1
|
Bassareo V, Maccioni R, Talani G, Zuffa S, El Abiead Y, Lorrai I, Kawamura T, Pantis S, Puliga R, Vargiu R, Lecca D, Enrico P, Peana A, Dazzi L, Dorrestein PC, Sanna PP, Sanna E, Acquas E. Receptor and metabolic insights on the ability of caffeine to prevent alcohol-induced stimulation of mesolimbic dopamine transmission. Transl Psychiatry 2024; 14:391. [PMID: 39341817 PMCID: PMC11438888 DOI: 10.1038/s41398-024-03112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing. Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.
Collapse
Affiliation(s)
- Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Giuseppe Talani
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sofia Pantis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberta Puliga
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Daniele Lecca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandra Peana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Enrico Sanna
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| |
Collapse
|
2
|
Bassareo V, Frau R, Maccioni R, Caboni P, Manis C, Peana AT, Migheli R, Porru S, Acquas E. Ethanol-Dependent Synthesis of Salsolinol in the Posterior Ventral Tegmental Area as Key Mechanism of Ethanol's Action on Mesolimbic Dopamine. Front Neurosci 2021; 15:675061. [PMID: 34262429 PMCID: PMC8273231 DOI: 10.3389/fnins.2021.675061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Abnormal consumption of ethanol, the ingredient responsible for alcoholic drinks' addictive liability, causes millions of deaths yearly. Ethanol's addictive potential is triggered through activation, by a still unknown mechanism, of the mesolimbic dopamine (DA) system, part of a key motivation circuit, DA neurons in the posterior ventral tegmental area (pVTA) projecting to the ipsilateral nucleus accumbens shell (AcbSh). The present in vivo brain microdialysis study, in dually-implanted rats with one probe in the pVTA and another in the ipsilateral or contralateral AcbSh, demonstrates this mechanism. As a consequence of the oral administration of a pharmacologically relevant dose of ethanol, we simultaneously detect a) in the pVTA, a substance, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), untraceable under control conditions, product of condensation between DA and ethanol's first by-product, acetaldehyde; and b) in the AcbSh, a significant increase of DA release. Moreover, such newly generated salsolinol in the pVTA is responsible for increasing AcbSh DA release via μ opioid receptor (μOR) stimulation. In fact, inhibition of salsolinol's generation in the pVTA or blockade of pVTA μORs prevents ethanol-increased ipsilateral, but not contralateral, AcbSh DA release. This evidence discloses the long-sought key mechanism of ethanol's addictive potential and suggests the grounds for developing preventive and therapeutic strategies against abnormal consumption.
Collapse
Affiliation(s)
- Valentina Bassareo
- Center of Excellence for the Study of Neurobiology of Addiction, University of Cagliari, Cagliari, Italy.,Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Riccardo Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Cristina Manis
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Rossana Migheli
- Department of Experimental Medical and Surgical Sciences, University of Sassari, Sassari, Italy
| | - Simona Porru
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Elio Acquas
- Center of Excellence for the Study of Neurobiology of Addiction, University of Cagliari, Cagliari, Italy.,Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Bassareo V, Talani G, Frau R, Porru S, Rosas M, Kasture SB, Peana AT, Loi E, Sanna E, Acquas E. Inhibition of Morphine- and Ethanol-Mediated Stimulation of Mesolimbic Dopamine Neurons by Withania somnifera. Front Neurosci 2019; 13:545. [PMID: 31275092 PMCID: PMC6593272 DOI: 10.3389/fnins.2019.00545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Morphine- and ethanol-induced stimulation of neuronal firing of ventral tegmental area (VTA) dopaminergic neurons and of dopamine (DA) transmission in the shell of the nucleus accumbens (AcbSh) represents a crucial electrophysiological and neurochemical response underlying the ability of these compounds to elicit motivated behaviors and trigger a cascade of plasticity-related biochemical events. Previous studies indicate that the standardized methanolic extract of Withania somnifera roots (WSE) prevents morphine- and ethanol-elicited conditioned place preference and oral ethanol self-administration. Aim of the present research was to investigate whether WSE may also interfere with the ability of morphine and ethanol to stimulate VTA dopaminergic neurons and thus AcbSh DA transmission as assessed in male Sprague-Dawley rats by means of patch-clamp recordings in mesencephalic slices and in vivo brain microdialysis, respectively. Morphine and ethanol significantly stimulated spontaneous firing rate of VTA neurons and DA transmission in the AcbSh. WSE, at concentrations (200-400 μg/ml) that significantly reduce spontaneous neuronal firing of VTA DA neurons via a GABAA- but not GABAB-mediated mechanism, suppressed the stimulatory actions of both morphine and ethanol. Moreover, in vivo administration of WSE at a dose (75 mg/kg) that fails to affect basal DA transmission, significantly prevented both morphine- and ethanol-elicited increases of DA in the AcbSh. Overall, these results highlight the ability of WSE to interfere with morphine- and ethanol-mediated central effects and suggest a mechanistic interpretation of the efficacy of this extract to prevent the motivational properties of these compounds.
