1
|
Ngamjariyawat A, Cen J, Said R, Incedal C, Idevall-Hagren O, Welsh N. Metabolic stress-induced human beta-cell death is mediated by increased intracellular levels of adenosine. Front Endocrinol (Lausanne) 2023; 14:1060675. [PMID: 36761184 PMCID: PMC9905624 DOI: 10.3389/fendo.2023.1060675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION High intracellular concentrations of adenosine and 2'-deoxyadenosine have been suggested to be an important mediator of cell death. The aim of the present study was to characterize adenosine-induced death in insulin-producing beta-cells, at control and high glucose + palmitate-induced stress conditions. METHODS Human insulin-producing EndoC-betaH1 cells were treated with adenosine, 2'-deoxyadenosine, inosine and high glucose + sodium palmitate, and death rates using flow cytometry were studied. RESULTS We observed that adenosine and the non-receptor-activating analogue 2-deoxyadenosine, but not the adenosine deamination product inosine, promoted beta-cell apoptosis at concentrations exceeding maximal adenosine-receptor stimulating concentrations. Both adenosine and inosine were efficiently taken up by EndoC-betaH1 cells, and inosine counteracted the cell death promoting effect of adenosine by competing with adenosine for uptake. Both adenosine and 2'-deoxyadenosine promptly reduced insulin-stimulated production of plasma membrane PI(3,4,5)P3, an effect that was reversed upon wash out of adenosine. In line with this, adenosine, but not inosine, rapidly diminished Akt phosphorylation. Both pharmacological Bax inhibition and Akt activation blocked adenosine-induced beta-cell apoptosis, indicating that adenosine/2'-deoxyadenosine inhibits the PI3K/Akt/BAD anti-apoptotic pathway. High glucose + palmitate-induced cell death was paralleled by increased intracellular adenosine and inosine levels. Overexpression of adenosine deaminase-1 (ADA1) in EndoC-betaH1 cells, which increased Akt phosphorylation, prevented both adenosine-induced apoptosis and high glucose + palmitate-induced necrosis. ADA2 overexpression not only failed to protect against adenosine and high glucose + palmitate-activated cell death, but instead potentiated the apoptosis-stimulating effect of adenosine. In line with this, ADA1 overexpression increased inosine production from adenosine-exposed cells, whereas ADA2 did not. Knockdown of ADA1 resulted in increased cell death rates in response to both adenosine and high glucose + palmitate. Inhibition of miR-30e-3p binding to the ADA1 mRNA 3'-UTR promoted the opposite effects on cell death rates and reduced intracellular adenosine contents. DISCUSSION It is concluded that intracellular adenosine/2'-deoxyadenosine regulates negatively the PI3K pathway and is therefore an important mediator of beta-cell apoptosis. Adenosine levels are controlled, at least in part, by ADA1, and strategies to upregulate ADA1 activity, during conditions of metabolic stress, could be useful in attempts to preserve beta-cell mass in diabetes.
Collapse
Affiliation(s)
- Anongnad Ngamjariyawat
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Division of Anatomy, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Khlong Luang, Pathumthani, Thailand
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Romain Said
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ceren Incedal
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Olof Idevall-Hagren
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- *Correspondence: Nils Welsh,
| |
Collapse
|
2
|
Gerou M, Hall B, Woof R, Allsop J, Kolb SJ, Meyer K, Shaw PJ, Allen SP. Amyotrophic lateral sclerosis alters the metabolic aging profile in patient derived fibroblasts. Neurobiol Aging 2021; 105:64-77. [PMID: 34044197 PMCID: PMC8346650 DOI: 10.1016/j.neurobiolaging.2021.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
Aging is a major risk factor for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). As metabolic alterations are a hallmark of aging and have previously been observed in ALS, it is important to examine the effect of aging in the context of ALS metabolic function. Here, using a newly established phenotypic metabolic approach, we examined the effect of aging on the metabolic profile of fibroblasts derived from ALS cases compared to controls. We found that ALS fibroblasts have an altered metabolic profile, which is influenced by age. In control cases, we found significant increases with age in NADH metabolism in the presence of several metabolites including lactic acid, trehalose, uridine and fructose, which was not recapitulated in ALS cases. Conversely, we found a reduction of NADH metabolism with age of biopsy, age of onset and age of death in the presence of glycogen in the ALS cohort. Furthermore, we found that NADH production correlated with disease progression rates in relation to a number of metabolites including inosine and α-ketoglutaric acid. Inosine or α-ketoglutaric acid supplementation in ALS fibroblasts was bioenergetically favourable. Overall, we found aging related defects in energy substrates that feed carbon into glycolysis at various points as well as the tricarboxylic acid (TCA) cycle in ALS fibroblasts, which was validated in induced neuronal progenitor cell derived iAstrocytes. Our results suggest that supplementing those pathways may protect against age related metabolic dysfunction in ALS.
Collapse
Affiliation(s)
- Margarita Gerou
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Benjamin Hall
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Ryan Woof
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Jessica Allsop
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Centre, Columbus, OH, USA
| | - Kathrin Meyer
- Centre for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Scott P Allen
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
3
|
Pasciu V, Sotgiu FD, Porcu C, Berlinguer F. Effect of Media with Different Glycerol Concentrations on Sheep Red Blood Cells' Viability In Vitro. Animals (Basel) 2021; 11:1592. [PMID: 34071487 PMCID: PMC8228453 DOI: 10.3390/ani11061592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
The use of high doses of glycerol as a livestock feed supplement is followed by a rapid increase in plasma concentrations and consequently in plasma osmolality. Moreover, glycerol is a highly diffusible molecule that can readily permeate the red blood cell (RBC) membrane following a concentration gradient. A rise in glycerol plasma concentrations can thus alter RBC homeostasis. The present study aimed at investigating both glycerol osmotic effects on sheep RBCs and their oxidative response under in vitro conditions. Sheep blood samples were suspended in media supplemented with increasing glycerol concentrations (0, 25, 50, 100, 150, 200, 250, 300, 350, 400 mg/dL), which reflected those found in vivo in previous studies, and incubated at 37 °C for 4h. Thereafter, osmolality and hemolysis were determined in spent media, while cell extracts were used to assay intracellular concentration of glycerol, ATP, Ca2+ ions, oxidative stress markers and reactive oxygen species (ROS).The study confirmed that glycerol intracellular concentrations are directly related with its concentration in the incubation media, as well as hemolysis (p < 0.001) which increased significantly at glycerol concentrations higher form 200 mg/dL. ROS intracellular level increased at all glycerol concentration tested (p < 0.01) and total thiols decreased at the highest concentrations. However, RBCs proved to be able to cope by activating their antioxidant defense system. Superoxide dismutase activity indeed increased at the highest glycerol concentrations (p < 0.001), while total antioxidant capacity and malonyldialdehyde, a typical product of lipid peroxidation by ROS, did not show significant changes. Moreover, no alterations in intracellular Ca2+ ions and ATP concentrations were found. In conclusion, glycerol-induced hemolysis can be related to the induced osmotic stress. In sheep, nutritional treatments should be designed to avoid reaching glycerol circulating concentrations higher than 200 mg/dL.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.S.); (C.P.); (F.B.)
