [PMID: 20599555 DOI: 10.1016/j.neubiorev.2010.06.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
Transcranial magnetic stimulation (TMS) has become a mainstay of cognitive neuroscience, thus facing new challenges due to its widespread application on behaviorally silent areas. In this review we will summarize the main technical and methodological considerations that are necessary when using TMS in cognitive neuroscience, based on a corpus of studies and technical improvements that has become available in most recent years. Although TMS has been applied only relatively recently on a large scale to the study of higher functions, a range of protocols that elucidate how this technique can be used to investigate a variety of issues is already available, such as single pulse, paired pulse, dual-site, repetitive and theta burst TMS. Finally, we will touch on recent promising approaches that provide powerful new insights about causal interactions among brain regions (i.e., TMS with other neuroimaging techniques) and will enable researchers to enhance the functional resolution of TMS (i.e., state-dependent TMS). We will end by briefly summarizing and discussing the implications of the newest safety guidelines.
Collapse
|
23
|
Ruzzoli M, Marzi CA, Miniussi C. The Neural Mechanisms of the Effects of Transcranial Magnetic Stimulation on Perception. J Neurophysiol 2010; 103:2982-9. [DOI: 10.1152/jn.01096.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a technique used to study perceptual, motor, and cognitive functions in the human brain. Its effects have been likened to a “virtual brain lesion,” but a direct test of this assumption is lacking. To verify this hypothesis, we measured psychophysically the interaction between the neural activity induced by a visual motion-direction discrimination task and that induced by TMS. The visual stimulus featured two elements: a visual signal (dots that moved coherently in one direction) and visual noise (dots that moved randomly in many directions). Three hypotheses were tested to explain the impairment in performance as a result of TMS: 1) a decrease in signal strength; 2) an induction of randomly distributed neural noise with an accompanying decrement in system sensitivity; and 3) a suppression of relevant information processing and addition of neural noise. We provide evidence in favor of the second hypothesis by showing that TMS basically acts by adding neural noise to the perceptual process.
Collapse
Affiliation(s)
- Manuela Ruzzoli
- Department of Neurological and Vision Sciences, University of Verona, Verona
- Cognitive Neuroscience Section, IRCCS San Giovanni di Dio Fatebenefratelli, Brescia; and
| | - Carlo A. Marzi
- Department of Neurological and Vision Sciences, University of Verona, Verona
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS San Giovanni di Dio Fatebenefratelli, Brescia; and
- Department of Biomedical Sciences and Biotechnologies, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| |
Collapse
|
24
|
Cuellar-Herrera M, Peña F, Alcantara-Gonzalez D, Neri-Bazan L, Rocha L. Antiepileptic drugs combined with high-frequency electrical stimulation in the ventral hippocampus modify pilocarpine-induced status epilepticus in rats. Epilepsia 2010; 51:432-7. [DOI: 10.1111/j.1528-1167.2009.02315.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
López-Martín E, Bregains J, Relova-Quinteiro JL, Cadarso-Suárez C, Jorge-Barreiro FJ, Ares-Pena FJ. The action of pulse-modulated GSM radiation increases regional changes in brain activity and c-Fos expression in cortical and subcortical areas in a rat model of picrotoxin-induced seizure proneness. J Neurosci Res 2009; 87:1484-99. [PMID: 19115403 DOI: 10.1002/jnr.21951] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The action of the pulse-modulated GSM radiofrequency of mobile phones has been suggested as a physical phenomenon that might have biological effects on the mammalian central nervous system. In the present study, GSM-exposed picrotoxin-pretreated rats showed differences in clinical and EEG signs, and in c-Fos expression in the brain, with respect to picrotoxin-treated rats exposed to an equivalent dose of unmodulated radiation. Neither radiation treatment caused tissue heating, so thermal effects can be ruled out. The most marked effects of GSM radiation on c-Fos expression in picrotoxin-treated rats were observed in limbic structures, olfactory cortex areas and subcortical areas, the dentate gyrus, and the central lateral nucleus of the thalamic intralaminar nucleus group. Nonpicrotoxin-treated animals exposed to unmodulated radiation showed the highest levels of neuronal c-Fos expression in cortical areas. These results suggest a specific effect of the pulse modulation of GSM radiation on brain activity of a picrotoxin-induced seizure-proneness rat model and indicate that this mobile-phone-type radiation might induce regional changes in previous preexcitability conditions of neuronal activation.
Collapse
Affiliation(s)
- E López-Martín
- Morphological Sciences Department, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Pasley BN, Allen EA, Freeman RD. State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 2009; 62:291-303. [PMID: 19409273 PMCID: PMC2953477 DOI: 10.1016/j.neuron.2009.03.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 12/11/2008] [Accepted: 03/06/2009] [Indexed: 10/20/2022]
Abstract
Electrical brain stimulation is a promising tool for both experimental and clinical applications. However, the effects of stimulation on neuronal activity are highly variable and poorly understood. To investigate the basis of this variability, we performed extracellular recordings in the visual cortex following application of transcranial magnetic stimulation (TMS). Our measurements of spiking and local field potential activity exhibit two types of response patterns which are characterized by the presence or absence of spontaneous discharge following stimulation. This variability can be partially explained by state-dependent effects, in which higher pre-TMS activity predicts larger post-TMS responses. These results reveal the possibility that variability in the neural response to TMS can be exploited to optimize the effects of stimulation. It is conceivable that this feature could be utilized in real time during the treatment of clinical disorders.
Collapse
Affiliation(s)
- Brian N Pasley
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
27
|
GABAA autoreceptors enhance GABA release from human neocortex: towards a mechanism for high-frequency stimulation (HFS) in brain? Naunyn Schmiedebergs Arch Pharmacol 2009; 380:45-58. [DOI: 10.1007/s00210-009-0410-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
|
28
|
Jin J, Davis J, Zhu D, Kashima DT, Leroueil M, Pan C, Montine KS, Zhang J. Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells. BMC Neurosci 2007; 8:67. [PMID: 17705834 PMCID: PMC2000881 DOI: 10.1186/1471-2202-8-67] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 08/16/2007] [Indexed: 12/21/2022] Open
Abstract
Background Many studies have shown that mitochondrial dysfunction, complex I inhibition in particular, is involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a specific inhibitor of mitochondrial complex I, has been shown to produce neurodegeneration in rats as well as in many cellular models that closely resemble PD. However, the mechanisms through which complex I dysfunction might produce neurotoxicity are as yet unknown. A comprehensive analysis of the mitochondrial protein expression profile affected by rotenone can provide important insight into the role of mitochondrial dysfunction in PD. Results Here, we present our findings using a recently developed proteomic technology called SILAC (stable isotope labeling by amino acids in cell culture) combined with polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry to compare the mitochondrial protein profiles of MES cells (a dopaminergic cell line) exposed to rotenone versus control. We identified 1722 proteins, 950 of which are already designated as mitochondrial proteins based on database search. Among these 950 mitochondrial proteins, 110 displayed significant changes in relative abundance after rotenone treatment. Five of these selected proteins were further validated for their cellular location and/or treatment effect of rotenone. Among them, two were confirmed by confocal microscopy for mitochondrial localization and three were confirmed by Western blotting (WB) for their regulation by rotenone. Conclusion Our findings represent the first report of these mitochondrial proteins affected by rotenone; further characterization of these proteins may shed more light on PD pathogenesis.
Collapse
Affiliation(s)
- Jinghua Jin
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jeanne Davis
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - David Zhu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel T Kashima
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Marc Leroueil
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Catherine Pan
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathleen S Montine
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|