Collapse
Affiliation(s)
- Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council, Cagliari, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Porru
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Michela Rosas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | | | - Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Eleonora Loi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enrico Sanna
- Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy.,Institute of Neuroscience, National Research Council, Cagliari, Italy.,Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Elio Acquas
- Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy.,Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Peana AT, Bassareo V, Acquas E. Not Just from Ethanol. Tetrahydroisoquinolinic (TIQ) Derivatives: from Neurotoxicity to Neuroprotection. Neurotox Res 2019; 36:653-668. [DOI: 10.1007/s12640-019-00051-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/29/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
|
5
|
Kurnik-Łucka M, Panula P, Bugajski A, Gil K. Salsolinol: an Unintelligible and Double-Faced Molecule-Lessons Learned from In Vivo and In Vitro Experiments. Neurotox Res 2017; 33:485-514. [PMID: 29063289 PMCID: PMC5766726 DOI: 10.1007/s12640-017-9818-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/19/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a tetrahydroisoquinoline derivative whose presence in humans was first detected in the urine of Parkinsonian patients on l-DOPA (l-dihydroxyphenylalanine) medication. Thus far, multiple hypotheses regarding its physiological/pathophysiological roles have been proposed, especially related to Parkinson’s disease or alcohol addiction. The aim of this review was to outline studies related to salsolinol, with special focus on in vivo and in vitro experimental models. To begin with, the chemical structure of salsolinol together with its biochemical implications and the role in neurotransmission are discussed. Numerous experimental studies are summarized in tables and the most relevant ones are stressed. Finally, the ability of salsolinol to cross the blood–brain barrier and its possible double-faced neurobiological potential are reviewed.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland.
| | - Pertti Panula
- Department of Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Andrzej Bugajski
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| |
Collapse
|
6
|
Peana AT, Sánchez-Catalán MJ, Hipólito L, Rosas M, Porru S, Bennardini F, Romualdi P, Caputi FF, Candeletti S, Polache A, Granero L, Acquas E. Mystic Acetaldehyde: The Never-Ending Story on Alcoholism. Front Behav Neurosci 2017; 11:81. [PMID: 28553209 PMCID: PMC5425597 DOI: 10.3389/fnbeh.2017.00081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
After decades of uncertainties and drawbacks, the study on the role and significance of acetaldehyde in the effects of ethanol seemed to have found its main paths. Accordingly, the effects of acetaldehyde, after its systemic or central administration and as obtained following ethanol metabolism, looked as they were extensively characterized. However, almost 5 years after this research appeared at its highest momentum, the investigations on this topic have been revitalized on at least three main directions: (1) the role and the behavioral significance of acetaldehyde in different phases of ethanol self-administration and in voluntary ethanol consumption; (2) the distinction, in the central effects of ethanol, between those arising from its non-metabolized fraction and those attributable to ethanol-derived acetaldehyde; and (3) the role of the acetaldehyde-dopamine condensation product, salsolinol. The present review article aims at presenting and discussing prospectively the most recent data accumulated following these three research pathways on this never-ending story in order to offer the most up-to-date synoptic critical view on such still unresolved and exciting topic.