| | | | | | | |
Collapse
|
4
|
Cytosolic 5'-Nucleotidase II Is a Sensor of Energy Charge and Oxidative Stress: A Possible Function as Metabolic Regulator. Cells 2021; 10:cells10010182. [PMID: 33477638 PMCID: PMC7831490 DOI: 10.3390/cells10010182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Cytosolic 5'-nucleotidase II (NT5C2) is a highly regulated enzyme involved in the maintenance of intracellular purine and the pyrimidine compound pool. It dephosphorylates mainly IMP and GMP but is also active on AMP. This enzyme is highly expressed in tumors, and its activity correlates with a high rate of proliferation. In this paper, we show that the recombinant purified NT5C2, in the presence of a physiological concentration of the inhibitor inorganic phosphate, is very sensitive to changes in the adenylate energy charge, especially from 0.4 to 0.9. The enzyme appears to be very sensitive to pro-oxidant conditions; in this regard, the possible involvement of a disulphide bridge (C175-C547) was investigated by using a C547A mutant NT5C2. Two cultured cell models were used to further assess the sensitivity of the enzyme to oxidative stress conditions. NT5C2, differently from other enzyme activities, was inactivated and not rescued by dithiothreitol in a astrocytoma cell line (ADF) incubated with hydrogen peroxide. The incubation of a human lung carcinoma cell line (A549) with 2-deoxyglucose lowered the cell energy charge and impaired the interaction of NT5C2 with the ice protease-activating factor (IPAF), a protein involved in innate immunity and inflammation.
Collapse
|
5
|
Ahmed H, Jahan S, Ullah H, Ullah F, Salman MM. The addition of resveratrol in tris citric acid extender ameliorates post-thaw quality parameters, antioxidant enzymes levels, and fertilizing capability of buffalo (Bubalus bubalis) bull spermatozoa. Theriogenology 2020; 152:106-113. [PMID: 32388038 DOI: 10.1016/j.theriogenology.2020.04.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023]
Abstract
Resveratrol is a natural grape-derived polyphenol with potent antioxidant properties that protect spermatozoa against lipid peroxidation (LPO) by eradicating free radicals. The objectives of this study were to 1) appraise the effects of resveratrol in extender on post-thaw quality parameters, antioxidant enzymes, adenosine triphosphate (ATP), DNA fragmentation, LPO and 2) fertilizing capability of buffalo bull spermatozoa. Semen was collected from four fertility proven bulls with artificial vagina thrice, evaluated initially, and diluted in five different extenders containing resveratrol (T4 = 100 μM, T3 = 50 μM, T2 = 20 μM, T1 = 10 μM), and control (no resveratrol), and evaluated after post-dilution and post-thawing stage of cryopreservation. Analysis of variance revealed that, there was no difference (P > 0.05) in any parameters due to treatments at post-dilution. However, at post-thawing, sperm progressive motility (%), plasma membrane integrity (%), mitochondrial membrane potential (%) and ATP levels (nmol/106) were found higher in semen samples cryopreserved in T3 and 4 than control. Sperm supravital plasma membrane integrity (%) and viable/acrosome integrity were found higher in semen samples cryopreserved in T4 than control and T1. Furthermore, sperm catalase (U/mL), glutathione peroxidase (μM) and superoxide dismutase (U/mL) concentrations were found significantly higher in resveratrol treated groups as compared to the control. Conversely, DNA fragmentation (%) and LPO (μM/mL) were significantly (P > 0.05) decreased in semen samples cryopreserved in T4 in comparison to the control. Fertilizing capability was found higher in semen samples cryopreserved in T4 as compared to the control (%, 77.33 vs. 57.41, P < 0.05). It is concluded that the addition of resveratrol in extender ameliorates quality parameters, antioxidant enzymes levels and fertilizing capability, and alleviate DNA fragmentation and LPO in buffalo spermatozoa during cryopreservation.
Collapse
Affiliation(s)
- Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa (KP), Pakistan; Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan.
| | - Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan
| | - Hizb Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan
| | - Farhad Ullah
- Department of Zoology, Islamia College University Peshawar, Khyber Pakhtunkhwa (KP), Pakistan
| | - Mian Muhammad Salman
- College of Animal Husbandry & Veterinary Sciences, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
6
|
Allen SP, Hall B, Castelli LM, Francis L, Woof R, Siskos AP, Kouloura E, Gray E, Thompson AG, Talbot K, Higginbottom A, Myszczynska M, Allen CF, Stopford MJ, Hemingway J, Bauer CS, Webster CP, De Vos KJ, Turner MR, Keun HC, Hautbergue GM, Ferraiuolo L, Shaw PJ. Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain 2020; 142:586-605. [PMID: 30698736 PMCID: PMC6391613 DOI: 10.1093/brain/awy353] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/25/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
As clinical evidence supports a negative impact of dysfunctional energy metabolism on the disease progression in amyotrophic lateral sclerosis, it is vital to understand how the energy metabolic pathways are altered and whether they can be restored to slow disease progression. Possible approaches include increasing or rerouting catabolism of alternative fuel sources to supplement the glycolytic and mitochondrial pathways such as glycogen, ketone bodies and nucleosides. To analyse the basis of the catabolic defect in amyotrophic lateral sclerosis we used a novel phenotypic metabolic array. We profiled fibroblasts and induced neuronal progenitor-derived human induced astrocytes from C9orf72 amyotrophic lateral sclerosis patients compared to normal controls, measuring the rates of production of reduced nicotinamide adenine dinucleotides from 91 potential energy substrates. This approach shows for the first time that C9orf72 human induced astrocytes and fibroblasts have an adenosine to inosine deamination defect caused by reduction of adenosine deaminase, which is also observed in induced astrocytes from sporadic patients. Patient-derived induced astrocyte lines were more susceptible to adenosine-induced toxicity, which could be mimicked by inhibiting adenosine deaminase in control lines. Furthermore, adenosine deaminase inhibition in control induced astrocytes led to increased motor neuron toxicity in co-cultures, similar to the levels observed with patient derived induced astrocytes. Bypassing metabolically the adenosine deaminase defect by inosine supplementation was beneficial bioenergetically in vitro, increasing glycolytic energy output and leading to an increase in motor neuron survival in co-cultures with induced astrocytes. Inosine supplementation, in combination with modulation of the level of adenosine deaminase may represent a beneficial therapeutic approach to evaluate in patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
- Correspondence to: Dr Scott Allen Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK E-mail:
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Laura Francis
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Ryan Woof
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Alexandros P Siskos
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Eirini Kouloura
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, West Wing Level 6, Oxford, UK
| | - Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, West Wing Level 6, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, West Wing Level 6, Oxford, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Monika Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Chloe F Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Matthew J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Jordan Hemingway
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, West Wing Level 6, Oxford, UK
| | - Hector C Keun
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| |
Collapse
|
7
|
Yamamoto K, Ikenaka Y, Ichise T, Bo T, Ishizuka M, Yasui H, Hiraoka W, Yamamori T, Inanami O. Evaluation of mitochondrial redox status and energy metabolism of X-irradiated HeLa cells by LC/UV, LC/MS/MS and ESR. Free Radic Res 2018; 52:648-660. [PMID: 29620489 DOI: 10.1080/10715762.2018.1460472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To evaluate the metabolic responses in tumour cells exposed to ionizing radiation, oxygen consumption rate (OCR), cellular lipid peroxidation, cellular energy status (intracellular nucleotide pool and ATP production), and mitochondrial reactive oxygen species (ROS), semiquinone (SQ), and iron-sulphur (Fe-S) cluster levels were evaluated in human cervical carcinoma HeLa cells at 12 and 24 h after X-irradiation. LC/MS/MS analysis showed that levels of 8-iso PGF2α and 5-iPF2α-VI, lipid peroxidation products of membrane arachidonic acids, were not altered significantly in X-irradiated cells, although mitochondrial ROS levels and OCR significantly increased in the cells at 24 h after irradiation. LC/UV analysis revealed that intracellular AMP, ADP, and ATP levels increased significantly after X-irradiation, but adenylate energy charge (adenylate energy charge (AEC) = [ATP + 0.5 × ADP]/[ATP + ADP + AMP]) remained unchanged after X-irradiation. In low-temperature electron spin resonance (ESR) spectra of HeLa cells, the presence of mitochondrial SQ at g = 2.004 and Fe-S cluster at g = 1.941 was observed and X-irradiation enhanced the signal intensity of SQ but not of the Fe-S cluster. Furthermore, this radiation-induced increase in SQ signal intensity disappeared on treatment with rotenone, which inhibits electron transfer from Fe-S cluster to SQ in complex I. From these results, it was suggested that an increase in OCR and imbalance in SQ and Fe-S cluster levels, which play a critical role in the mitochondrial electron transport chain (ETC), occur after X-irradiation, resulting in an increase in ATP production and ROS leakage from the activated mitochondrial ETC.