Collapse
Affiliation(s)
| | - María J. Sánchez-Catalán
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Lucia Hipólito
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Michela Rosas
- Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | - Simona Porru
- Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | | | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Francesca F. Caputi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Ana Polache
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Luis Granero
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
- Centre of Excellence on Neurobiology of Addiction, University of CagliariCagliari, Italy
| |
Collapse
|
7
|
Sánchez-Catalán MJ, Orrico A, Hipólito L, Zornoza T, Polache A, Lanuza E, Martínez-García F, Granero L, Agustín-Pavón C. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats. Front Neuroanat 2017; 11:8. [PMID: 28280461 PMCID: PMC5322247 DOI: 10.3389/fnana.2017.00008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/09/2017] [Indexed: 12/04/2022] Open
Abstract
Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.
Collapse
Affiliation(s)
- María-José Sánchez-Catalán
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Alejandro Orrico
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Lucía Hipólito
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Teodoro Zornoza
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Ana Polache
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Enrique Lanuza
- Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València València, Spain
| | | | - Luis Granero
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Carmen Agustín-Pavón
- Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València València, Spain
| |
Collapse
|
8
|
Campos-Jurado Y, Martí-Prats L, Zornoza T, Polache A, Granero L, Cano-Cebrián MJ. Regional differences in mu-opioid receptor-dependent modulation of basal dopamine transmission in rat striatum. Neurosci Lett 2016; 638:102-108. [PMID: 27986497 DOI: 10.1016/j.neulet.2016.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 11/30/2022]
Abstract
The nigrostriatal dopamine system is implicated in the regulation of reward and motor activity. Dopamine (DA) release in dorsal striatum (DS) is controlled by the firing rate of DA neurons in substantia nigra pars compacta. However, influences at terminal level, such as those involving activation of mu opioid receptors (MORs), can play a key role in determining DA levels in striatum. Nonetheless, published data also suggest that the effect of opioid drugs on DA levels may differ depending on the DS subregion analyzed. In this study, in vivo microdialysis in rats was used to explore this regional dependence. Changes in basal DA levels induced by local retrodialysis application of DAMGO (selective MORs agonist) in three different subregions of DS along the rostro-caudal axis were studied. Our results indicate that whereas administration of 10μM DAMGO into the rostral and caudal DS significantly reduced DA levels, in medial DS an increase in DA levels was observed. These data reveal a regional-dependent MOR modulation of DA release in DS, similar to that described in the ventral striatum. Our findings may lead to a better understanding of the nigrostriatal DA system regulation.
Collapse
Affiliation(s)
- Y Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - L Martí-Prats
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - T Zornoza
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - A Polache
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - L Granero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - M J Cano-Cebrián
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain.
| |
Collapse
|
9
|
Peana AT, Rosas M, Porru S, Acquas E. From Ethanol to Salsolinol: Role of Ethanol Metabolites in the Effects of Ethanol. J Exp Neurosci 2016; 10:137-146. [PMID: 27891052 PMCID: PMC5117487 DOI: 10.4137/jen.s25099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022] Open
Abstract
In spite of the global reputation of ethanol as the psychopharmacologically active ingredient of alcoholic drinks, the neurobiological basis of the central effects of ethanol still presents some dark sides due to a number of unanswered questions related to both its precise mechanism of action and its metabolism. Accordingly, ethanol represents the interesting example of a compound whose actions cannot be explained as simply due to the involvement of a single receptor/neurotransmitter, a scenario further complicated by the robust evidence that two main metabolites, acetaldehyde and salsolinol, exert many effects similar to those of their parent compound. The present review recapitulates, in a perspective manner, the major and most recent advances that in the last decades boosted a significant growth in the understanding on the role of ethanol metabolism, in particular, in the neurobiological basis of its central effects.