Collapse
Affiliation(s)
- Kumiko Yamamoto
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Yoshinori Ikenaka
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Takahiro Ichise
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Tomoki Bo
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Mayumi Ishizuka
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Hironobu Yasui
- c Central Institute of Isotope Science , Hokkaido University , Sapporo , Japan
| | - Wakako Hiraoka
- d Laboratory of Biophysics , School of Science and Technology, Meiji University , Kawasaki , Japan
| | - Tohru Yamamori
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Osamu Inanami
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
8
|
Abstract
Several physiological functions of adenosine (Ado) appear to be mediated by four G protein-coupled Ado receptors. Ado is produced extracellularly from the catabolism of the excreted ATP, or intracellularly from AMP, and then released through its transporter. High level of intracellular Ado occurs only at low energy charge, as an intermediate of ATP breakdown, leading to hypoxanthine production. AMP, the direct precursor of Ado, is now considered as an important stress signal inside cell triggering metabolic regulation through activation of a specific AMP-dependent protein kinase. Intracellular Ado produced from AMP by allosterically regulated nucleotidases can be regarded as a stress signal as well. To study the receptor-independent effects of Ado, several experimental approaches have been proposed, such as inhibition or silencing of key enzymes of Ado metabolism, knockdown of Ado receptors in animals, the use of antagonists, or cell treatment with deoxyadenosine, which is substrate of the enzymes acting on Ado, but is unable to interact with Ado receptors. In this way, it was demonstrated that, among other functions, intracellular Ado modulates angiogenesis by regulating promoter methylation, induces hypothermia, promotes apoptosis in sympathetic neurons, and, in the case of oxygen and glucose deprivation, exerts a cytoprotective effect by replenishing the ATP pool.
Collapse
|
9
|
Hepatocyte-secreted extracellular vesicles modify blood metabolome and endothelial function by an arginase-dependent mechanism. Sci Rep 2017; 7:42798. [PMID: 28211494 PMCID: PMC5314384 DOI: 10.1038/srep42798] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocytes release extracellular vesicles (EVs) loaded with signaling molecules and enzymes into the bloodstream. Although the importance of EVs in the intercellular communication is already recognized, the metabolic impact of the enzymes carried by these vesicles is still unclear. We evaluated the global effect of the enzymatic activities of EVs by performing untargeted metabolomic profiling of serum samples after their exposure to EVs. This approach revealed a significant change in the abundance of 94 serum metabolic signals. Our study shows that these vesicles modify the concentration of metabolites of different chemical nature including metabolites related to arginine metabolism, which regulates vascular function. To assess the functional relevance of this finding, we examined the levels of arginase-1 protein and its activity in the hepatic EVs carrying the exosomal markers CD81 and CD63. Remarkably, the arginase activity was also detected in EVs isolated from the serum in vivo, and this vesicular activity significantly increased under liver-damaging conditions. Finally, we demonstrated that EVs secreted by hepatocytes inhibited the acetylcholine-induced relaxation in isolated pulmonary arteries, via an arginase-dependent mechanism. In summary, our study demonstrates that the hepatocyte-released EVs are metabolically active, affecting a number of serum metabolites involved in oxidative stress metabolism and the endothelial function.
Collapse
|
10
|
Quiroga-Roger D, Babul J, Guixé V. Role of monovalent and divalent metal cations in human ribokinase catalysis and regulation. Biometals 2015; 28:401-13. [DOI: 10.1007/s10534-015-9844-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/03/2015] [Indexed: 11/29/2022]
|
11
|
Soybean lecithin-based extender preserves spermatozoa membrane integrity and fertilizing potential during goat semen cryopreservation. Theriogenology 2014; 83:1064-74. [PMID: 25595356 DOI: 10.1016/j.theriogenology.2014.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 02/08/2023]
Abstract
Soybean lecithin may represent a suitable alternative to egg yolk for semen cryopreservation in livestock species. However, additional studies are needed to elucidate its effects on spermatozoa functional properties. Semen collected from five Sarda bucks was cryopreserved in Tris-based extender and glycerol (4% v:v) with different supplementations. In a preliminary experiment, different soybean lecithin concentrations were tested (1%-6% wt/vol) and results in terms of viability, percentages of progressive motile and rapid spermatozoa, and DNA integrity after thawing showed that the most effective concentration was 1%. In the second experiment, semen was frozen in a Tris-based extender with no supplementation (EXT), with 1% lecithin (EXT LC), and 20% egg yolk (EXT EY). The effectiveness of these extenders was also compared with a commercial extender. The EXT EY led to the highest viability and motility parameters after freezing and thawing (P < 0.0001). No significant differences were observed in intracellular ATP concentrations. Additional molecular features revealed that sperm functionality was affected in EXT EY, as demonstrated by lower DNA and acrosome integrity (P < 0.05), and higher lipid peroxidation compared with spermatozoa cryopreserved in EXT LC (P < 0.0001). Results obtained in the heterologous in vitro fertilization test showed that EXT LC better preserved spermatozoa functionality, as demonstrated by the higher fertilization rates compared with the other media (66.2 ± 4.5% for EXT LC vs. 32.7 ± 4.5%, 38.7 ± 4.5%, 39.6 ± 5.2% for EXT, EXT EY, and commercial extender; P < 0.01). The present study demonstrated that lecithin can be considered as a suitable alternative to egg yolk in goat semen cryopreservation, because it ensures higher fertilization rates and a better protection from membrane damage by cold shock.