Collapse
Affiliation(s)
- Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Michela Rosas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Porru
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.; Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Hipólito L, Wilson-Poe A, Campos-Jurado Y, Zhong E, Gonzalez-Romero J, Virag L, Whittington R, Comer SD, Carlton SM, Walker BM, Bruchas MR, Morón JA. Inflammatory Pain Promotes Increased Opioid Self-Administration: Role of Dysregulated Ventral Tegmental Area μ Opioid Receptors. J Neurosci 2015; 35:12217-31. [PMID: 26338332 PMCID: PMC4556787 DOI: 10.1523/jneurosci.1053-15.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023] Open
Abstract
Pain management in opioid abusers engenders ethical and practical difficulties for clinicians, often resulting in pain mismanagement. Although chronic opioid administration may alter pain states, the presence of pain itself may alter the propensity to self-administer opioids, and previous history of drug abuse comorbid with chronic pain promotes higher rates of opioid misuse. Here, we tested the hypothesis that inflammatory pain leads to increased heroin self-administration resulting from altered mu opioid receptor (MOR) regulation of mesolimbic dopamine (DA) transmission. To this end, the complete Freund's adjuvant (CFA) model of inflammation was used to assess the neurochemical and functional changes induced by inflammatory pain on MOR-mediated mesolimbic DA transmission and on rat intravenous heroin self-administration under fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. In the presence of inflammatory pain, heroin intake under an FR schedule was increased for high, but attenuated for low, heroin doses with concomitant alterations in mesolimbic MOR function suggested by DA microdialysis. Consistent with the reduction in low dose FR heroin self-administration, inflammatory pain reduced motivation for a low dose of heroin, as measured by responding under a PR schedule of reinforcement, an effect dissociable from high heroin dose PR responding. Together, these results identify a connection between inflammatory pain and loss of MOR function in the mesolimbic dopaminergic pathway that increases intake of high doses of heroin. These findings suggest that pain-induced loss of MOR function in the mesolimbic pathway may promote opioid dose escalation and contribute to opioid abuse-associated phenotypes. SIGNIFICANCE STATEMENT This study provides critical new insights that show that inflammatory pain alters heroin intake through a desensitization of MORs located within the VTA. These findings expand our knowledge of the interactions between inflammatory pain and opioid abuse liability, and should help to facilitate the development of novel and safer opioid-based strategies for treating chronic pain.
Collapse
Affiliation(s)
- Lucia Hipólito
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | | | - Yolanda Campos-Jurado
- Departament de Farmàcia i Tecnología Farmacèutica, Facultat de Farmàcia, Universitat de Farmàcia, 46100 Burjassot, València, Spain
| | - Elaine Zhong
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | | | - Laszlo Virag
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | - Robert Whittington
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | - Sandra D Comer
- Department of Psychiatry, Division on Substance Abuse, New York State Psychiatric Institute, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Susan M Carlton
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch Galveston, Galveston, Texas 77555
| | - Brendan M Walker
- Department of Psychology and Graduate Program in Neuroscience, Washington State University, Pullman, Washington 99164, and
| | - Michael R Bruchas
- Department of Anesthesiology and Department of Anatomy and Neurobiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jose A Morón
- Department of Anesthesiology, Columbia University, New York, New York 10032,
| |
Collapse
|
11
|
Blum K, Oscar-Berman M, Badgaiyan R, Braverman ER, Gold MS. Hypothesizing Darkness Induced Alcohol Intake Linked to Dopaminergic Regulation of Brain Function. ACTA ACUST UNITED AC 2014; 5:282-288. [PMID: 25009759 DOI: 10.4236/psych.2014.54038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding the role of neurotransmission in the prefrontal cortex and mesolimbic brain regions has become the subject of intensive neuroscience research worldwide. In the 1970s, our group provided evidence that rats exposed to darkness significantly augmented their alcohol intake. At that time, we proposed that melatonin was the culprit. At around the same time, our laboratory, amongst a few others, proposed that dopamine-adducts with acetaldehyde to induce alcohol intake both in rodents and in humans. While the work in these areas has declined considerably over the years, more recent scientifically sound studies continue to show the importance of these earlier controversial ideas involving alcohol abuse and alcoholism. A review of the literature has provided impetus to systematically access the newer genetic and molecular neurobiological findings relevant to the physiological and psychological motives for high alcohol consumption in animals and humans alike. Thus, we hypothesize that darkness-induced alcohol intake is linked not only to serotonergic-melatonin mechanisms, but also to dopaminergic regulation of brain mesolimbic pathways involving neuronal expression switching in response to long photoperiods affecting gene expression.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, Florida, USA ; Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California, USA. ; Department of Psychiatry & Human Integrated Services Unit, University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, Vermont, USA ; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA ; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA ; Department of Personalized Medicine, IGENE, LLC. Austin, Texas, USA ; Dominion Diagnostics, LLC, North Kingstown, Rhode Island, USA