Collapse
|
12
|
Salleron L, Magistrelli G, Mary C, Fischer N, Bairoch A, Lane L. DERA is the human deoxyribose phosphate aldolase and is involved in stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2913-25. [PMID: 25229427 DOI: 10.1016/j.bbamcr.2014.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/13/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
Abstract
Deoxyribose-phosphate aldolase (EC 4.1.2.4), which converts 2-deoxy-d-ribose-5-phosphate into glyceraldehyde-3-phosphate and acetaldehyde, belongs to the core metabolism of living organisms. It was previously shown that human cells harbor deoxyribose phosphate aldolase activity but the protein responsible of this activity has never been formally identified. This study provides the first experimental evidence that DERA, which is mainly expressed in lung, liver and colon, is the human deoxyribose phosphate aldolase. Among human cell lines, the highest DERA mRNA level and deoxyribose phosphate aldolase activity were observed in liver-derived Huh-7 cells. DERA was shown to interact with the known stress granule component YBX1 and to be recruited to stress granules after oxidative or mitochondrial stress. In addition, cells in which DERA expression was down-regulated using shRNA formed fewer stress granules and were more prone to apoptosis after clotrimazole stress, suggesting the importance of DERA for stress granule formation. Furthermore, the expression of DERA was shown to permit cells in which mitochondrial ATP production was abolished to make use of extracellular deoxyinosine to maintain ATP levels. This study unraveled a previously undescribed pathway which may allow cells with high deoxyribose-phosphate aldolase activity, such as liver cells, to minimize or delay stress-induced damage by producing energy through deoxynucleoside degradation.
Collapse
Affiliation(s)
- Lisa Salleron
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | - Camille Mary
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Amos Bairoch
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; CALIPHO GroupSIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Lydie Lane
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; CALIPHO GroupSIB-Swiss Institute of Bioinformatics, Geneva, Switzerland.
| |
Collapse
|
13
|
Dose-dependent effect of melatonin on postwarming development of vitrified ovine embryos. Theriogenology 2014; 81:1058-66. [PMID: 24612696 DOI: 10.1016/j.theriogenology.2014.01.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 11/23/2022]
Abstract
After cryopreservation, embryos become sensitive to the oxidative stress, resulting in lipid peroxidation, membrane injury, and structural destruction. The present study aimed to assess the effect of increasing concentration of melatonin during postwarming culture on embryo's ability to restore its functions after cryopreservation. In vitro-produced blastocysts were vitrified, warmed, and cultured in vitro in TCM 199 with 5 different supplementations: control (CTR): 10% fetal calf serum; bovine serum albumin (BSA): 0.04% (wt/vol) BSA; and MEL(-3), MEL(-6), MEL(-9): BSA plus melatonin 10(-3), 10(-6), and 10(-9) M. The medium with the highest melatonin concentration had the highest trolox equivalent antioxidant capacity, whose values were comparable with those determined in plasma sampled from adult ewes (8.7 ± 2.4 mM). The other media had lower trolox equivalent antioxidant capacity values (P < 0.01), below the range of the plasma. At the same time, embryos cultured with the highest melatonin concentration reported a lower in vitro viability, as evaluated by lower re-expansion and hatching rates, and lower total cell number compared with the other groups (P < 0.05). Their metabolic status was also affected, as evidenced by higher oxidative and apoptotic index and lower ATP concentration. The beneficial effects of melatonin on embryo development during postwarming culture were observed only at low concentration (10(-9) M). These results suggest that melatonin at high concentration may exert some degree of toxic activity on pre-implantation embryos. Thus, the dose at which the embryos are exposed is pivotal to obtain the desiderate effect.
Collapse
|
14
|
Olfati Karaji R, Daghigh Kia H, Ashrafi I. Effects of in combination antioxidant supplementation on microscopic and oxidative parameters of freeze–thaw bull sperm. Cell Tissue Bank 2013; 15:461-70. [DOI: 10.1007/s10561-013-9412-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/22/2013] [Indexed: 10/26/2022]
|
15
|
Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa. Anim Reprod Sci 2013; 139:25-30. [DOI: 10.1016/j.anireprosci.2013.03.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 01/24/2023]
|
16
|
Bhatt DP, Chen X, Geiger JD, Rosenberger TA. A sensitive HPLC-based method to quantify adenine nucleotides in primary astrocyte cell cultures. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 889-890:110-5. [PMID: 22382093 PMCID: PMC3299834 DOI: 10.1016/j.jchromb.2012.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
In mono-layered primary cell cultures baseline AMP and ADP levels are found nominally in the mid to low picomolar range and are thus difficult to measure with conventional HPLC methods that often require the pooling of samples or require indirect detection methods using radiotracers or enzyme coupled assays. To address this issue, we developed a highly sensitive and selective ion-pairing HPLC method with fluorescence detection to quantify adenine nucleotides and the adenylate energy charge in primary astrocyte cell cultures. To accomplish this, we optimized the fluorescence derivatization conditions and the HPLC parameters to achieve baseline separation and quantification of all adenine nucleotides. Nucleotides were converted to their respective 1, N(6)-etheno derivatives by incubating with chloroacetaldehyde at pH 4.5 and 60°C for 60 min. Under these conditions, the loss of the adenine nucleotides due to hydrolysis was minimized with a derivatization yield of 94.1% for 1, N(6)-ethenoadenosine. The optimal concentration of tetrabutylammonium phosphate, the ion-pairing reagent, required to achieve a reproducible separation of the adenine nucleotides was found to be 0.8mM. Calibration curves of nucleotide standards were linear within the range of 0.16-10.4 pmol for adenosine, 0.16-20.6 pmol for AMP, 0.15-19.2 pmol for ADP, and 0.15-19.5 pmol for ATP. The limits of detection and quantification for all adenine nucleotides were approximately 0.08 and 0.16 pmol, respectively. The intra- and inter-day variability for this method was less than 5.1 and 3.4%, respectively. This method was successfully used to measure all adenine nucleotides and an adenylate energy charge of 0.92±0.02 in primary astrocyte cell cultures.