| | - Marlene Oscar-Berman
- Department of Psychiatry and Neurology, Boston University School of Medicine and Veterans Administration System, Boston, Massachusetts, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry and Laboratory of Neuroimaging and Molecular Imaging, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Eric R Braverman
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, Florida, USA ; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA
| | - Mark S Gold
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, Florida, USA
| |
Collapse
|
12
|
Nimitvilai S, Arora DS, You C, McElvain M, Brodie MS. Phorbol ester reduces ethanol excitation of dopaminergic neurons of the ventral tegmental area: involvement of protein kinase C theta. Front Integr Neurosci 2013; 7:96. [PMID: 24399942 PMCID: PMC3872320 DOI: 10.3389/fnint.2013.00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/05/2013] [Indexed: 12/02/2022] Open
Abstract
Neurons of the ventral tegmental area (VTA) play a key role in the rewarding and reinforcing effects of drugs of abuse, including alcohol. Ethanol directly increases the firing rate of dopaminergic (DAergic) VTA neurons, but modulation of the firing rate of DAergic VTA neurons can be controlled by a number of factors, including some that are under the control of protein kinase C (PKC). Application of phorbol esters activates PKC and the present study assessed the effect of a phorbol ester, phorbol 12-myristate 13-acetate (PMA), on ethanol-induced excitation of DA VTA neurons. Ethanol-induced excitation of DAergic VTA neurons was reduced significantly in the presence of PMA. This action of PMA was antagonized by chelerythrine chloride, a non-selective antagonist of PKC, but not by moderate concentrations of antagonists of conventional PKC isoforms (Gö6976 and Gö6983). A PKC δ/θ inhibitor antagonized PMA-induced reduction of ethanol excitation. Since PKCδ antagonist Gö6983 did not antagonize the effect of PMA on ethanol excitation, the PMA reduction of ethanol excitation is most likely to be mediated by PKCθ. Antagonists of intracellular calcium pathways were ineffective in antagonizing PMA action on ethanol excitation, consistent with the lack of calcium dependence of PKCθ. In summary, ethanol-induced excitation of VTA neurons is attenuated in the presence of PMA, and this attenuation appears to be mediated by PKCθ. This novel mechanism for interfering with ethanol activation of reward-related neurons could provide a new target for pharmacotherapy to ameliorate alcoholism.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Neurosciences, Medical University of South Carolina Charleston, SC, USA
| | - Devinder S Arora
- School of Pharmacy, Griffith University Gold Coast Campus, QLD, Australia
| | - Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Maureen McElvain
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
13
|
Deehan GA, Hauser SR, Wilden JA, Truitt WA, Rodd ZA. Elucidating the biological basis for the reinforcing actions of alcohol in the mesolimbic dopamine system: the role of active metabolites of alcohol. Front Behav Neurosci 2013; 7:104. [PMID: 23986666 PMCID: PMC3750600 DOI: 10.3389/fnbeh.2013.00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/27/2013] [Indexed: 11/13/2022] Open
Abstract
The development of successful pharmacotherapeutics for the treatment of alcoholism is predicated upon understanding the biological action of alcohol. A limitation of the alcohol research field has been examining the effects of alcohol only and ignoring the multiple biological active metabolites of alcohol. The concept that alcohol is a "pro-drug" is not new. Alcohol is readily metabolized to acetaldehyde within the brain. Acetaldehyde is a highly reactive compound that forms a number of condensation products, including salsolinol and iso-salsolinol (acetaldehyde and dopamine). Recent experiments have established that numerous metabolites of alcohol have direct CNS action, and could, in part or whole, mediate the reinforcing actions of alcohol within the mesolimbic dopamine system. The mesolimbic dopamine system originates in the ventral tegmental area (VTA) and projects to forebrain regions that include the nucleus accumbens (Acb) and the medial prefrontal cortex (mPFC) and is thought to be the neurocircuitry governing the rewarding properties of drugs of abuse. Within this neurocircuitry there is convincing evidence that; (1) biologically active metabolites of alcohol can directly or indirectly increase the activity of VTA dopamine neurons, (2) alcohol and alcohol metabolites are reinforcing within the mesolimbic dopamine system, (3) inhibiting the alcohol metabolic pathway inhibits the biological consequences of alcohol exposure, (4) alcohol consumption can be reduced by inhibiting/attenuating the alcohol metabolic pathway in the mesolimbic dopamine system, (5) alcohol metabolites can alter neurochemical levels within the mesolimbic dopamine system, and (6) alcohol interacts with alcohol metabolites to enhance the actions of both compounds. The data indicate that there is a positive relationship between alcohol and alcohol metabolites in regulating the biological consequences of consuming alcohol and the potential of alcohol use escalating to alcoholism.