Collapse
Affiliation(s)
- Dhaval P. Bhatt
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | - Xuesong Chen
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | - Jonathan D. Geiger
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | - Thad A. Rosenberger
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| |
Collapse
|
17
|
Novel metabolic aspects related to adenosine deaminase inhibition in a human astrocytoma cell line. Neurochem Int 2012; 60:523-32. [PMID: 22353632 DOI: 10.1016/j.neuint.2012.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 11/21/2022]
Abstract
Adenosine deaminase, which catalyzes the deamination of adenosine and deoxyadenosine, plays a central role in purine metabolism. Indeed, its deficiency is associated with severe immunodeficiency and abnormalities in the functioning of many organs, including nervous system. We have mimicked an adenosine deaminase-deficient situation by incubating a human astrocytoma cell line in the presence of deoxycoformycin, a strong adenosine deaminase inhibitor, and deoxyadenosine, which accumulates in vivo when the enzyme is deficient, and have monitored the effect of the combination on cell viability, mitochondrial functions, and other metabolic features. Astrocytomas are the most common neoplastic transformations occurring in glial cell types, often characterized by a poor prognosis. Our experimental approach may provide evidence both for the response to a treatment affecting purine metabolism of a tumor reported to be particularly resistant to chemotherapeutic approaches and for the understanding of the molecular basis of neurological manifestations related to errors in purine metabolism. Cells incubated in the presence of the combination, but not those incubated with deoxyadenosine or deoxycoformycin alone, underwent apoptotic death, which appears to proceed through a mitochondrial pathway, since release of cytochrome c has been observed. The inhibition of adenosine deaminase increases both mitochondrial reactive oxygen species level and mitochondrial mass. A surprising effect of the combination is the significant reduction in lactate production, suggestive of a reduced glycolytic capacity, not ascribable to alterations in NAD⁺/NADH ratio, nor to a consumption of inorganic phosphate. This is a hitherto unknown effect presenting early during the incubation with deoxyadenosine and deoxycoformycin, which precedes their effect on cell viability.
Collapse
|
18
|
Du F, Wu XM, Gong Q, He X, Ke Y. Hyperthermia conditioned astrocyte-cultured medium protects neurons from ischemic injury by the up-regulation of HIF-1 alpha and the increased anti-apoptotic ability. Eur J Pharmacol 2011; 666:19-25. [PMID: 21620821 DOI: 10.1016/j.ejphar.2011.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/20/2011] [Accepted: 05/03/2011] [Indexed: 01/08/2023]
Abstract
It has been demonstrated that conditioned medium from astrocytes challenged by in vitro ischemia (oxygen-glucose deprivation, OGD) improved neuronal survival. In addition, preconditioning stimuli can be cross-tolerant, safeguarding against other types of injury. We therefore hypothesized that hyperthermia-conditioned astrocyte-cultured medium (ACM) might also have protective effect on neurons against ischemic injury. The cultured-media, named 38ACM and 40ACM respectively, were collected after astrocytes had been incubated at 38 °C or 40 °C for 6h, followed by incubation at 37 °C for 24h. It was found that ischemia for 6h induced a significant reduction in the number of neuronal cells and cell-viability, and an increase in lactate dehydrogenase (LDH) release and the percentage of apoptotic nuclei in neurons. Pre-treatment with 38ACM or 40ACM for 24h significantly diminished ischemia injury, enhanced cell viability, reduced LDH release and reversed apoptosis. Western blot analysis showed that treatment with 38ACM or 40ACM for 24h led to a significant increase in hypoxia-inducible factor-1 (HIF-1) alpha expression. The EMSA demonstrated that the ACM increased the binding activity of HIF-1 in ischemic neurons. The data implied that hyperthermia-conditioned ACM protects neurons from ischemic injury by up-regulating HIF-1 alpha, and the increased binding activity of HIF-1 and anti-apoptotic ability.
Collapse
Affiliation(s)
- Fang Du
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
19
|
Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J Neuropathol Exp Neurol 2011; 70:167-76. [PMID: 21293295 DOI: 10.1097/nen.0b013e31820e1152] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Brain function depends on complex metabolic interactions among only a few different cell types, with astrocytes providing critical support for neurons. Astrocyte functions include buffering the extracellular space, providing substrates to neurons, interchanging glutamate and glutamine for synaptic transmission with neurons, and facilitating access to blood vessels. Whereas neurons possess highly oxidative metabolism and easily succumb to ischemia, astrocytes rely more on glycolytic metabolism and hence are less susceptible tolack of oxygen. Astrocytoma cells seem to retain basic metabolic mechanisms of astrocytes; for example, they show a high glycolytic rate, lactate extrusion, ability to flourish under hypoxia, and opportunistic use of mechanisms to enhance cell division and maintain growth. Differences in metabolism between neurons and astrocytes may also extend to astrocytoma cells, providing therapeutic opportunities against astrocytomas, including sensitivity to acetate, a high rate of glycolysis and lactate extrusion, glutamate uptake transporters, differential sensitivities of monocarboxylate transporters, presence of glycogen, high interlinking with gap junctions, use of nicotinamide adenine dinucleotide phosphate for lipid synthesis, using different isoforms of synthetic enzymes (e.g. isocitrate dehydrogenase, pyruvate carboxylase, pyruvate kinase, lactate dehydrogenase), and different glucose uptake mechanisms. These unique metabolic susceptibilities may augment conventional therapeutic attacks based on cell division differences and surface receptors alone.
Collapse
|
20
|
Succu S, Berlinguer F, Pasciu V, Satta V, Leoni GG, Naitana S. Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. J Pineal Res 2011; 50:310-8. [PMID: 21214627 DOI: 10.1111/j.1600-079x.2010.00843.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryopreservation harms spermatozoa at different levels and thus impairs their fertilizing ability. The role of melatonin in protecting spermatozoa from different kind injuries has been widely reported. Thus, this study tested whether the addition of melatonin to ram semen freezing extender could exert a protective effect and ameliorate postthawing sperm function. Melatonin was added to recommended ram extender to yield five different final concentrations: 0.001, 0.01, 0.1, 1, and 10 mm. A control group without melatonin supplementation was included. Spermatozoa viability, motility parameters, and intracellular ATP concentrations were evaluated both before and after cryopreservation, while DNA integrity and in vitro fertilizing ability were evaluated only after thawing. Obtained results showed that the concentration of 1 mm melatonin led to higher viability rates, higher percentages of total motile and progressive motile spermatozoa, higher percentages of spermatozoa with average rapid and medium velocity, higher intracellular ATP concentrations, and higher DNA integrity among semen frozen in control and melatonin-supplemented extenders (P<0.05). In addition, results obtained after the IVF test showed that at 1 mm concentration, melatonin led to a faster first embryonic division and to higher total cleavage rates compared to the other experimental groups (P<0.05). No difference in embryo output was observed among the six experimental groups. In conclusion, the addition of melatonin to ram semen freezing extender protected spermatozoa during cryopreservation in a dose-dependent manner. These results are likely to be mediated by its well-known antioxidant properties, even if a direct action of the indolamine cannot be ruled out.
Collapse
Affiliation(s)
- Sara Succu
- Department of Animal Biology, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1048-53. [DOI: 10.1016/j.bbadis.2010.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/08/2010] [Accepted: 06/18/2010] [Indexed: 12/31/2022]
|
22
|
Ipata PL, Balestri F, Camici M, Tozzi MG. Molecular mechanisms of nucleoside recycling in the brain. Int J Biochem Cell Biol 2010; 43:140-5. [PMID: 20974280 DOI: 10.1016/j.biocel.2010.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 01/28/2023]
Abstract
A major role of plasma membrane bound ectonucleotidases is the modulation of ATP, ADP, adenosine (the purinergic agonists), UTP, and UDP (the pyrimidinergic agonists) availability in the extracellular space at their respective receptors. We have recently shown that an ATP driven uridine-UTP cycle is operative in the brain, based on the strictly compartmentalized processes of uridine salvage to UTP and uridine generation from UTP, in which uptaken uridine is anabolized to UTP in the cytosol, and converted back to uridine in the extracellular space by the action of ectonucleotidases (Ipata et al. Int J Biochem Cell Biol 2010;42:932-7). In this paper we show that a similar cytidine-CTP cycle exists in rat brain. Since (i) brain relies on imported preformed nucleosides for the synthesis of nucleotides, RNA, nuclear and mitochondrial DNA, coenzymes, pyrimidine sugar- and lipid-conjugates and (ii) no specific pyrimidinergic receptors have been identified for cytidine and their nucleotides, our results, taken together with previous studies on the intra- and extracellular metabolic network of ATP, GTP, UTP, and their nucleosides in the brain (Barsotti and Ipata. Int J Biochem Cell Biol 2004;36:2214-25; Balestri et al. Neurochem Int 2007;50:517-23), strongly suggest that, apart from the modulation of ligand availability, ectonucleotidases may serve the process of local nucleoside recycling in the brain.
Collapse
Affiliation(s)
- Piero Luigi Ipata
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno, 51, 56127 Pisa, Italy.
| | | | | | | |
Collapse
|
23
|
Zinellu A, Pasciu V, Sotgia S, Scanu B, Berlinguer F, Leoni G, Succu S, Cossu I, Passino ES, Naitana S, Deiana L, Carru C. Capillary electrophoresis with laser-induced fluorescence detection for ATP quantification in spermatozoa and oocytes. Anal Bioanal Chem 2010; 398:2109-16. [PMID: 20835861 DOI: 10.1007/s00216-010-4186-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
Abstract
We describe a new capillary electrophoresis laser-induced fluorescence (CE-LIF) method for the quantification of adenosine 5'-triphosphate (ATP) in spermatozoa and oocytes. The optimization of the precapillary derivatization reaction between ATP and 4,4-difluoro-5,7-dimethyl-4-bora-3a,4adiaza-s-indacene-3-propionyl ethylene diamine hydrochloride (BODIPY FL EDA) has been described. BODIPY-ATP conjugate was analysed in an uncoated fused silica capillary of 75 μm ID and 50 cm effective length using a 10 mmol/L tribasic sodium phosphate buffer, pH 11.5, at 22 kV in <5 min. A good reproducibility of intra- and inter-assay tests was obtained (CV = 4.55% and 7.14%, respectively). With respect to our previous CE-UV assay, the new method showed an improvement in sensitivity that was about 120-fold (limit of quantification, 0.15 vs 18 μmol/L). Method applicability was proven on the reproductive cells of several animal species (roosters, horses, sheep and goats). Due to the elevated sensitivity, the new assay allows the measurement of adenosine 5'-triphosphate levels from just 20 oocytes. Considering that ATP concentration in reproductive cells is related to the mitochondrial integrity after cryopreservation, the proposed method could be a useful tool in assisted reproductive technologies.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wen X, Perrett D, Jones N, Tozer AJ, Docherty SM, Iles RK. High follicular fluid adenosine levels may be pivotal in the metabolism and recycling of adenosine nucleotides in the human follicle. Metabolism 2010; 59:1145-55. [PMID: 20045541 DOI: 10.1016/j.metabol.2009.09.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 09/02/2009] [Indexed: 11/20/2022]
Abstract
This study investigated the biochemical relationship between human follicular/oocyte maturity and the levels of follicular fluid purines. Intrafollicular levels of purine metabolites and creatinine are associated with oocyte presence, and the presence of such high levels of adenosine indicates a privileged site with no adenosine deaminase activity. Subgrouping according to oocyte recovery and fertilization revealed differences in correlation between the purine metabolites: Only where an oocyte was recovered and subsequently fertilized did follicular fluid adenosine, adenine, and hypoxanthine levels correlate with each other. Significantly, purines' correlation with levels of the terminal degradation product, uric acid, could only be seen in failed fertilization samples. Given the established metabolic pathways for adenosine triphosphate/adenosine diphosphate/adenosine monophosphate degradation, the results indicate maximization of 2 purine salvage pathways (from adenine and hypoxanthine) that pivot on the presence of high adenosine levels. Such optimized recovery may be necessary to build a store of salvaged adenosine phosphate for oocyte survival.
Collapse
Affiliation(s)
- Xuesong Wen
- Biomedical Sciences, School of Health and Social Science, Middlesex University, Hendon NW4 4BT, UK
| | | | | | | | | | | |
Collapse
|
25
|
Madeddu M, Berlinguer F, Pasciu V, Succu S, Satta V, Leoni GG, Zinellu A, Muzzeddu M, Carru C, Naitana S. Differences in semen freezability and intracellular ATP content between the rooster (Gallus gallus domesticus) and the Barbary partridge (Alectoris barbara). Theriogenology 2010; 74:1010-8. [PMID: 20615529 DOI: 10.1016/j.theriogenology.2010.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/03/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
This study aimed to compare viability, ATP content, and DNA integrity of rooster (Gallus gallus domesticus) and Barbary partridge (Alectoris barbara) fresh and frozen spermatozoa in order to identify factors possibly related to differences in semen freezability. Ejaculates were obtained from March to May by the abdominal massage method from 3 adult roosters and 12 adult Barbary partridges. Semen was frozen with different cryoprotectants using Lake's diluents as a base medium: 1) glycerol 11%; 2) glycerol 11% and trehalose 70 mmol/L; 3) dimethylacetamide (DMA) 6%; 4) DMA 6% and trehalose 70 mmol/L. Both fresh and frozen semen showed a lower viability and higher intracellular ATP concentrations in the Barbary partridge compared with the rooster (P < 0.05). In the Barbary partridge, semen viability after thawing did not differ among the 4 media used, but glycerol showed positive effects in avoiding a significant loss of ATP after thawing, compared with DMA containing media (P < 0.05). On the other hand, in the rooster a higher viability was recorded when semen was frozen in glycerol containing media compared to DMA (P < 0.0001), while ATP values significantly decreased after thawing (P < 0.05) without showing any differences among the semen frozen in the 4 different media. DNA integrity, as evaluated by the comet assay, was assessed only in frozen semen. In the Barbary partridge, mean scored parameter did not differ significantly among semen frozen in the 4 different media. In the rooster DNA fragmentation was higher in DMA ctr medium compared with the other media and with values found in Barbary partridge semen frozen in the same medium (P < 0.001). In both species, the addition of trehalose did not show any positive effects on viability, ATP levels and DNA integrity after thawing. In conclusion, species-related differences in semen features exist between the rooster and the Barbary partridge and the wide variation observed in ATP levels may account for differences in semen freezability between the two species.