Collapse
Affiliation(s)
- Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University, School of Medicine Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
14
|
Font L, Luján MÁ, Pastor R. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde. Front Behav Neurosci 2013; 7:93. [PMID: 23914161 PMCID: PMC3728478 DOI: 10.3389/fnbeh.2013.00093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022] Open
Abstract
Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR.
Collapse
Affiliation(s)
- Laura Font
- Area de Psicobiología, Universitat Jaume I Castellón, Spain
| | | | | |
Collapse
|
15
|
Peana AT, Acquas E. Behavioral and biochemical evidence of the role of acetaldehyde in the motivational effects of ethanol. Front Behav Neurosci 2013; 7:86. [PMID: 23874276 PMCID: PMC3710953 DOI: 10.3389/fnbeh.2013.00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/27/2013] [Indexed: 11/13/2022] Open
Abstract
Since Chevens' report, in the early 50's that his patients under treatment with the aldehyde dehydrogenase inhibitor, antabuse, could experience beneficial effects when drinking small volumes of alcoholic beverages, the role of acetaldehyde (ACD) in the effects of ethanol has been thoroughly investigated on pre-clinical grounds. Thus, after more than 25 years of intense research, a large number of studies have been published on the motivational properties of ACD itself as well as on the role that ethanol-derived ACD plays in the effects of ethanol. Accordingly, in particular with respect to the motivational properties of ethanol, these studies were developed following two main strategies: on one hand, were aimed to challenge the suggestion that also ACD may exert motivational properties on its own, while, on the other, with the aid of enzymatic manipulations or ACD inactivation, were aimed to test the hypothesis that ethanol-derived ACD might have a role in ethanol motivational effects. Furthermore, recent evidence significantly contributed to highlight, as possible mechanisms of action of ACD, its ability to commit either dopaminergic and opioidergic transmission as well as to activate the Extracellular signal Regulated Kinase cascade transduction pathway in reward-related brain structures. In conclusion, and despite the observation that ACD seems also to have inherited the elusive nature of its parent compound, the behavioral and biochemical evidence reviewed points to ACD as a neuroactive molecule able, on its own and as ethanol metabolite, to exert motivational effects.
Collapse
Affiliation(s)
- Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari Sassari, Italy
| | | |
Collapse
|
16
|
March SM, Abate P, Molina JC. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny. Front Behav Neurosci 2013; 7:70. [PMID: 23801947 PMCID: PMC3685812 DOI: 10.3389/fnbeh.2013.00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/01/2013] [Indexed: 11/29/2022] Open
Abstract
Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption.
Collapse
Affiliation(s)
- Samanta M March
- Laboratorio de Alcohol, Ontogenia y Desarrollo, Instituto de Investigación Médica Mercedes y Martín Ferreyra Córdoba, Argentina ; Department de Psicología, Facultad de Psicología, Universidad Nacional de Córdoba Córdoba, Argentina
| | | | | |
Collapse
|
17
|
Xie G, Krnjević K, Ye JH. Salsolinol modulation of dopamine neurons. Front Behav Neurosci 2013; 7:52. [PMID: 23745110 PMCID: PMC3662897 DOI: 10.3389/fnbeh.2013.00052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/07/2013] [Indexed: 11/25/2022] Open
Abstract
Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic (DA) system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA) of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens (NAc). However, the underlying neuronal mechanisms are unclear. Here we present an overview of some of the recent research on this topic. Electrophysiological studies reveal that DA neurons in the pVTA are a target of salsolinol. In acute brain slices from rats, salsolinol increases the excitability and accelerates the ongoing firing of dopamine neurons in the pVTA. Intriguingly, this action of salsolinol involves multiple pre- and post-synaptic mechanisms, including: (1) depolarizing dopamine neurons; (2) by activating μ opioid receptors on the GABAergic inputs to dopamine neurons – which decreases GABAergic activity – dopamine neurons are disinhibited; and (3) enhancing presynaptic glutamatergic transmission onto dopamine neurons via activation of dopamine type 1 receptors, probably situated on the glutamatergic terminals. These novel mechanisms may contribute to the rewarding/reinforcing properties of salsolinol observed in vivo.