Collapse
Affiliation(s)
- M Madeddu
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Berlinguer F, Madeddu M, Pasciu V, Succu S, Spezzigu A, Satta V, Mereu P, Leoni GG, Naitana S. Semen molecular and cellular features: these parameters can reliably predict subsequent ART outcome in a goat model. Reprod Biol Endocrinol 2009; 7:125. [PMID: 19900288 PMCID: PMC2777909 DOI: 10.1186/1477-7827-7-125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/09/2009] [Indexed: 11/16/2022] Open
Abstract
Currently, the assessment of sperm function in a raw or processed semen sample is not able to reliably predict sperm ability to withstand freezing and thawing procedures and in vivo fertility and/or assisted reproductive biotechnologies (ART) outcome. The aim of the present study was to investigate which parameters among a battery of analyses could predict subsequent spermatozoa in vitro fertilization ability and hence blastocyst output in a goat model. Ejaculates were obtained by artificial vagina from 3 adult goats (Capra hircus) aged 2 years (A, B and C). In order to assess the predictive value of viability, computer assisted sperm analyzer (CASA) motility parameters and ATP intracellular concentration before and after thawing and of DNA integrity after thawing on subsequent embryo output after an in vitro fertility test, a logistic regression analysis was used. Individual differences in semen parameters were evident for semen viability after thawing and DNA integrity. Results of IVF test showed that spermatozoa collected from A and B lead to higher cleavage rates (0 < 0.01) and blastocysts output (p < 0.05) compared with C. Logistic regression analysis model explained a deviance of 72% (p < 0.0001), directly related with the mean percentage of rapid spermatozoa in fresh semen (p < 0.01), semen viability after thawing (p < 0.01), and with two of the three comet parameters considered, i.e tail DNA percentage and comet length (p < 0.0001). DNA integrity alone had a high predictive value on IVF outcome with frozen/thawed semen (deviance explained: 57%). The model proposed here represents one of the many possible ways to explain differences found in embryo output following IVF with different semen donors and may represent a useful tool to select the most suitable donors for semen cryopreservation.
Collapse
Affiliation(s)
- Fiammetta Berlinguer
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Manuela Madeddu
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Valeria Pasciu
- Presidenza, Biblioteca Veterinaria, Faculty of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sara Succu
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Antonio Spezzigu
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Valentina Satta
- Department of Physiological, Biochemical and Cellular Science, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Paolo Mereu
- Department of Physiological, Biochemical and Cellular Science, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Giovanni G Leoni
- Department of Physiological, Biochemical and Cellular Science, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Salvatore Naitana
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
27
|
Madeddu M, Berlinguer F, Ledda M, Leoni GG, Satta V, Succu S, Rotta A, Pasciu V, Zinellu A, Muzzeddu M, Carru C, Naitana S. Ejaculate collection efficiency and post-thaw semen quality in wild-caught Griffon vultures from the Sardinian population. Reprod Biol Endocrinol 2009; 7:18. [PMID: 19228408 PMCID: PMC2649137 DOI: 10.1186/1477-7827-7-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 02/19/2009] [Indexed: 11/10/2022] Open
Abstract
This study aimed to test the feasibility of a programme of semen collection and cryopreservation in Griffon vultures. Four wild-caught individuals kept in captivity because of unrecoverable traumas were used. Semen collection attempts were made twice a week during three consecutive reproductive seasons (December - March) using the abdominal massage method. Ejaculation was successfully induced between late January and late February. Semen collection efficiency was rather low (27.9%) and it did not vary among individuals (p > 0.05). No differences were found in ejaculate volumes (12.5 +/- 9.1 microl), spermatozoa concentration (28.4 +/- 30.9 million cells/ml) and viability (61.3 +/- 13.9%) among the 4 vultures. ATP values differed among the four vultures (p < 0.001); B showed higher nucleotide concentration than both C and D, while it did not differ form A, whose values were higher compared with D. After freezing and thawing, semen in vitro viability, DNA integrity and ATP intracellular concentration were determined. Spermatozoa viability after thawing did not differ among the four individuals (52.6 +/- 5.8 in A, 53.4 +/- 4.6 in B, 50.4 +/- 3.2 in C, 42.5 +/- 2.7 in D), but it decreased significantly compared to fresh semen (p < 0.05). During 4 hrs in vitro culture, spermatozoa collected from B maintained over time a higher viability in vitro when compared to A, C and D. As evaluated by the comet assay method, DNA fragmentation after freezing and thawing did not differ in the 4 vultures. ATP concentration in frozen/thawed semen was significantly lower than in fresh semen (p < 0.0001). This study indicates that semen cryopreservation can be considered as a useful tool in the conservation of Griffon vulture genetic resources, but further studies are needed to optimize this technique.
Collapse
Affiliation(s)
- Manuela Madeddu
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Fiammetta Berlinguer
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Massimo Ledda
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Giovanni G Leoni
- Department of Physiological, Biochemical and Cellular Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Valentina Satta
- Department of Physiological, Biochemical and Cellular Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sara Succu
- Department of Physiological, Biochemical and Cellular Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Andrea Rotta
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Valeria Pasciu
- Presidenza, Biblioteca Veterinaria, Faculty of Veterinary Medicine, University of Sassari, Via Vienna, 2 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Science, University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Marco Muzzeddu
- Sardinian Board of Forestry, viale Luigi Merello, 86 – 09123 Cagliari, Italy
| | - Ciriaco Carru
- Department of Biomedical Science, University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Salvatore Naitana
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
28
|
Shimizu M, Fujii T, Masuo S, Fujita K, Takaya N. Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomics 2009; 9:7-19. [PMID: 19053082 DOI: 10.1002/pmic.200701163] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The fungus Aspergillus nidulans reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP under hypoxic conditions in a mechanism called ammonia fermentation (Takasaki, K. et al.. J. Biol. Chem. 2004, 279, 12414-12420). To elucidate the mechanism, the fungus was cultured under normoxic and hypoxic (ammonia fermenting) conditions, intracellular proteins were resolved by 2-DE, and 332 protein spots were identified using MALDI MS after tryptic digestion. Alcohol and aldehyde dehydrogenases that play key roles in oxidizing ethanol were produced at the basal level under hypoxic conditions but were obviously provoked by ethanol under normoxic conditions. Enzymes involved in gluconeogenesis, as well as the tricarboxylic and glyoxylate cycles, were downregulated. These results indicate that the mechanism of fungal energy conservation is altered under hypoxic conditions. The results also showed that proteins in the pentose phosphate pathway as well as the metabolism of both nucleotide and thiamine were upregulated under hypoxic conditions. Levels of xanthine and hypoxanthine, deamination products of guanine and adenine were increased in DNA from hypoxic cells, indicating an association between hypoxia and intracellular DNA base damage. This study is the first proteomic comparison of the hypoxic responses of A. nidulans.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
29
|
Fang D, Ming QZ, Li Z, Mei WX, Ya K. Hypothermia attenuates protective effects of ginkgolides on astrocytes from ischemia/reperfusion injury. Neurochem Int 2008; 55:181-6. [PMID: 19121359 DOI: 10.1016/j.neuint.2008.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 01/19/2023]
Abstract
The neuroprotective roles of both hypothermia and ginkgolides have been well confirmed. We first examined whether hypothermia (32 or 28 degrees C) or ginkgolides have a protective effect on astrocytes against ischemia and reperfusion-induced injury. We demonstrated that ginkgolides, but not hypothermia, have a significantly time- and concentration-dependent protective role in ischemic astrocytes. We then investigated whether co-treatment with hypothermia and ginkgolides has a synergistic role to protect astrocytes against ischemia and reperfusion-induced injury. Cells were incubated with 18.75, 37.5 or 75 microg/ml of ginkgolides at 37, 32 or 28 degrees C for 24, 48 or 72 h before exposure to ischemia (24h) and then reperfusion (24h). Data showed that the co-treatment induced a significant decrease, rather than an increase as we had expected, in their cellular viabilities and anti-apoptotic abilities as compared with the cells treated by ginkgolides only. Western blot analysis demonstrated that hypothermia (32 or 28 degrees C for 24h) has no effect on the expression of Hypoxia-inducible factor-1 alpha (HIF-1 alpha) protein, suggesting that HIF-1 alpha is not associated with the adverse effect of hypothermia on ginkgolides. The findings imply the importance of further investigating the effects of hypothermia on the pharmacological role or therapeutic efficacy of drugs commonly used clinically.