Collapse
Affiliation(s)
- Guiqin Xie
- Department of Anesthesiology, Pharmacology, and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey Newark, NJ, USA ; Department of Physiology, Nanjing Medical University Nanjing, China
| | | | | |
Collapse
|
18
|
Increased levels of monoamine-derived potential neurotoxins in fetal rat brain exposed to ethanol. Neurochem Res 2012. [PMID: 23184185 DOI: 10.1007/s11064-012-0926-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pregnant SD rats were exposed to ethanol (25 % (v/v) ethanol at 1.0, 2.0 or 4.0 g/kg body weight from GD8 to GD20) to assess whether ethanol-derived acetaldehyde could interact with endogenous monoamine to generate tetrahydroisoquinoline or tetrahydro-beta-carboline in the fetuses. The fetal brain concentration of acetaldehyde increased remarkably after ethanol administration (2.6 times, 5.3 times and 7.8 times as compared to saline control in 1.0, 2.0 and 4.0 g/kg ethanol-treated groups, respectively) detected by HPLC with 2,4-dinitrophenylhydrazine derivatization. Compared to control, ethanol exposure induced the formation of 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol, Sal), N-methyl-salsolinol (NMSal) and 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline (6-OH-MTHBC) in fetal rat brains. Determined by HPLC with electrochemical detector, the levels of dopamine and 5-hydroxytryptamine in whole fetal brain were not remarkably altered by ethanol treatment, while the levels of homovanillic acid and 5-hydroxyindole acetic acid in high dose (4.0 g/kg) of ethanol-treated rats were significantly decreased compared to that in the control animals. 4.0 g/kg ethanol administration inhibited the activity of mitochondrial monoamine oxidase (51.3 % as compared to control) and reduced the activity of respiratory chain complex I (61.2 % as compared to control). These results suggested that ethanol-induced alteration of monoamine metabolism and the accumulation of dopamine-derived catechol isoquinolines and 5-hydroxytryptamine-derived tetrahydro-beta-carbolines may play roles in the developmental dysfuction of monoaminergic neuronal systems.
Collapse
|
19
|
de los Ángeles Juricic M, Berríos-Cárcamo PA, Acevedo ML, Israel Y, Almodóvar I, Cassels BK. Salsolinol and isosalsolinol: Condensation products of acetaldehyde and dopamine. Separation of their enantiomers in the presence of a large excess of dopamine. J Pharm Biomed Anal 2012; 63:170-4. [DOI: 10.1016/j.jpba.2012.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 11/24/2022]
|
20
|
Correa M, Salamone JD, Segovia KN, Pardo M, Longoni R, Spina L, Peana AT, Vinci S, Acquas E. Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci Biobehav Rev 2012; 36:404-30. [DOI: 10.1016/j.neubiorev.2011.07.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/14/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
|
21
|
Hipólito L, Sánchez-Catalán MJ, Martí-Prats L, Granero L, Polache A. Revisiting the controversial role of salsolinol in the neurobiological effects of ethanol: old and new vistas. Neurosci Biobehav Rev 2011; 36:362-78. [PMID: 21802444 DOI: 10.1016/j.neubiorev.2011.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
Abstract
The possible involvement of salsolinol (Sal), an endogenous condensation product of ACD (the first metabolite of ethanol) and dopamine, in the neurochemical basis underlying ethanol action has been repeatedly suggested although it has not been unequivocally established, still being a controversial matter of debate. The main goal of this review is to evaluate the presumed contribution of Sal to ethanol effects summarizing the reported data since the discovery in the 1970s of Sal formation in vitro during ethanol metabolism until the more recent studies characterizing its behavioral and neurochemical effects. Towards this end, we first analyze the production and detection of Sal, in different brain areas, in basal conditions and after alcohol consumption, highlighting its presence in regions especially relevant in regulating ethanol-drinking behaviour and the importance of the newly developed methods to differentiate both enantiomers of Sal which could help to explain some previous negative findings. Afterwards, we review the behavioral and neurochemical studies. Finally, we present and discuss the previous and current enunciated mechanisms of action of Sal in the CNS.
Collapse
Affiliation(s)
- Lucía Hipólito
- Departament de Farmàcia i Tecnologia Farmacèutica, Universitat de València, Avda Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
22
|
Hipólito L, Martí-Prats L, Sánchez-Catalán MJ, Polache A, Granero L. Induction of conditioned place preference and dopamine release by salsolinol in posterior VTA of rats: involvement of μ-opioid receptors. Neurochem Int 2011; 59:559-62. [PMID: 21693150 DOI: 10.1016/j.neuint.2011.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 11/30/2022]
Abstract
Salsolinol (Sal), locally administered into the posterior VTA (pVTA) of rats, produces psychomotor responses and reinforcing effects, probably, through the activation of μ-opioid receptors (MORs). The neurochemical correlates of these phenomena are, however, practically unknown. In this paper, we explore the neurochemical events and the mechanisms involved in these behaviors. To do that, we test the ability of Sal, directly microinjected into the pVTA, to induce conditioned place preference (CPP) and to increase dopamine levels in the nucleus accumbens shell. Bilateral injections of 30 pmol of Sal induced a strong CPP (rats spent around 70% of the total test time), a result that could be explained by the fact that Sal microinjected into the pVTA increased DA levels in the ipsilateral accumbens up to 141% of baseline. The local pretreatment with β-FNA, an antagonist of MORs, prevented this increase, supporting our hypothesis on the involvement of MORs in the Sal-derived effects.
Collapse
Affiliation(s)
- Lucía Hipólito
- Departament de Farmàcia i Tecnología Farmacèutica, Universitat de València, Avda Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
23
|
Hipólito L, Sánchez-Catalán MJ, Zornoza T, Polache A, Granero L. Locomotor stimulant effects of acute and repeated intrategmental injections of salsolinol in rats: role of mu-opioid receptors. Psychopharmacology (Berl) 2010; 209:1-11. [PMID: 20084370 DOI: 10.1007/s00213-009-1751-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/18/2009] [Indexed: 12/31/2022]
Abstract
RATIONALE Microinjections of ethanol and acetaldehyde into ventral tegmental area (VTA) produce locomotor activation in rats through mechanisms dependent on the mu-opioid receptors. However, it is not clear how these drugs can interact with these receptors. It has been hypothesized that salsolinol could be the responsible for this interaction. OBJECTIVES The aim of the study was to investigate the ability of salsolinol to induce both motor activation and motor sensitization in rats after repeated intra-VTA administration. MATERIALS Rats received one microinjection into the posterior VTA of artificial cerebrospinal fluid (aCSF; 200 nL), salsolinol (0.3-3,000.0 pmol/200 nL), or salsolinol (30.0 pmol/200 nL) with either naltrexone (13.2 nmol/200 nL) or with the antagonist of the mu-opioid receptors, beta-funaltrexamine (beta-FNA; 2.5 nmol/300 nL). In the sensitization experiments, four microinjections of salsolinol (30.0 pmol/200 nL) or aCSF (200 nL) were performed over a 2-week period. This period was followed by a single challenge session, in which 0.3 pmol of salsolinol was microinjected to rats. Spontaneous activity was always monitored postinjection. RESULTS Intra-VTA salsolinol administration induces an increase of the spontaneous motor activity of the rats with the maximal effect at the dose of 30.0 pmol/200 nL. Salsolinol effects were blocked by the treatment with naltrexone or beta-FNA. Moreover, repeated injections of salsolinol produced locomotor sensitization. CONCLUSIONS Salsolinol induces locomotor activity and motor sensitization after intra-VTA administration. Moreover, the implication of the mu-opioid receptors was shown since the treatment with naltrexone or beta-FNA was able to suppress the salsolinol effects.
Collapse
Affiliation(s)
- Lucía Hipólito
- Departament de Farmacia i Tecnología Farmacèutica, Universitat de València, Burjassot, Spain
| | | | | | | | | |
Collapse
|
24
|
Effects of a structural analogue of salsolinol, 1-MeDIQ, on pituitary prolactin release and dopaminergic activity in the mediobasal hypothalamus in nursing sheep. Brain Res 2010; 1307:72-7. [DOI: 10.1016/j.brainres.2009.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 12/24/2022]
|