Collapse
Affiliation(s)
- Du Fang
- Institute for Nautical Medicine and Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | | | | | | | | |
Collapse
|
30
|
Zinellu A, Sotgia S, Pasciu V, Madeddu M, Leoni GG, Naitana S, Deiana L, Carru C. Intracellular adenosine 5'-triphosphate, adenosine 5'-diphosphate, and adenosine 5'-monophosphate detection by short-end injection capillary electrophoresis using methylcellulose as the effective electroosmostic flow suppressor. Electrophoresis 2008; 29:3069-73. [PMID: 18551716 DOI: 10.1002/elps.200800033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a new rapid CE method to measure adenine nucleotides adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in cells. The short-end injection mode allows a decrease in the analysis time by injecting samples at the outlet end of a silica capillary closest to the detection window, reducing the migration distance. Moreover, the use of methylcellulose (MC) as run buffer additive to suppress EOF permits to further reduce the migration times of analytes. Thus, when a capillary with an effective length of 10.2 cm was used with a 60 mmol/L sodium acetate buffer pH 3.80 in the presence of 0.01% of MC, the migration time of analytes were 1.35 min for ATP, 1.85 min for ADP, and 4.64 min for AMP. These conditions gave a good reproducibility for intra- and interassay (CV <4 and 8%, respectively) and all the procedure demonstrated an excellent analytical recovery (from 98.3 to 99 %). The method suitability was proved both on red blood cells and in spermatozoa. We compared our proposed method to a spectrophotometric assay, by measuring ATP levels in 40 spermatozoa samples. The obtained data were analyzed by the Passing and Bablok regression and Bland-Altman test.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Redzic ZB, Malatiali SA, Craik JD, Rakic ML, Isakovic AJ. Blood-brain barrier efflux transport of pyrimidine nucleosides and nucleobases in the rat. Neurochem Res 2008; 34:566-73. [PMID: 18751895 DOI: 10.1007/s11064-008-9823-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/05/2008] [Indexed: 11/25/2022]
Abstract
The brain efflux index (BEI), a measurement of blood-brain barrier (BBB) efflux transport, was estimated at 15 s, 30 s, 1 min, 3 min and 10 min after intracerebral injection of [14C]pyrimidines. An initial steep increase of the BEI values over time was observed for [14]uracil and [14C]thymine, followed by a more moderate increase after 1 min. For the corresponding nucleosides, [14C]uridine and [14C]thymidine, the increase of BEI values over time was less steep and linear between 30 s and 3 min. The apparent BBB efflux clearances for [14C]uridine, [14C]thymidine, [14C]uracil and [14C]thymine were (microl/min/g): 95.2 +/- 12.1, 125.3 +/- 18.4, 290.4 +/- 28 and 358.5 +/- 32.5, respectively, which is at least several folds higher than the predicted BBB influx clearances of uridine, uracil and thymidine. Quick depletion of brain parenchyma from brain microvasculature has revealed that [14C] radioactivity accumulated in brain microvessels after injection of nucleosides [14C]thymidine and [14C]uridine, but that was not observed when nucleobases, [14C]thymine and [14C]uracil, were injected. Reverse transcriptase-PCR revealed that the rat brain and liver (positive control) express dihydropyrimidine dehydrogenase, a key enzyme in pyrimidine nucleobase catabolism. Two bands representing spliced variants have been detected with the relative density of the bands (expressed relative to the density of glyceraldehyde3-phosphate dehydrogenase bands, mean +/- SEM from 3 separate samples) 0.16 +/- 0.06 and 0.04 +/- 0.01 (brain) and 0.49 +/- 0.1 and 0.07 +/- 0.01 (liver). Overall, these results indicate that the net direction of pyrimidine BBB transport is the efflux transport; rapid BBB efflux transport and metabolic breakdown of pyrimidine nucleobases appear to be important for brain homeostasis.
Collapse
Affiliation(s)
- Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | | | | | | | | |
Collapse
|
32
|
Careddu MG, Allegrini S, Pesi R, Camici M, Garcia-Gil M, Tozzi MG. Knockdown of cytosolic 5'-nucleotidase II (cN-II) reveals that its activity is essential for survival in astrocytoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1529-35. [PMID: 18445485 DOI: 10.1016/j.bbamcr.2008.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/28/2008] [Accepted: 03/31/2008] [Indexed: 11/29/2022]
Abstract
IMP preferring cytosolic 5'-nucleotidase (cN-II) is an ubiquitous nucleotide hydrolysing enzyme. The enzyme is widely distributed and its amino acid sequence is highly conserved among vertebrates. Fluctuations of cN-II activity have been associated with the pathogenesis of neurological disorders. The enzyme appears to be involved in the regulation of the intracellular availability of the purine precursor IMP and also of GMP and AMP, but the contribution of this activity and of its regulation to cell metabolism and to CNS cell functions remains uncertain. To address this issue, we used a vector based short hairpin RNA (shRNA) strategy to knockdown cN-II activity in human astrocytoma cells. Our results demonstrated that 53 h after transduction, cN-II mRNA was reduced to 17.9+/-0.03% of control cells. 19 h later enzyme activity was decreased from 0.7+/-0.026 mU/mg in control ADF cells to 0.45+/-0.046 mU/mg, while cell viability (evaluated by the MTT reduction assay) decreased up to 0.59+/-0.01 (fold vs control) and caspase 3 activity increased from 136+/-5.8 pmol min(-1) mg(-1) in control cells to 639+/-37.5 pmol min(-1) mg(-1) in silenced cells, thus demonstrating that cN-II is essential for cell survival. The decrease of enzyme activity causes apoptosis of the cultured cells without altering intracellular nucleotide and nucleoside concentration or energy charge. Since cN-II is highly expressed in tumour cells, our finding offers a new possible therapeutical approach especially against primary brain tumours such as glioblastoma, and to ameliorate chemotherapy against leukemia.
Collapse
|
33
|
Balestri F, Barsotti C, Lutzemberger L, Camici M, Ipata PL. Key role of uridine kinase and uridine phosphorylase in the homeostatic regulation of purine and pyrimidine salvage in brain. Neurochem Int 2007; 51:517-23. [PMID: 17643556 DOI: 10.1016/j.neuint.2007.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to beta-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.
Collapse
Affiliation(s)
- Francesco Balestri
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via S. Zeno 51, 56100 Pisa, Italy
| | | | | | | | | |
Collapse
|